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Introduction 

This book is a summary of several papers that the authors wrote on credit 
risk starting from 2003 to 2016. 

Credit risk problem is one of the most important contemporary problems 
that has been developed in the financial literature. The basic idea of our 
approach is to consider the credit risk of a company like a reliability 
evaluation of the company that issues a bond to reimburse its debt.  

Considering that semi-Markov processes (SMPs) were applied in the 
engineering field for the study of reliability of complex mechanical systems, 
we decided to apply this process and develop it for the study of credit risk 
evaluation. 

Our first paper [D’AM 05] was presented at the 27th Congress AMASES 
held in Cagliari, 2003. The second paper [D’AM 06] was presented at IWAP 
2004 Athens. The third paper [D’AM 11] was presented at QMF 2004 
Sidney. Our remaining research articles are as follows: [D’AM 07,  
D’AM 08a, D’AM 08b, SIL08, D’AM 09, D’AM 10, D’AM 11a,  
D’AM 11b, D’AM 12, D’AM 14a, D’AM 14b, D’AM 15, D’AM 16a] and 
[D’AM 16b]. 

Other credit risk studies in a semi-Markov setting were from [VAS 06, 
VAS 13] and [VAS 13]. We should also outline that up to now, at author’s 
knowledge, no papers were written for outline problems or criticisms to the 
applications of SMPs to the migration credit risk. 
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The study of credit risk began with so-called structural form models 
(SFM). Merton [MER 74] proposed the first paper regarding this approach. 
This paper was an application of the seminal papers by Black and Scholes 
[BLA 73]. According to Merton’s paper, default can only happen at the 
maturity date of the debt. Many criticisms were made on this approach. 
Indeed, it was supposed that there are no transaction costs, no taxes and that 
the assets are perfectly divisible. Furthermore, the short sales of assets are 
allowed. Finally, it is supposed that the time evolution of the firm’s value 
follows a diffusion process (see [BEN 05]).  

In Merton’s  paper [MER 74], the stochastic differential equation was the 
same that could be used for the pricing of a European option. This problem 
was solved by Black and Cox [BLA 76] by extending Merton’s model, 
which allowed the default to occur at any time and not only at the maturity 
of the bond. In this book, techniques useful for the pricing of American type 
options are discussed. 

Many other papers generalized the Merton and Black and Cox results. 
We recall the following papers: [DUA 94, LON 95, LEL 94, LEL 06, JON 
84, OGD 87, LYD 00, EOM 03] and [GES 77].  

The second approach to the study of credit risk involves reduced form 
models (RFMs). In this case, pricing and hedging are evaluated by public 
data, which are fully observable by everybody. In SFM, the data used for the 
evaluation of risk are known only within the company. More precisely,  
[JAR 04] explains that in the case of RFM, the information set is observed 
by the market, and in the case of SFM, the information set is known only 
inside the company. 

The first RFM was given in [JAR 92]. In the late 1990s, these models 
developed. The seminal paper [JAR 97] introduced Markov models for 
following the evolution of rating. Starting from this paper, although many 
models make use of Markov chains, the problem of the poorly fitting 
Markov processes in the credit risk environment has been outlined.  

Ratings change with time and a way of following their evolution their by 
means of Markov processes (see, for example, [JAR 97, ISR 01, HU 02]. In 
this environment, Markov models are called migration models. The problem  
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of poorly fitting Markov processes in the credit risk environment has been 
outlined in some papers, including [ALT 98, CAR 94] and [LAN 02]. 

These problems include the following: 

– the duration inside a state: actually, the probability of changing rating 
depends on the time that a firm remains in the same rating. Under the 
Markov assumption, this probability depends only on the rank at the 
previous transition; 

– the dependence of the rating evaluation from the epoch of the 
assessment: this means that, in general, the rating evaluation depends on 
when it is done and, in particular, on the business cycle; 

– the dependence of the new rating from all history of the firm’s rank 
evolution, not only from the last evaluation: actually, the effect exists only in 
the downward cases but not in the case of upward ratings in the sense that if 
a firm gets a lower rating (for almost all rating classes), then there is a higher 
probability that the next rating will be lower than the preceding one. 

All these problems were solved by means of models that applied the 
SMPs, generalizing the Markov migration models.  

This book is self-contained and is divided into nine chapters.  

The first part of the Chapter 1 briefly describes the rating evolution and 
introduces to the meaning of migration and the importance of the evaluation 
of the probability of default for a company that issues bonds.  In the second 
part, Markov chains are described as a mathematical tool useful for rating 
migration modeling. The subsequent step shows how rating migration 
models can be constructed by means of Markov processes. 

Once the Markov limits in the management of migration models are 
defined, the chapter introduces the homogeneous semi-Markov environment. 
The last tool that is presented is the non-homogeneous semi-Markov model. 
Real-life examples are also presented. 

In Chapter 2, it is shown how it is possible to take into account 
simultaneously recurrence times, i.e. backward and forward processes at the 
beginning and at the end of the time in which the credit risk model is 
observed. With such a generalization, it is possible to consider what happens 
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inside the time before and after each transition to provide a full understanding of 
durations inside states of the studied system. The model is presented in a 
discrete time environment. 

Chapter 3 presents the application of recurrence times in credit risk 
problems. Indeed, the first criticisms of Markov migration models were on 
the independence of the transition probabilities with respect to the duration 
of waiting time inside states (see [CAR 94, DUF 03]).  SMP overcomes this 
problem but the introduction of initial and final backward and forward times 
allows for a complete study of the duration inside states. Furthermore, the 
duration of waiting time in credit risk problems is a fundamental issue in the 
construction of credit risk models. 

In this chapter, real data examples are presented that show how the results 
of our semi-Markov models are sensitive to recurrence times. 

Some papers have outlined the problem of unsuitable fitting of Markov 
processes in a credit risk environment. Chapter 4 presents a model that 
overcomes all the inadequacies of the Markov models. As previously 
mentioned, the full introduction of recurrence times solves the duration 
problem. The time dependence of the rating evaluation can be solved by 
means of the introduction of non-homogeneity. The downward problem is 
solved by means of the introduction of six states. The randomness of waiting 
time in the transitions of states is considered, thus making it possible to take 
into account the duration completely inside a state. Furthermore, in this 
chapter, both transient and asymptotic analyses are presented. The 
asymptotic analysis is performed by using a mono-unireducible topological 
structure. At the end of the chapter, a real data application is performed 
using the historical database of Standard & Poor’s as the source. 

Chapter 5 presents a model to describe the evolution of the yield spread 
by considering the rating evaluation as the determinant of credit spreads. The 
underlying rating migration process is assumed to be a non-homogeneous 
discrete time semi-Markov non-discounted reward process. The rewards are 
given by the values of the spreads. 

The calculation of the total sum of mean basis points paid within any 
given time interval is also performed. 
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From this information, we show how it is possible to extract the time 
evolution of expected interest rates and discount factors. 

In Chapter 6, a discrete time non-homogeneous semi-Markov model for 
the rating evolution of the credit quality of a firm C is considered (see 
[D’AM 04]). The credit default swap spread for a contract between two 
parties, A and B, that sell and buy a protection about the failure of the firm C 
is determined. The work, both in the case of deterministic and stochastic 
recovery rate, is calculated. The link between credit risk and reliability 
theory is also highlighted. 

Chapter 7 details two connected problems, as follows: 

– the construction of an appropriate multivariate model for the study of 
counterparty credit risk in the credit rating migration problem is presented. 
For this financial problem, different multivariate Markov chain models were 
proposed. However, the Markovian assumption may be inappropriate for the 
study of the dynamics of credit ratings, which typically shows non-
Markovian-like behavior. In this first part of the chapter, we develop a semi-
Markov approach to study the counterparty credit risk by defining a new 
multivariate semi-Markov chain model. Methods are proposed for 
computing the transition probabilities, reliability functions and the price of a 
risky credit default swap; 

– the construction of a bivariate semi-Markov reward chain model is 
presented. Equations for the higher order moments of the reward process are 
presented for the first time and applied to the problem for modeling the 
credit spread evolution of an obligor by considering the dynamic of its own 
credit rating and that of a dependent obligor called the counterpart. How to 
compute the expected value of the accumulated credit spread (expressed in 
basis points) that the obligor should expect to pay in addition to the risk free 
interest rate is detailed. Higher order moments of the accumulated credit 
spread process convey important financial information in terms of variance, 
skewness and kurtosis of the total basis points the obligor should pay in a 
given time horizon. This chapter contributes to the literature by extending on 
previous results of semi-Markov reward chains. The models and the validity 
of the results are illustrated through two numerical examples. 

In Chapter 8, as in the previous chapters, the credit risk problem is placed 
in a reliability environment. One of the main applications of SMPs is, as it is 
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well known, in the field of reliability. For this reason, it is quite natural to 
construct semi-Markov credit risk migration models. 

This chapter details the first results that were obtained by the research 
group by the application of Monte Carlo simulation methods. How to 
reconstruct the semi-Markov trajectories using Monte Carlo methods and 
how to obtain the distribution of the random variable of the losses that the 
bank should support in the given horizon time are also explained in this 
chapter. Once this random variable is reconstructed, it will be possible to 
have all the moments of it and all the variability indices including the VaR. 
As it is well known, the VaR construction represents the main risk indicator 
in the Basel I–III committee agreements. 



1 

Semi-Markov Processes  
Migration Credit Risk Models 

This chapter presents a very concise presentation of the credit risk 
problem and basic stochastic models used to solve it, mainly homogeneous 
and non-homogeneous semi-Markov models illustrated with some numerical 
examples. 

These models will be discussed in the following chapters. 

1.1. Rating and migration problems 

1.1.1. Ratings 

As mentioned by Solvency II and Basel III Committees, the credit risk 
problem is one of the most important contemporary problems for banks and 
insurance companies. Indeed, for banks, for example, more than 40% of their 
equities are necessary to cover this risk. 

When a bank has a loan or when a financial institution issues bonds 
bought by a firm, this bank or this firm risk not being able to recover their 
money totally or partially. This risk is called default risk. A lot of work has 
been done to build stochastic models to evaluate the probability of default. 
One of the first models is the Merton  model [MER 74], or the firm model, 
considering the case of a firm that borrows an amount M of money at time 0,  
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for example in the form of a zero coupon bond with facial value F (interests 
included) representing the amount to reimburse at time T. 

It is clear that a smaller probability of default is better for the issuing 
company as it makes buying their bonds more attractive.  

As the default risk of a firm is difficult to evaluate and since its value can 
change with time up to the maturity time of the bond, this problem is studied 
by big agencies of rating such as Standard and Poor’s, Fitch and Moody. 
The agencies play an important role in financial and economic worlds. 

In the case of Standard and Poor’s, there are the nine different classes of 
rating and so we have to consider the following set of states: 

{ }AAA, AA, A, BBB, BB, B, CCC, D, NR .=E  [1.1] 

The first seven states are working states (good states) and the last two are 
bad states giving the two following subsets: 

{ } { }AAA, AA, A, BBB, BB, B, CCC ,  D, NR .= =U D  [1.2] 

The up states represent the long-term ratings given by Standard and 
Poor’s (S&P) to the firm that have bonds on the market and that regularly 
reimburse their bonds. Clearly, the worse the rating, the higher the interest 
rate will be that the firm that issues the bonds must pay in term of basic 
points. The two down states represent, respectively, the Default state and the 
No Rating (NR) state. The former happens when the firm could not 
reimburse, partially or totally, the bonds. The second down state represents a 
firm to which the agency does not give the rating evaluation. 

It is clear that the rate given by an agency at a time 1t can be revised at a 
time 2t and that so this rate has a time evolution modeled by stochastic models 
called migration models. 

The main problem in the credit risk environment is the study of default 
probability. For this reason, many migration models do not consider the NR 
state and transform the default state D in an absorbing state.  
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The state set becomes the following: 

{ }AAA, AA, A, BBB, BB, B, CCC, D ,=E  [1.3] 

and the subset of the down states will be formed only by the default state D.  

In real economic life, credit rating agencies play a crucial role; they 
compile data on individual companies or countries to estimate their 
probability of default, represented by their scale of credit ratings at a given 
time and also by the probability of transitions for successive credit ratings.  

1.1.2. Migration problem 

A change in the rating is called a migration.  

Clearly, a migration to a higher rating will increase the value of a 
company’s bond and decrease its yield, giving what we call a negative 
spread, as it has a lower probability of default, and the inverse is true with a 
migration toward a lower grade with a consequently positive spread. 

In the following, we give an example of a possible transition matrix for 
migration from 1 year to the next. 

 AAA AA A BBB BB B CCC D Total 

AAA 0.90829 0.08272 0.00736 0.00065 0.00066 0.00014 0.00006 0.00012 1 

AA 0.00665 0.9089 0.07692 0.00583 0.00064 0.00066 0.00029 0.00011 1 

A 0.00092 0.0242 0.91305 0.05228 0.00678 0.00227 0.00009 0.00041 1 

BBB 0.00042 0.0032 0.05878 0.87459 0.04964 0.01078 0.0011 0.00149 1 

BB 0.00039 0.00126 0.00644 0.0771 0.81159 0.08397 0.0097 0.00955 1 

B 0.00044 0.00211 0.00361 0.00718 0.07961 0.80767 0.04992 0.04946 1 

CCC 0.00127 0.00122 0.00423 0.01195 0.0269 0.11711 0.64479 0.19253 1 

D 0 0 0 0 0 0 0 1 1 

Table 1.1. Example of transition matrix of credit ratings (source: [JAN 07]) 
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The elements of the first diagonal row give the probabilities of no 
migration and are the highest elements of the matrix, but they decrease with  
poorer quality ratings. 

Here, we see, for example, that a company with rank A has more or less 
nine chances out of 10 to maintain its rating for the following year, but its 
chances of going up to rank AA is only two out of 100.  

On the other hand, the chances of a company with a CCC rating 
defaulting in next year is 20 out of 100. 

Table 1.2 gives the transition probability matrix of credit ratings of 
Standard and Poor’s for 1998 (see ratings performance, Standard and 
Poor’s) for a sample of 4,014 companies. 

As mentioned previously, let us point out the presence of an NR state 
(rating withdrawn), meaning that for a company in such a state, the rating 
has been withdrawn and that this event does not necessarily lead to default 
the following year, thus explaining the last row of Table 1.1. 

Effec.  AAA AA A BBB BB B CCC D N.R. Total 

165 AAA 90.3 6.1 0 0.61 0 0 0 0 3.03 100 

560 AA 0.18 90 5.71 0.18 0 0 0 0 4.29 100 

1,095 A 0.09 1.5 87.22 5.11 0.18 0 0 0 5.94 100 

896 BBB 0 0 2.79 84.93 4.46 0.67 0.22 0.34 6.59 100 

619 BB 0.32 0.2 0.16 5.33 75.44 5.98 2.75 0.65 9.21 100 

649 B 0 0 0.15 0.62 6.16 76.3 5.09 4.47 7.24 100 

30 CCC 0 0 3.33 0 0 20 33.3 36.67 6.67 100 

 NR 0 0 0 0 0 0 0 0 100 100 

4,014            

Table 1.2. Example of withdrawn rating (source: [JAN 07]) 
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Here, we see, for example, that companies in state A will not be in default 
the next year but that 5.1% of them will degrade to BBB.  

1.1.3. Impact of rating on spreads for zero bonds  

To understand the importance of ratings and migration, let us recall their 
impact on the spread, that is the difference between the interest paid by the 
issuer and the non-risky rate represented byδ is the constant instantaneous 
intensity of interest rate. Let us recall that a zero-coupon bond is a contract 
paying a known fixed amount called the principal, at some given future date, 
called the maturity date. If the principal is one monetary unit and T is the 
maturity date, the value of this zero-coupon at time 0 is given by: 

(0, ) δ−= TB T e . [1.4] 

of course, the investor in zero-coupons must take into account the risk of 
default of the issuer. To do so, Janssen and Manca [JAN 07] consider that, in 
a risk neutral framework, the investor has no preference between the two 
following investments: 

i) to receive almost certainly at time 1 the amount δe as counterpart of the 
investment at time 0 of one monetary unit; 

ii) to receive at time 1 the amount ( ) ( 0)δ + >se s with probability (1 − p) or 
0 with probability p, as counterpart of the investment at time 0 of one 
monetary unit, p being the default probability of the issuer. 

The positive quantity s is called the spread with respect to the non-risky 
instantaneous interest rate δ  as counterpart of this risky investment in zero-
coupon bonds. 

From the indifference mentioned above, we obtain the following relation: 

( )(1 )δ δ += − se p e  [1.5] 

or  

1 (1 ) ,= − sp e  [1.6] 
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from which it follows that 

ln(1 ).= − −s p  [1.7] 

And so at a first-order approximation, we see that the spread is more or 
less equal to the probability of default: 

.≈s p  [1.8] 

The more precise second-order approximation gives: 

21 .
2

≅ +s p p  [1.9] 

Let us now consider a more positive and realistic situation in which the 
investor can have a recovery percentage, i.e. he can recover an amount

,(0 1)α α< < if the issuer defaults at maturity or before. 

In this case, the expectation equivalence principle relation [1.5] becomes: 

(1 ) ,δ δ δα+= − +se p e p e  [1.10] 

or 

1 (1 ) .α= − +sp e p  [1.11] 

It follows that in this case the value of the spread satisfies the equation 

1
1

α−=
−

s pe
p

 [1.12] 

and so the spread value is 

1ln .
1

α−=
−

ps
p

 [1.13] 

As above, using the Mac Laurin formula, respectively, of order 1 and 2, 
we obtain the two following approximations for the spread: 

2 2

(1 ),
1(1 ) ( (1 )
2

α

α α

≈ −

≈ − + −

s p

s p p
. [1.14] 
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Now, we see that, at the first order approximation, the spread decreases 
by an amount pα. 

1.1.4. Homogeneous Markov chain model 

In the 1990s, Markov models were introduced to study credit risk 
problems. Many important papers on these kinds of models were published 
(see [JAR 95, JAR 97, NIC 00, ISR 01, HU 02]), mainly for solving the 
problem of the evaluation of the transition matrices. 

Under the assumption of a homogeneous Markov chain for the migration 
process, we can follow the rate under a time dynamic point of view and as 
such evaluate the probability distribution of the rate after t years. We can  
also compute mean rates, variances and also VaR values (see Chapter 7 of  
[DEV 15]). 

For example, using Table 1.2, we obtain the following results: 

i) the probability that an AA company defaults after 2 years: 

P(2)(D/AA) = 0.0018 ⋅ 0.0034=0.0006%, 

which is still very low. 

ii) the probability that a BBB company defaults in one of the next  
2 years: 

( / ;2) ( / ) ( / ) ( / )
( / ) ( / ) ( / ) ( / )
( / ) ( / )

                      0.34%+(84.93% 0.34%)
+(4.46% 0.65%)+(0.67% 4.47%)+(0.22% 36.67%)
=0.77%.

= +
+ +
+
= ⋅

⋅ ⋅ ⋅

P D BBB P D BBB P BBB BBB P D BBB
P BB BBB P D BB P B BBB P D B
P CCC BBB P D CCC  

iii) the probability for a company BBB to default between years 1 and 2: 
Using the standard definition of conditional probability, we get  

P(D at 2/non-def. at 1) = P(D at 2 and non-def. at 1)/ P(non-def. at 1) 

                                  = (0.77% – 0.34%)/(1 – 0.34%) 

                                  = 0.43%. 
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1.1.5. Migration models 

1) Credit risk and reliability problems 

Homogeneous semi-Markov processes (HSMPs) were defined by Levy 
[LEV 54] and Smith [SMI 55], independently. 

A detailed theoretical analysis of semi-Markov processes (SMPs) is given 
in [HOW 71, JAN 06, JAN 07].  

As specified in [HOW 71, LIM 01] and more recently in [JAN 07, DEV 
15], one of the most important applications of SMPs in engineering is in the 
field of reliability.  

In a reliability problem, we consider a system S that could be a 
mechanical or an electronic material, for example, and which can be in m 
different states represented by the set  

{ }1,...,=I m . 

This state set can be partitioned into two subsets. The first is formed by 
the states in which the system can function and the second by the states in 
which the system is partially functioning or totally malfunctioning in case of 
a fatal failure. 

We can compare the ratings given to an issuer of bonds to the successive 
state of a virtual reliability system S so that the state m of total failure 
corresponds to the default rate D.  

The credit risk problem can be positioned in the reliability environment as 
shown in section 1.3. The rating process, done by the rating agency, gives the 
reliability degree of a bond. For example, in the case of Standard and Poor’s, 
we have set of eight different classes of rating and so the set of states is  

{ }AAA, AA, A, BBB, BB, B, CCC, D=E . 

The first seven states are working states (good states) and the last is the 
only bad state. The two subsets are: 

{ } { }AAA, AA, A, BBB, BB, B, CCC ,  D= =U D . [1.15] 
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Reliability in real problems can also be dealt with successfully by means 
of SMPs (see e.g. [BLA 04]). 

The rating level changes over time and one way to follow the time 
evolution of ratings is by means of Markov processes (see [JAR 97]). In this 
environment, Markov models are called “migration models”. Other papers 
(see, e.g. [NIC 00, ISR 01, HU 02]) followed this approach working mainly 
on the generation of a transition matrix.  

The default problem can be included in the more general problem of the 
reliability of a stochastic system. In the credit risk migration model, the 
rating agencies giving the rating estimate the reliability of the firm that 
issued the bonds. The default state can be seen as a non-working state that, 
in this special case, is also an absorbing state. 

In this chapter, the semi-Markov reliability model, presented in [BLA 04] 
is applied in order to solve the credit risk problem. 

2) Main questions in migration 

The problem of the suitability of Markov processes in the credit risk 
environment has been addressed (see [ALT 98, NIC 00, KAV 01, LAN 02]).  

Nevertheless, Markov processes only constitute a first approach but are 
not entirely satisfactory to describe migrations problems in a more realistic 
way as they do not consider some important facts such as: 

i) the duration inside a state: the probability of changing rating depends 
on the time a company maintains the same rating (see, e.g. [CAR 94]). To be 
more precise, quoting [DUF 03, p. 87]: “there is dependence of transition 
probabilities on duration in a rating category or age”; 

ii) the time dependence of the rating evaluation: this means that in 
general the rating evaluation depends on time t and, in particularly, on the 
business cycle (see [NIC 00]). A rating evaluation carried out at time t is 
generally different from one carried out at time s, if ≠s t ; 

iii) the dependence of the new rating: it can in general depend on all the 
previous ones and not only on the last one (see [CAR 94, NIC 00]). 

As mentioned in [D’AM 05]), the first problem can be satisfactorily 
solved by means of SMPs. In fact, in SMP the transition probabilities are a  
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function of the waiting time spent in a state of the system. In [CAR 94], in 
particular, a Weibull distribution is used in order to investigate the duration 
effect for time spent continuously at a given credit rating. The second 
problem can be dealt with in a more general way by means of a non-
homogeneous environment. 

The third problem exists in the case of downward moving ratings but not 
in the case of upward moving ratings (see [KAV 01]). More precisely, if a 
company gets a lower rating then there is a higher probability that its 
subsequent rating will also be lower than the preceding one. In the case of 
upward movement, this phenomenon does not hold.  

In this chapter, we present models that can completely solve the first and 
second problems based on HSMP and non-homogeneous semi-Markov 
process (NHSMP). 

Semi-Markov models were introduced by Janssen et al. [JAN 05] and 
Janssen and Manca [JAN 07] first in the homogeneous case. The non-
homogeneous case was developed in [JAN 04] and [JAN 07]. With these 
new models, it is possible to generalize the Markov models introducing the 
randomness of time for transitions between the states. 

1.2. Homogeneous semi-Markov processes 

1.2.1. Basic definitions  

In this section, we follow the notation given in [DEV 15] to recall basic 
definitions and properties of discrete homogeneous semi-Markov process 
(DHSMP). 

Let us consider a physical or economic system called S with m possible 
states forming the set { }1,...,=I m . 

At time 0, system S starts from an initial state represented by the r.v. J0, 
stays a non-negative random length of time X1 in this state, and then goes 
into another state J1 for a non-negative length of time X2 before going into  
J2, etc. 
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So we have a two-dimensional stochastic process in discrete time called a 
positive (J-X) process or simply (J-X) process  

( ) (( , ), 0)− = ≥n nJ X J X n  [1.16] 

assuming  

 [1.17] 

where the sequence ( , 0)≥nJ n  gives the successive states of S in time and 
the sequence ( , 0)≥nX n  gives the successive sojourns in state 1−nJ  or the 
interarrival times between two successive transitions. 

Times at which transitions occur are given by the sequence ( , 0)≥nT n  
where: 

  [1.18] 

such that  

1, 1.−= − ≥n n nX T T n  [1.19] 

The process (( , ), 0)≥n nJ T n is called a Markov renewal process (MRP). 

On the complete probability space ( , , )Ω ℑ P , the stochastic dynamic 
evolution of the considered (J-X) process is completely defined by the 
knowledge of the initial probability distribution  

1

1

( ,..., ),

0, ; 1
=

=

≥ ∈ =∑
m
m

i i
i

p p

p i I p

p
 

with 

[ ]0

0

, ,
0, . .

= = ∈
=

ip P J i i I
X a s

 [1.20] 

0 0,  . .=X a s

0 1 1
1

0,  ,...,
=

= = =∑
n

n r
r

T T X T X
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and moreover, for all n > 0, j=1,…,m, by the so-called homogeneous semi-
Markov condition 

,  [1.21] 

where any function Qij (i,j=1,…,m) is a non-decreasing real function null on 
+  such that if 

lim ( ),  ,
→+∞

= ∈ij ijx
p Q x i j I ,  [1.22] 

then 

1
1,  

=

= ∈∑
m

ij
j

p i I .  [1.23] 

We also have 

1 1

1 1

( , ( , ), 0,..., 1, )

( , )( ( )).
− −

− −

− ≤ = = − =

= − ≤ = = =
n n n k k n

n n n n ij

P T T x J j J T k n J i

P T T x J j J i Q x
 [1.24] 

With matrix notation, we will write: 

( ) ( ) ,  ( ( ))⎡ ⎤ ⎡ ⎤= = = ∞⎣ ⎦ ⎣ ⎦ij ijx Q x pQ P Q  [1.25] 

and it follows (see [PYK 61]) that 

pij = lim
→∞t

 Qij (t); i, j∈E, t∈ ,  [1.26] 

where P = [pij] is the transition matrix of the embedded Markov chain 
( , 0)≥nJ n  in the process. 

The matrix Q is called a semi-Markov kernel. 

The (J-X) is called discrete or in discrete time if the random variables nX
are in discrete time. This means that all the possible values of these variables 
are in the set { }0, ,..., ,...Δ Δn , where Δ is the time unit (in the sequel we will  
take Δ = 1). Otherwise, we speak of continuous time (J-X) process. 

1
( , ( , ), 0,..., 1) ( ),  . .

−
= ≤ = − =

nn n k k J jP J j X x J X k n Q x a s
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Now it is possible to define the distribution function of the waiting time 
in each state i, given that the next state is known: 

Gij (t)=P[ Tn+1- Tn ≤ t | Jn = i, Jn+1 = j ]. [1.27] 

The related probabilities can be obtained by means of the following 
formula: 

( ) if 0,
( )  

1 if 0
≠⎧⎪= ⎨ =⎪⎩

ij ij ij
ij

ij

Q t  /  p p
G t

p
. [1.28] 

Furthermore, it is necessary to introduce the distribution function of the 
waiting time in each state i, regardless of the next state: 

Hi (t) = P[ Tn+1 – Tn ≤ t | Jn = i]. [1.29] 

Obviously, it results that:  

1
( ) ( )

=

=∑
m

i ij ij
j

H t p G t  [1.30] 

or by relation [1.28]  

1

( ) ( ).
=

=∑
m

i ij
j

H t Q t  

In the semi-Markov theory, the functions , , ∈ijG i j I  and , ∈iH i I  are, 
respectively, called conditional and unconditional waiting time distributions. 

In a semi-Markov model for credit risk developed in the following, the 
functions ijG  will be the distribution functions of the time between two 
consecutive ratings by the agency. Of course, the “transition” from i to i is 
possible meaning that the rate has remained unchanged. 
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1.2.2. The Z SMP and the evolution equation system 

Finally, we have to introduce the SMP where  Z = (Z(t)), representing, for 
each time t, the state occupied by the process i.e.: 

{ }( )( ) , where ( ) max := = ≤N t nZ t J N t n T t . [1.31] 

For a discrete (J-X) process, the Z variables take their values in  and in 
this case we speak on DHSMP. Without specifying discrete or continuous 
time, we speak of HSMP. 

Figure 1.1 gives a typical sample path of an SMP. 

 

Figure 1.1. A sample path of an SMP (source: [JAN 07]) 

The transition probabilities of the Z process are defined by 

( )φij t = P[ Z(t) = j | Z(0) = i ]. [1.32] 

For DHSMP, they are obtained solving the following evolution 
equations: 

1 1

( ) (1 ( )) ( ) ( )β β
β ϑ

φ δ ϑ φ ϑ
= =

= − + −∑∑
m t

ij ij i i jt H t q t ,  [1.33] 


