WILEY-VCH

ULLMANN'S

Energy: Resources, Processes, Products

Volume 3

WILEY-VCH

ULLMANN'S Energy: Resources,

Processes, Products

Volume 2

WILEY-VCH

ULLMANN'S

Energy: Resources, Processes, Products

Volume 1

Ullmann's Energy: Resources, Processes, Products

Excellence since 1914

Built from generations of expertise, for generations to come.

If you want to learn more about novel technologies in biochemistry or nanotechnology or discover unexpected new aspects of seemingly totally familiar processes in industrial chemistry - ULLMANN'S Encyclopedia of Industrial Chemistry is your first choice.

For over 100 years now, this reference provides top-notch information on the most diverse fields of industrial chemistry and chemical engineering.

When it comes to definite works on industrial chemistry, it has always been ULLMANN'S.

Welcome to the ULLMANN'S ACADEMY

Kick-start your career!

Key topics in industrial chemistry explained by the ULLMANN'S Encyclopedia experts - for teaching and learning, or for simply refreshing your knowledge.

What's new?

The Smart Article introduces new and enhanced article tools for chemistry content. It is now available within ULLMANN'S.

For further information on the features and functions available, go to wileyonlinelibrary.com/thesmartarticle

 Updated 4 times per year. ISBN: 978-3-527-30673-2

- - - Find sample chapters

Learn more about the history, the Editor-in-Chief and the Editorial Advisory Board

Discover the ULLMANN'S ACADEMY and more

ISBN: 978-3-527-33754-5

wileyonlinelibrary.com/ref/ullmanns

ULLMANN

Only interested in a specific topic?

ULLMANN'S Energy 3 Volume Set • ISBN: 978-3-527-33370-7

ULLMANN'S Fine Chemicals

3 Volume Set • ISBN: 978-3-527-33477-3

ULLMANN'S Fibers 2 Volumes • ISBN: 978-3-527-31772-1

ULLMANN'S Modeling and Simulation ISBN: 978-3-527-31605-2

ULLMANN'S Renewable Resources ISBN: 978-3-527-33369-1

ULLMANN'S Agrochemicals 2 Volume Set • ISBN: 978-3-527-31604-5

ULLMANN'S Biotechnology and **Biochemical Engineering** 2 Volume Set • ISBN: 978-3-527-31603-8

ULLMANN'S Reaction Enginee 2 Volume Set • ISBN: 978-3-527-33371-4

ULLMANN'S Industrial Toxicology 2 Volume Set • ISBN: 978-3-527-31247-4

ULLMANN'S Chemical Engineering and Plant Design 2 Volume Set • ISBN: 978-3-527-31111-8

Visit our website to

Ullmann's Energy: Resources, Processes, Products

Editor in Chief:

Dr. Barbara Elvers, Hamburg, Germany

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <<u>http://dnb.d-nb.de></u>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 Print ISBN:
 978-3-527-33370-7

 ePDF ISBN:
 978-3-527-69146-3

 ePub ISBN:
 978-3-527-69147-0

 Mobi ISBN:
 978-3-527-69148-7

Cover Design	SCHULZ Grafik-Design, Fußgönheim
Typesetting	Thomson Digital, Noida, India
Printing and Binding	g Markono Print Media Pte Ltd,
	Singapore

Printed on acid-free paper

Preface

This handbook features selected articles from the 7th edition of *ULLMANN'S Encyclopedia of Industrial Chemistry*, including newly written articles that have not been published in a printed edition before. True to the tradition of the ULLMANN'S Encyclopedia, products and processes are addressed from an industrial perspective, including production figures, quality standards and patent protection issues where appropriate. Safety and environmental aspects which are a key concern for modern process industries are likewise considered.

More content on related topics can be found in the complete edition of the ULLMANN'S Encyclopedia.

About ULLMANN'S

ULLMANN'S Encyclopedia is the world's largest reference in applied chemistry, industrial chemistry, and chemical engineering. In its current edition, the Encyclopedia contains more than 30,000 pages, 15,000 tables, 25,000 figures, and innumerable literature sources and cross-references, offering a wealth of comprehensive and well-structured information on all facets of industrial chemistry.

1,100 major articles cover the following main areas:

- Agrochemicals
- Analytical Techniques
- Biochemistry and Biotechnology
- Chemical Reactions
- Dyes and Pigments
- Energy
- · Environmental Protection and Industrial Safety
- Fat, Oil, Food and Feed, Cosmetics
- Inorganic Chemicals
- Materials
- Metals and Alloys
- Organic Chemicals
- Pharmaceuticals
- Polymers and Plastics
- Processes and Process Engineering
- Renewable Resources
- Special Topics

First published in 1914 by Professor Fritz Ullmann in Berlin, the *Enzyklopädie der Technischen Chemie* (as the German title read) quickly became the standard reference work in industrial chemistry. Generations of chemists have since relied on ULLMANN'S as their prime reference source. Three further German editions followed in 1928–1932, 1951–1970, and in 1972–1984. From 1985 to 1996, the 5th edition of ULLMANN'S Encyclopedia of Industrial Chemistry was the first edition to be published in English rather than German language. So far, two more complete English editions have been published; the 6th edition of 40 volumes in 2002, and the 7th edition in 2011, again comprising 40 volumes. In addition, a number of smaller topic-oriented editions have been published.

Since 1997, *ULLMANN'S Encyclopedia of Industrial Chemistry* has also been available in electronic format, first in a CD-ROM edition and, since 2000, in an enhanced online edition. Both electronic editions feature powerful search and navigation functions as well as regular content updates.

Contents

Volume 1	
Symbols and Units	IX
Conversion Factors	XI
Abbreviations	XIII
	XVIII
Periodic Table of Elements	XIX
Part 1: Energy Resources, Generation	
and Storage	. 1
Batteries, 1. General	. 3
Batteries, 2. Primary Batteries	. 27
Batteries, 3. Secondary Batteries	. 79
Batteries, 4. Standards	147
Batteries, 5. Disposal and	
Environmental Protection	157
Biogas	165
Coal	179
Coal Liquefaction	231
Coal Pyrolysis	317
Combustion	355
Fuel Cells	383
Gas Production, 1. Introduction	409
Volume 2	
Gas Production, 2. Processes	429
Gas Production, 2. Processes	489
Heat Storage Media	547
Natural Gas	567
Nuclear Technology, 1. Fundamentals	621
Nuclear Technology, 2.	021
	637
Power Reactors, Survey Nuclear Technology, 3. Fuel Cycle	661
Oil and Gas, 1. Introduction	745
Oil and Gas, 1. Introduction Oil and Gas, 2. Formation of	743
On and Gas, 2. Formation of	

Reservoirs

Oil and Gas, 3. Exploration for	
Oil and Gas	771
Oil and Gas, 4. Drilling and Workover	799
Oil and Gas, 5. Formation Evaluation	829
Oil and Gas, 6. Reservoir Performance	843
Oil and Gas, 7. Production	881
Oil and Gas, 8. Field Processing	945
Oil and Gas, 9. Health, Safety,	
Environmental and Economic	
Aspects	959
Volume 3	
Oil Refining	965
Oil Sands	1021
Oil Shale	1073
Photoelectricity	1103
Photovoltaic Cells	1113
Solar Technology	1157
Thermoelectricity	1217
Wind Energy	1231
Part 2: Fuels	1241
Automobile Exhaust Control	1243
Automotive Fuels	1261
Aviation Turbine Fuels	1297
Heating Oil	1313
Liquefied Petroleum Gas	1331
Marine Fuels	1347
Octane Enhancers	1353
Petroleum Coke	1373
Author Index	1395
Subject Index	1401

Symbols and Units

Symbols and units agree with SI standards (for conversion factors see page XI). The following list gives the most important symbols used in the encyclopedia. Articles with many specific units and symbols have a similar list as front matter.

Symbol	Unit	Physical Quantity
a _B		activity of substance B
A _r		relative atomic mass (atomic weight)
Α	m ²	area
c _B	mol/m ³ , mol/L (M)	concentration of substance B
С	C/V	electric capacity
c_p, c_v	$\rm Jkg^{-1}K^{-1}$	specific heat capacity
d	cm, m	diameter
d		relative density (Q/Qwater)
D	m ² /s	diffusion coefficient
D	Gy (=J/kg)	absorbed dose
е	С	elementary charge
Ε	J	energy
Ε	V/m	electric field strength
Ε	V	electromotive force
$E_{\rm A}$	J	activation energy
f		activity coefficient
F	C/mol	Faraday constant
F	N	force
g	m/s ²	acceleration due to gravity
G	J	Gibbs free energy
b h	m	height
ħ	$W \cdot s^2$	Planck constant
H	J	
n I	A	enthalpy electric current
_		
[cd	luminous intensity
k	(variable)	rate constant of a chemical reaction
k	J/K	Boltzmann constant
K	(variable)	equilibrium constant
!	m	length
m	g, kg, t	mass
M_r		relative molecular mass (molecular weight)
$n_{\rm D}^{20}$		refractive index (sodium D-line, 20 °C)
n	mol	amount of substance
N _A	mol ⁻¹	Avogadro constant $(6.023 \times 10^{23} \text{ mol}^{-1})$
Р	Pa, bar [*]	pressure
2	J	quantity of heat
r	m	radius
R	$\mathrm{JK}^{-1}\mathrm{mol}^{-1}$	gas constant
R	Ω	electric resistance
S	J/K	entropy
t	s, min, h, d, month, a	time
t	°C	temperature
Г	К	absolute temperature
и	m/s	velocity
U	V	electric potential

Symbols and Units (Continued from p. IX)

Symbol	Unit	Physical Quantity
U	J	internal energy
V	m ³ , L, mL, μL	volume
W		mass fraction
W	J	work
x_B		mole fraction of substance B
Z		proton number, atomic number
α		cubic expansion coefficient
α	$Wm^{-2}K^{-1}$	heat-transfer coefficient (heat-transfer number)
α		degree of dissociation of electrolyte
[α]	$10^{-2} \text{deg cm}^2 \text{g}^{-1}$	specific rotation
η	Pa·s	dynamic viscosity
θ	°C	temperature
х		c_p/c_v
λ	$Wm^{-1}K^{-1}$	thermal conductivity
λ	nm, m	wavelength
μ		chemical potential
ν	Hz, s^{-1}	frequency
ν	m^2/s	kinematic viscosity (η/ϱ)
π	Ра	osmotic pressure
Q	g/cm ³	density
σ	N/m	surface tension
τ	$Pa (N/m^2)$	shear stress
φ	× /	volume fraction
χ	$Pa^{-1} (m^2/N)$	compressibility

*The official unit of pressure is the pascal (Pa).

SI unit	Non-SI unit	From SI to non-SI multiply by
Mass		
kg	pound (avoirdupois)	2.205
kg	ton (long)	9.842×10^{-4}
kg	ton (short)	1.102×10^{-3}
Volume		
m ³	cubic inch	6.102×10^4
m ³	cubic foot	35.315
m ³	gallon (U.S., liquid)	2.642×10^2
m ³	gallon (Imperial)	2.200×10^2
Temperature		
°C	°F	°C×1.8+32
Force		
Ν	dyne	1.0×10^{5}
Energy, Work		
J	Btu (int.)	9.480×10^{-4}
J	cal (int.)	2.389×10^{-1}
J	eV	6.242×10^{18}
J	erg	1.0×10^{7}
J	kW·h	2.778×10^{-7}
J	kp∙m	1.020×10^{-1}
Pressure	-	
MPa	at	10.20
MPa	atm	9.869
MPa	bar	10
kPa	mbar	10
kPa	mm Hg	7.502
kPa	psi	0.145
kPa	torr	7.502

Conversion Factors

Powers of Ten

E (exa)	10 ¹⁸	d (deci)	10^{-1}
P (peta)	10 ¹⁵	c (centi)	10^{-2}
T (tera)	10 ¹²	m (milli)	10^{-3}
G (giga)	10 ⁹	μ (micro)	10^{-6}
M (mega)	10 ⁶	n (nano)	10^{-9}
k (kilo)	10^{3}	p (pico)	10^{-12}
h (hecto)	10^{2}	f (femto)	10^{-15}
da (deca)	10	a (atto)	10^{-18}

Abbreviations

The following is a list of the abbreviations used in the text. Common terms, the names of publications and institutions, and legal agreements are included along with their full identities. Other abbreviations will be defined wherever they first occur in an article. For further abbreviations, see page IX, Symbols and Units; page XVII, Frequently Cited Companies (Abbreviations), and page XVIII, Country Codes in patent references. The names of periodical publications are abbreviated exactly as done by Chemical Abstracts Service.

abs.	absolute	BGA	Bundesgesundheitsamt (Federal
a.c. ACGIH	alternating current American Conference of Governmental	BGB1.	Republic of Germany) Bundesgesetzblatt (Federal Republic
ACOIII	Industrial Hygienists	DOD1.	of Germany)
ACS	American Chemical Society	BIOS	British Intelligence Objectives Subcom-
ADI	acceptable daily intake		mittee Report (see also FIAT)
ADN	accord européen relatif au transport	BOD	biological oxygen demand
	international des marchandises danger-	bp D D	boiling point
	euses par voie de navigation interieure	B.P.	British Pharmacopeia
	(European agreement concerning the in-	BS	British Standard circa
	ternational transportation of dangerous goods by inland waterways)	ca. calcd.	calculated
ADNR	ADN par le Rhin (regulation concerning	CAS	Chemical Abstracts Service
ADINK	the transportation of dangerous goods on	cat.	catalyst, catalyzed
	the Rhine and all national waterways of	CEN	Comité Européen de Normalisation
	the countries concerned)	cf.	compare
ADP	adenosine 5'-diphosphate	CFR	Code of Federal Regulations (United
ADR	accord européen relatif au transport		States)
	international des marchandises danger-	cfu	colony forming units
	euses par route (European agreement	Chap.	chapter
	concerning the international transporta-	ChemG	Chemikaliengesetz (Federal Republic
	tion of dangerous goods by road)		of Germany)
AEC	Atomic Energy Commission (United	C.I.	Colour Index
	States)	CIOS	Combined Intelligence Objectives Sub-
a.i.	active ingredient		commitee Report (see also FIAT)
AIChE	American Institute of Chemical	CLP	Classification, Labelling and Packaging
	Engineers	CNS	central nervous system
AIME	American Institute of Mining, Metallurgical, and Petroleum Engineers	Co. COD	Company
ANSI	American National Standards Institute	conc.	chemical oxygen demand concentrated
AMP	adenosine 5'-monophosphate	const.	constant
APhA	American Pharmaceutical Association	Corp.	Corporation
API	American Petroleum Institute	crit.	critical
ASTM	American Society for Testing and	CSA	Chemical Safety Assessment according
	Materials		to REACH
ATP	adenosine 5'-triphosphate	CSR	Chemical Safety Report according to
BAM	Bundesanstalt für Materialprüfung		REACH
	(Federal Republic of Germany)	CTFA	The Cosmetic, Toiletry and
BAT	Biologischer Arbeitsstofftoleranzwert		Fragrance Association (United States)
	(biological tolerance value for a work-	DAB	Deutsches Arzneibuch, Deutscher
	ing material, established by MAK		Apotheker-Verlag, Stuttgart
D 11 / 1	Commission, see MAK)	d.c.	direct current
Beilstein	Beilstein's Handbook of Organic Chem-	decomp.	decompose, decomposition
	istry, Springer, Berlin – Heidelberg –	DFG	Deutsche Forschungsgemeinschaft
BET	New York Brunauer – Emmett – Teller	dil.	(German Science Foundation) dilute, diluted
DEI	Diuliauci – Elillicu – Iclici	ull.	

DIN	Deutsche Industrienorm (Federal Republic		(regulation in the Federal Republic of
DIN	of Germany)		Germany concerning the transportation
DMF	dimethylformamide		of dangerous goods by rail)
DNA	deoxyribonucleic acid	GGVS	Verordnung in der Bundesrepublik
DOE	Department of Energy (United States)		Deutschland über die Beförderung
DOT	Department of Transportation –		gefährlicher Güter auf der Straße
	Materials Transportation Bureau		(regulation in the Federal Republic of
	(United States)		Germany concerning the transportation
DTA	differential thermal analysis		of dangerous goods by road)
EC	effective concentration	GGVSee	Verordnung in der Bundesrepublik
EC	European Community		Deutschland über die Beförderung
ed.	editor, edition, edited		gefährlicher Güter mit Seeschiffen
e.g.	for example		(regulation in the Federal Republic of
emf	electromotive force		Germany concerning the transportation
EmS	Emergency Schedule		of dangerous goods by sea-going
EN	European Standard (European		vessels)
	Community)	GHS	Globally Harmonised System of Chemi-
EPA	Environmental Protection Agency		cals (internationally agreed-upon system,
	(United States)		created by theUN, designed to replace the
EPR	electron paramagnetic resonance		various classification and labeling stan-
Eq.	equation		dards used in different countries by using
EŜCA	electron spectroscopy for chemical		consistent criteria for classification and
	analysis		labeling on a global level)
esp.	especially	GLC	gas-liquid chromatography
ESR	electron spin resonance	Gmelin	Gmelin's Handbook of Inorganic
Et	ethyl substituent $(-C_2H_5)$		Chemistry, 8th ed., Springer, Berlin -
et al.	and others		Heidelberg –New York
etc.	et cetera	GRAS	generally recognized as safe
EVO	Eisenbahnverkehrsordnung (Federal	Hal	halogen substituent (-F, -Cl, -Br, -I)
	Republic of Germany)	Houben-	Methoden der organischen
exp ()	$e^{(\ldots)}$, mathematical exponent	Weyl	Chemie, 4th ed., Georg Thieme Verlag,
FAO	Food and Agriculture Organization		Stuttgart
	(United Nations)	HPLC	high performance liquid
FDA	Food and Drug Administration		chromatography
	(United States)		hazard statement in GHS
FD&C	Food, Drug and Cosmetic Act	IAEA	International Atomic Energy Agency
FIIGA	(United States)	IARC	International Agency for Research on
FHSA	Federal Hazardous Substances Act		Cancer, Lyon, France
	(United States)	IATA-DGR	International Air Transport
FIAT	Field Information Agency, Technical		Association, Dangerous Goods
	(United States reports on the chemical		Regulations
D:-	industry in Germany, 1945)	ICAO	International Civil Aviation
Fig.	figure	· -	Organization
fp Friedländer	freezing point P. Friedländer, Fortschritte der	i.e.	that is
Friedlander	Teerfarbenfabrikation und verwandter	i.m. IMDG	intramuscular
		IMDG	International Maritime Dangerous Goods Code
	Industriezweige Vol. 1–25, Springer, Berlin 1888–1942	MO	
FT	Fourier transform	IMO	Inter-Governmental Maritime Consul- tive Organization (in the past: IMCO)
Г1 (g)	gas, gaseous	Inst.	Institute
GC	gas chromatography	i.p.	intraperitoneal
GefStoffV	Gefahrstoffverordnung (regulations in	I.p. IR	infrared
Geistoniv	the Federal Republic of Germany con-	ISO	International Organization for
	cerning hazardous substances)	100	Standardization
GGVE	Verordnung in der Bundesrepublik	IUPAC	International Union of Pure and
	Deutschland über die Beförderung		Applied Chemistry
	gefährlicher Güter mit der Eisenbahn	i.v.	intravenous

Kirk- Othmer	Encyclopedia of Chemical Technology, 3rd ed., 1991–1998, 5th ed., 2004–2007,	no No
(1)	John Wiley & Sons, Hoboken	NI
(1) Landolt- Börnstein	liquid Zahlenwerte u. Funktionen aus Physik, Chemie, Astronomie, Geophysik u.	N
	Technik, Springer, Heidelberg 1950-	NS
	1980; Zahlenwerte und Funktionen aus Naturwissenschaften und Technik,	NS
	Neue Serie, Springer, Heidelberg, since 1961	N
LC ₅₀	lethal concentration for 50 % of the test animals	O
LCLo	lowest published lethal concentration	05
LD ₅₀	lethal dose for 50% of the test animals	
LDLo	lowest published lethal dose	р.,
ln	logarithm (base e)	Pa
LNG	liquefied natural gas	
log	logarithm (base 10)	
LPG	liquefied petroleum gas	
M	mol/L	PF
		11
M	metal (in chemical formulas)	
MAK	Maximale Arbeitsplatzkonzentration	DE
	(maximum concentration at the work-	PE
	place in the Federal Republic of	Ph
	Germany); cf. Deutsche Forschungsge-	Ph
	meinschaft (ed.): Maximale Arbeits-	
	platzkonzentrationen (MAK) und	ph
	Biologische Arbeitsstofftoleranzwerte	PN
	(BAT), WILEY-VCH Verlag,	pp
	Weinheim (published annually)	Р
max.	maximum	q.v
MCA	Manufacturing Chemists Association (United States)	Ŕł
Me		
	methyl substituent $(-CH_3)$	
Methodicum	Methodicum Chimicum, Georg Thieme	
	Verlag, Stuttgart	
MFAG	Medical First Aid Guide for Use in	
	Accidents Involving Dangerous Goods	re
MIK	maximale Immissionskonzentration	res
	(maximum immission concentration)	R_{f}
min.	minimum	R.
тр	melting point	RI
MS	mass spectrum, mass spectrometry	
NAS	National Academy of Sciences (United	
	States)	
NASA	National Aeronautics and Space	
11110/1	Administration (United States)	R
NBS		R
INDS	National Bureau of Standards	K
NGTO	(United States)	
NCTC	National Collection of Type Cultures	
	(United States)	rp
NIH	National Institutes of Health	R
	(United States)	
NIOSH	National Institute for Occupational	
	Safety and Health (United States)	
NMR	nuclear magnetic resonance	(s)
- 11/11	matical magnetic resonance	

no.	number
NOEL	no observed effect level
NRC	Nuclear Regulatory Commission (United States)
NRDC	National Research Development
THE C	Corporation (United States)
NSC	National Service Center (United States)
NSF	National Science Foundation
1101	(United States)
NTSB	National Transportation Safety Board
	(United States)
OECD	Organization for Economic Cooperation
OCITY	and Development Occupational Safety and Health
OSHA	Administration (United States)
n nn	page, pages
p., pp.	
Patty	G.D. Clayton, F.E. Clayton (eds.):
	Patty's Industrial Hygiene and
	Toxicology, 3rd ed., Wiley Interscience, New York
חח	
PB	Publication Board Report (U.S.
report	Department of Commerce, Scientific
DEI	and Industrial Reports)
PEL	permitted exposure limit
Ph	phenyl substituent ($-C_6H_5$)
Ph. Eur.	European Pharmacopoeia, Council of Europe, Strasbourg
phr	part per hundred rubber (resin)
PNS	peripheral nervous system
ppm	parts per million
P statement	precautionary statement in GHS
q.v.	which see (quod vide)
REACH	Registration, Evaluation, Authorisation
	and Restriction of Chemicals (EU regu-
	lation addressing the production and use
	of chemical substances, and their
	potential impacts on both human health
	and the environment)
ref.	refer, reference
resp.	respectively
R_f	retention factor (TLC)
Ŕ.H.	relative humidity
RID	réglement international concernant le
	transport des marchandises dangereuses
	par chemin de fer (international conven-
	tion concerning the transportation of
	dangerous goods by rail)
RNA	ribonucleic acid
R phrase	risk phrase according to
(R-Satz)	ChemG and GefStoffV (Federal
(It Suiz)	Republic of Germany)
rpm	revolutions per minute
RTECS	Registry of Toxic Effects of
NILCO	Chemical Substances, edited by the
	National Institute of Occupational Safety
	and Health (United States)
(s)	solid
(3)	50114

SAE	Society of Automotive Engineers (United States)		der Technischen Chemie, 4th ed., Verlag Chemie, Weinheim 1972–1984; 3rd ed.,
SAICM	Strategic Approach on International Chemicals Management (international		Urban und Schwarzenberg, München 1951–1970
	framework to foster the sound management of chemicals)	USAEC	United States Atomic Energy Commission
s.c. SI	subcutaneous	USAN USD	United States Adopted Names United States Dispensatory
SIMS	International System of Units secondary ion mass spectrometry	USDA	United States Dispensatory United States Department of Agriculture
S phrase	safety phrase according to	U.S.P.	United States Pharmacopeia
(S-Satz)	ChemG and GefStoffV (Federal	UV	ultraviolet
STEL	Republic of Germany) Short Term Exposure Limit (see TLV)	UVV	Unfallverhütungsvorschriften der Ber- ufsgenossenschaft (workplace safety
STEL	standard temperature and pressure $(0^{\circ}C,$		regulations in the Federal Republic of
	101.325 kPa)		Germany)
T _g TA Luft	glass transition temperature Technische Anleitung zur Reinhaltung	VbF	Verordnung in der Bundesrepublik Deutschland über die Errichtung und
IA Luit	der Luft (clean air regulation in Federal		den Betrieb von Anlagen zur
	Republic of Germany)		Lagerung, Abfüllung und Beförderung
TA Lärm	Technische Anleitung zum Schutz		brennbarer Flüssigkeiten (regulation in
	gegen Lärm (low noise regulation in Federal Republic of Germany)		the Federal Republic of Germany con- cerning the construction and operation of
TDLo	lowest published toxic dose		plants for storage, filling, and transpor-
THF	tetrahydrofuran		tation of flammable liquids; classification
TLC TLV	thin layer chromatography Threshold Limit Value (TWA		according to the flash point of liquids, in accordance with the classifi-
IL V	and STEL); published annually by		cation in the United States)
	the American Conference of Govern-	VDE	Verband Deutscher Elektroingenieure
	mental Industrial Hygienists (ACGIH), Cincinnati, Ohio	VDI	(Federal Republic of Germany) Verein Deutscher Ingenieure (Federal
TOD	total oxygen demand	VDI	Republic of Germany)
TRK	Technische Richtkonzentration	vol	volume
TOCA	(lowest technically feasible level)	vol.	volume (of a series of books)
TSCA	Toxic Substances Control Act (United States)	vs. WGK	versus Wassergefährdungsklasse (water hazard
TÜV	Technischer Überwachungsverein	W OIL	class)
	(Technical Control Board of the Federal	WHO	World Health Organization (United
TWA	Republic of Germany) Time Weighted Average	Winnacker-	Nations) Chemische Technologie, 4th ed., Carl
UBA	Umweltbundesamt (Federal	Küchler	Hanser Verlag, München, 1982-1986;
	Environmental Agency)		Winnacker-Küchler, Chemische
Ullmann	Ullmann's Encyclopedia of Industrial		Technik: Prozesse und Produkte,
	Chemistry, 6th ed., Wiley-VCH, Wein- heim 2002; Ullmann's Encyclopedia of	wt	Wiley-VCH, Weinheim, 2003–2006 weight
	Industrial Chemistry, 5th ed., VCH	\$	U.S. dollar, unless otherwise stated
	Verlagsgesellschaft, Weinheim		
	1985–1996; Ullmanns Encyklopädie		

Frequently Cited Companies (Abbreviations)

Air	Air Products and Chemicals	IFP	Institut Français du Pétrole
Products		INCO	International Nickel Company
Akzo	Algemene Koninklijke Zout	3M	Minnesota Mining and
	Organon		Manufacturing Company
Alcoa	Aluminum Company of America	Mitsubishi	Mitsubishi Chemical Industries
Allied	Allied Corporation	Chemical	
Amer.	American Cyanamid	Monsanto	Monsanto Company
Cyanamid	Company	Nippon	Nippon Shokubai Kagaku Kogyo
BASF	BASF Aktiengesellschaft	Shokubai	
Bayer	Bayer AG	PCUK	Pechiney Ugine Kuhlmann
BP	British Petroleum Company	PPG	Pittsburg Plate Glass Industries
Celanese	Celanese Corporation	Searle	G.D. Searle & Company
Daicel	Daicel Chemical Industries	SKF	Smith Kline & French Laboratories
Dainippon	Dainippon Ink and Chemicals Inc.	SNAM	Societá Nazionale Metandotti
Dow	The Dow Chemical Company	Sohio	Standard Oil of Ohio
Chemical		Stauffer	Stauffer Chemical Company
DSM	Dutch Staats Mijnen	Sumitomo	Sumitomo Chemical Company
Du Pont	E.I. du Pont de Nemours & Company	Toray	Toray Industries Inc.
Exxon	Exxon Corporation	UCB	Union Chimique Belge
FMC	Food Machinery & Chemical	Union	Union Carbide Corporation
	Corporation	Carbide	
GAF	General Aniline & Film Corporation	UOP	Universal Oil Products Company
W.R.	W.R. Grace & Company	VEBA	Vereinigte Elektrizitäts- und Bergwerks-
Grace			AG
Hoechst	Hoechst Aktiengesellschaft	Wacker	Wacker Chemie GmbH
IBM	International Business Machines		
	Corporation		
ICI	Imperial Chemical Industries		

Country Codes

The following list contains a selection of standard country codes used in the patent references.

AT	Austria	IL	Israel
AU	Australia	IT	Italy
BE	Belgium	JP	Japan*
BG	Bulgaria	LU	Luxembourg
BR	Brazil	MA	Morocco
CA	Canada	NL	Netherlands*
CH	Switzerland	NO	Norway
CS	Czechoslovakia	NZ	New Zealand
DD	German Democratic Republic	PL	Poland
DE	Federal Republic of Germany	PT	Portugal
	(and Germany before 1949)*	SE	Sweden
DK	Denmark	SU	Soviet Union
ES	Spain	US	United States of America
FI	Finland	YU	Yugoslavia
FR	France	ZA	South Africa
GB	United Kingdom	EP	European Patent Office*
GR	Greece	WO	World Intellectual Property
HU	Hungary		Organization
ID	Indonesia		-

*For Europe, Federal Republic of Germany, Japan, and the Netherlands, the type of patent is specified: EP (patent), EP-A (application), DE (patent), DE-OS (Offenlegungsschrift), DE-AS (Auslegeschrift), JP (patent), JP-Kokai (Kokai tokkyo koho), NL (patent), and NL-A (application).

Periodic Table of Elements

element symbol, atomic number, and relative atomic mass (atomic weight)

	European					ecommer	ndation										0
	group designation to 1986 IUPAC proposal								18								
IA "	A "American" group designation, also used by the Chemical Abstracts Service until the end of 1986										VIIIA						
1	2A											3B	4B	5B	6B	7B	2
н	2											13	14	15	16	17	He
1.0079	IIA											IIIA	IVA	VA	VIA	VIA	4.0026
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12	ЗA	4A	5A	6A	7A	8	8	8	1B	2B	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	СІ	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.409	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc*	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468	87.62	88.906	91.224	92.906	95.94	98.906	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po*	At*	Rn*
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	208.98	209.99	222.02
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116		118
Fr*	Ra*		Rf*	Db*	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut ^a	FI	Uup ^a	Lv		Uuo ^a
223.02	226.03		261.11	262.11													

^a provisional IUPAC symbol

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac*	Th*	Pa*	U*	Np*	Pu*	Am*	Cm*	Bk*	Cf*	Es*	Fm*	Md*	No*	Lr*
227.03	232.04	231.04	238.03	237.05	244.06	243.06	247.07	247.07	251.08	252.08	257.10	258.10	259.10	260.11

* radioactive element; mass of most important isotope given.

Part 1

Energy Resources, Generation and Storage

Batteries, 1. General

DIETRICH BERNDT, (formerly VARTA Batterie AG), Kronberg, Germany **DIETER SPAHRBIER**, (formerly VARTA Batterie AG), Kelkheim, Germany

ULLMA		1'S	9
	5	20	2
		Z	6
			PP
		S	B
		`RIA	Þ

1.		3
2.	History	4
3.	Fundamental Laws	5
3.1.	Equilibrium or Thermodynamic	
	Parameters	6
3.2.	Current Flow, Kinetic Parameters	7
3.2.1.	Electron Transfer	9
3.2.2.	Tafel Lines	10
3.2.3.	Influence of Temperature	10
3.3.	Heat Effects	11
3.3.1.	Reversible Heat Effect	11
3.3.2.	Current Related Heat Effects	
	(Joule Effect)	11
3.3.3.	Heat Generation in Total	12
3.4.	Heating of the Battery	12
4.	Battery Properties and Characteristics	12
4.1.	Cell and Battery	13
4.1.1.	Active Material	13
4.1.1.1.	Change of Volume	13
4.1.1.2.	Change of Electrode Structure	14
4.1.2.	Nonactive Components	14
4.1.2.1.	Conducting Components	14

4.1.2.2.	Nonconducting Components	15
4.2.	Battery Parameters	16
4.2.1.	Voltage	16
4.2.2.	Capacity	16
4.2.2.1.	Secondary Batteries	17
4.2.2.2.	Primary Batteries	17
4.2.3.	Energy Content.	18
4.2.4.	Internal Resistance and Power Output	19
4.2.5.	Charge Parameters.	21
4.2.6.	Self-Discharge	21
4.2.6.1.	Mixed Potential	21
4.2.6.2.	Further Self-Discharge Mechanisms	22
4.2.6.3.	Apparent Self-Discharge	22
4.2.6.4.	Capacity Loss During Storage	23
5.	Classification of Battery Systems	23
5.1.	Classification by Electrolyte	23
5.2.	Classification by Construction	23
5.2.1.	External Construction	24
5.2.2.	Internal Construction	24
	References	25

1. Introduction

Batteries and fuel cells are electrochemical energy converters that directly convert chemical into electrical energy. In batteries the energy is generally stored within the electrodes. But there are exceptions, e.g., the air-zinc system, where one of the reacting substances is continuously supplied from outside, or the zinc-bromine system, where the active material is stored in separate tanks. *Fuel cells* receive their chemical energy from outside sources (\rightarrow Fuel Cells).

Batteries can be recharged, if they represent reversible systems. This, however, often is restricted, since not only the system's electrochemical reactions must be reversible, but also the structure of its electrodes. As a consequence, two basically different battery systems exist, i.e., primary and secondary batteries:

- 1. *Primary batteries* are designed to convert their chemical energy into electrical energy only once.
- 2. *Secondary batteries* are reversible energy converters and designed for many cycles, i.e., repeated discharges and charges.

The border between both types is blurred, since some primary battery systems permit charging under certain, but usually limited conditions. In general, the efficiency of their recharging process is poor and often results in early failure. The IEC therefore does not recommend the charging of any primary system [1, 2].

Batteries are of increasing importance in all areas of our daily life. They are fabricated in very large ranges of system, volume, weight, and construction. Batteries may be purchased as small button cells, that may have volumes of well below 1 cm³ to operate a wrist watch, a pocket calculator, a hearing aid, or another small electronic device. Other types of batteries power large electric vehicles including trains and ships, and may have a volume of the order of cubic meters and a weight of several tons. In between a huge variety of batteries exists, designed for all kinds of applications. To meet all needs of the market, batteries offer a large range of optimized properties regarding electric energy, voltage, power output, selfdischarge, environmental compatibility, and price.

The term "direct energy conversion" indicates that also nondirect energy conversion systems exist. A famous example is the combustion engine, which converts chemical into mechanical energy via a thermal process (Carnot process) and which may serve for a simplified comparison. Both systems are characterized by a reducing agent and an oxidizing agent. In the case of the combustion engine the reducing agent is the fuel and the oxidizing agent usually atmospheric oxygen. A battery is also characterized by a reducing agent ("fuel") and an oxidizing agent, that serve as energy storage. A well known fuel of this kind is metallic zinc (representing the negative electrode of, e.g., a flashlight battery), and the corresponding oxidant is manganese dioxide, constituting the positive electrode of that battery.

In principle, direct and nondirect chemical energy conversion are comparable: In both cases the reductant is oxidized under consumption of the oxidant, the latter being stored inside or outside the system (e.g., air). However, the direct energy conversion is not restricted by the limited efficiency of the Carnot process of the combustion engine. In the battery the reaction is split up into one that releases electrons (which means oxidation), and another one that absorbs electrons (which means reduction) (see Fig. 1). The electron exchange that is connected with these reactions, can so be transformed directly into a current that flows through the electrical appliance (or the charging device).

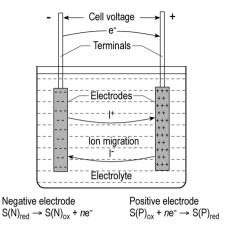


Figure 1. Electrochemical cell and the split-up of the cell reaction

 $S(N)_{red}$ and $S(P)_{ox}$ are the reacting components of the negative and the positive electrode, respectively. The shown reactions apply when the battery is discharged.

In principle, a large range of "fuels" and "oxidants" exists for electrochemical energy storage and conversion, each combination representing a new battery system. However, not all combinations are meaningful. A careful selection has to be made, also with respect to the type of electrolyte being employed.

2. History

The history of batteries is usually traced back to LUIGI GALVANI (1737–1798), who detected electrical phenomena between different metals in his famous experiments with frog legs. ALLESSANDRO VOLTA (1745–1827) built the first primary battery, the so-called Volta pile. The scientific foundation of electrochemical energy storage was derived by MICHAEL FARADAY (1791–1867).

The early development of *secondary batteries* is connected to names like GASTON PLANTÉ (1834–1899), CAMILLE ALFONS FAURE (1840–1898), and HENRY OWEN TUDOR (1859–1928) in the field of the lead–acid battery, while THOMAS ALVA EDISON (1847–1931) and VALDEMAR JUNGNER (1869–1924) are the two important names in connection with nickel–iron and nickel–cadmium batteries.

In the decades following these discoveries the lead-acid and the nickel-cadmium system were constantly improved. Today's motor cars would be unthinkable without their reliable batteries. Sealed nickel–cadmium batteries supply the energy for many of our portable electronic devices, and valve-regulated lead–acid batteries have gained a large share of the market for standby batteries.

In the 1990s new rechargeable systems appeared on the market. Of special importance are the nickel–metal hydride and the lithium-ion system.

Primary batteries for practical use emerged in the middle of the 19th century. Special reference is made to GEORGE LECLANCHÉ, who pioneered the 1.5 V manganese dioxide–zinc system with aqueous ammonium chloride as electrolyte. This system was described first by him in 1866 [3]. It is still produced, technically much more advanced by now, of course, but still known as Leclanché or zinc-carbon battery.

Over the years another 1.5 V system became most successful. It is the alkaline version of the manganese dioxide–zinc system, first proposed in 1882. Its development was taken up again by W. S. HERBERT [4, 5] about 70 years later. It took, however, another 20 years before the system became commercially available.

Further to be mentioned is the alkaline silver oxide-zinc system. First patents date back to 1883–1910 [6]. This 1.5 V battery is an expensive system, which, however, exhibits very favorable electrochemical properties. To become successful it needed a market for small batteries which opened up in 1975 with the introduction of microelectronics (e.g., wrist watches).

Another primary system that deserves mentioning is the air-zinc system. H. COHEN [7] was the first to develop a practical carbon-zinc element with aqueous ammonium chloride as electrolyte and air as oxidant in 1891. The system is still in use. Its main application is in the area of low power output over a long period of time (e.g., electric fence controllers).

Special future promise has the alkaline airzinc version. C. FÉRY was obviously the first [8] to realize this system in 1925. Owing to further development the alkaline zinc-air element offers the highest energy density of all currently available battery systems. Since the alkaline air-zinc battery is also an environmentally benign system, it has replaced the mercuric oxide-zinc system in important application areas, e.g., hearing aids. After activation, however, its storage behavior is limited, depending on construction (e.g., air access) and environment (e.g., humidity).

Finally there are primary battery systems using nonaqueous electrolytes, i.e., lithium batteries. Research activities to develop high energy lithium systems started in about 1960, especially in the USA and soon spread worldwide. Of the many lithium systems developed since the 1960s, about ten systems have attained market relevance (see \rightarrow Batteries, 2. Primary Batteries, Chap. 3. Batteries with Nonaqueous Electrolyte).

For a more detailed description of the history of batteries, see, e.g., [9–11].

3. Fundamental Laws

Direct conversion of chemical into electrical energy requires the split-up of the electrochemical reactions into reactions of reductants that deliver electrons and reactions of oxidants that accept electrons. Such a split-up is achieved in the electrochemical cell, shown in Figure 1. A positive and a negative electrode are immersed in the electrolyte and the reacting substances (the active materials) are usually stored in the electrodes and the electrolyte, if it participates in the overall reaction.

During discharge, oxidation of $S(N)_{red}$ occurs at the negative electrode according to

$$S(N)_{red} \rightarrow S(N)_{ox} + n \cdot e^{-1}$$

while $S(P)_{ox}$ is reduced at the positive electrode:

 $S(P)_{ox} + n \cdot e^- \rightarrow S(P)_{red}$

Both together form the cell reaction

 $S(N)_{red} + S(P)_{ox} \rightarrow S(N)_{ox} + S(P)_{red} + energy$

When the battery is charged, this reaction is reversed and energy has to be supplied to the cell.

The arrangement shown in Figure 1 resembles an electrolytic capacitor where also two electrodes are separated by the electrolyte. However, charging and discharging of such a capacitor involves only charge shifting within the double layer at the electrode–electrolyte interface. Chemical reactions do not occur and the physical structure of the electrodes is not affected. For this reason, a nearly unlimited number of charge–discharge cycles are possible. Since mass transport does not occur, charge and discharge of a capacitor occur extremely fast, but the amount of stored energy per weight or volume is comparatively small.

In batteries, such a double layer also exists, and the large surface area of the active material gives rise to a high double-layer capacitance that is observed when impedance measurements are made. The double-layer capacitance is caused by charge shifting and is given in the unit Farad, i.e., As/V. The real battery capacity, however, is based on chemical reactions and measured as As or Ah. (Actually, the double-layer capacity is always involved when a battery is charged or discharged). Each charge-discharge cycle changes the physical structure of the electrodes, and these changes inevitably cause an aging processes. Thus, with a battery the number of possible charge-discharge cycles is inevitably limited, and performance changes during service live are unavoidable.

The *cell reaction* characterizes each battery system and its components that represent the charged and discharged states determine the amount of energy that can be stored. As a consequence, the parameters of its cell reaction are of paramount importance for the battery system. While for primary batteries only reactions are relevant that describe the open circuit voltage and the discharge behavior, for rechargeable batteries these reactions must be reversible.

In the following, a brief survey is given of the most important rules. For details and derivations, see textbooks of electrochemistry or fundamental books on batteries, e.g., [12–17].

3.1. Equilibrium or Thermodynamic Parameters

The laws of thermodynamics generally apply to the state of equilibrium, which means that all reactions are balanced. In the electrochemical cell, equilibrium data can only be measured when no current flows through the cell or its electrodes. On account of this balance, the thermodynamic parameters do not depend on the reaction path but only on the difference in energy levels between the final and initial components of the system (the products and the reactants of the electrochemical reaction). The thermodynamic parameters describe the maximally achievable performance data. As soon as current flows through the cell, these values are lowered, owing to kinetic parameters.

The main thermodynamic parameters of an electrochemical reaction are:

- 1. The *enthalpy of reaction* ΔH which represents the amount of energy released or absorbed. ΔH describes the heat that is generated, provided that 100% of the chemical energy is converted into heat.
- 2. The *free enthalpy of reaction* ΔG , also called *change of Gibbs free energy* ΔG , which describes the (maximum) amount of chemical energy that, under equilibrium conditions, can be converted into electrical or mechanical energy and vice versa.
- 3. The entropy of reaction ΔS which characterizes the reversible heat effect $T \cdot \Delta S$ (where T = temperature in kelvins) which describes the energy loss or gain connected with any chemical or electrochemical process under equilibrium conditions.

Important relations between the three parameters are:

$$\Delta G = \Delta H - T \cdot \Delta S \text{ or } \Delta H - \Delta G = T \cdot \Delta S \tag{1}$$

The difference between ΔH and ΔG , the product $T \cdot \Delta S$, is the aforementioned reversible heat effect. $T \cdot \Delta S$ can be positive or negative. In the first case, additional energy is generated by cooling of the environment (Peltier or heat pump effect). Otherwise, $T \cdot \Delta S$ constitutes an additional heat increment.

The equilibrium voltage U^{o} is given by

$$U^{0} = -\frac{\Delta G}{n \cdot F} \tag{2}$$

where *n* is the number of exchanged electronic charges; *F* the Faraday constant (96 485 As/ equivalent; i.e., 26.802 Ah/equivalent); $n \cdot F$

denotes the amount of electrical charge connected with the reaction; and $n \cdot F \cdot U^{\circ}$ describes the generated electrical energy (kJ). Thermodynamic quantities like ΔH and ΔG depend on the concentrations (or, more accurately, activities) of the reacting components, as far as these components are in solution. The corresponding relation is:

$$\Delta G = \Delta G^{\text{o,s}} + R \cdot T \cdot \left(\sum \ln[(a_i)^{j_i}]_{\text{prod}} - \sum \ln[(a_i)^{j_i}]_{\text{react}}\right)$$
(3)

where a_i is the activity of the reacting component *i* (approximately its concentration; in mol/cm³); j_i is the number of equivalents of this component that take part in the reaction; *R* is the molar gas constant for an ideal gas ($R = 8.3145 \text{ JK}^{-1} \text{ mol}^{-1}$); $\Delta G^{\text{o,s}}$ is the standard free enthalpy value when all activities are unity. The terms "reac" and "prod" designate in the formula reactants and products for the forward (spontaneous) reaction.

Combination of Equation 2 and Equation 3 results in the Nernst Equation:

$$U^{o} = U^{o,s} - \frac{R \cdot T}{n \cdot F} \cdot \ln \frac{\Pi(a_{i})_{\text{react}}^{j}}{\Pi(a_{i})_{\text{prod}}^{j}}$$
(4)

which is simplified for 25°C (298.2 K) to

$$U^{\rm o} = U^{\rm o,s} - \frac{0.0592}{n} \cdot \log \frac{\Pi(a_i)_{\rm react}^j}{\Pi(a_i)_{\rm prod}^j} \tag{5}$$

under consideration that

 $\ln(..) = 2.303 \log(..),$

 $R = 8.3145 \text{ J K}^{-1} \text{mol}^{-1} = 8.3145 \text{ WsK}^{-1} \text{mol}^{-1}$

and

F = 96485 As/equiv.

thus

$$R \cdot T/F = 0.02569 \,\mathrm{V} \cdot \mathrm{equiv.} \cdot \mathrm{mol}^{-1}(T = 298.16 \,\mathrm{K})$$

or

$$2.303 \cdot R \cdot T/F = 0.0592 \operatorname{V} \cdot \operatorname{equiv.} \cdot \operatorname{mol}^{-1}.$$

The thermodynamic data also determine the temperature coefficient of the equilibrium cell

voltage according to:

$$\frac{\mathrm{d}U^o}{\mathrm{d}T} = -\frac{\Delta S}{n \cdot F} \tag{6}$$

Single Electrode Potentials. Thermodynamic calculations are always based on an electrochemical cell reaction and the derived voltage and its temperature coefficient in fact concern the voltage difference between two electrodes. The voltage difference between the electrode and the electrolyte, the absolutepotential, cannot be determined exactly, since potential differences can only be measured between two electronic conductors [18]. Thus, single electrode potential always means the cell voltage between the electrode in question and a reference electrode. To provide a basis for the electrode-potential scale, the zero point was arbitrarily equated with the potential of the standard hydrogenelectrode (SHE), a hydrogen electrode under specified conditions at 25°C [19].

Hydrogen reference electrodes are not used in battery practice. They are not only impracticable to handle but also involve some risk of contamination of the battery's electrodes by the noble metals like platinum or palladium used as electrode materials in the hydrogen electrode [20]. Therefore, a number of reference electrodes are used instead, e.g., the *mercury/mercury(I) sulfate reference electrode* (Hg/Hg₂SO₄) in lead–acid batteries, and the *mercury/mercury* (*II*) oxide reference electrode (Hg/HgO) in alkaline solutions (cf., e.g. [21]). In lithium-ion batteries with organic electrolytes, the electrode potential is mostly referred to that of the lithium electrode.

3.2. Current Flow, Kinetic Parameters

When current flows, the cell reaction must occur at a corresponding rate. This means that electron transfer has to be forced into the desired direction, and mass transport is required to bring the reacting ions to the electrode surface or carry them away. To achieve this current flow, additional energy is required. This energy finds its expression in *overvoltages*, i.e., deviations from the equilibrium voltage (sometimes denoted as "irreversible entropy loss" $T \cdot \Delta S_{irr}$).

7

Furthermore, current flow through conducting elements causes *ohmic voltage drops*. Both mean irreversible energy loss and a corresponding heat generation, caused by current flow.

As a result, the voltage U under current flow *i* is reduced (on discharge) or increased (secondary cell on charge) compared to the equilibrium value U° . The difference $U - U^{\circ}$, when measured as deviation from the cell voltage comprises:

- The overvoltage, caused by electrochemical reactions and concentration deviations on account of transport phenomena.
- The ohmic voltage drops, caused by the electronic as well as the ionic currents in the conducting parts including the electrolyte.

The sum of all the voltage drops caused by the current flow is called *polarization*, i.e.,

The quantity determined in practice is always polarization. Overvoltage can be determined separately only by special electrochemical methods.

Usually, the reaction path consists of a number of reaction steps that precede or follow the actual charge transfer step as indicated in Figure 2.

The rate of each of these reaction steps is determined by kinetic parameters, such as

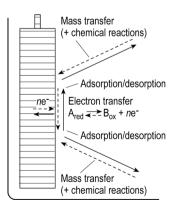


Figure 2. Course of an electrochemical reaction. Charge transfer often can only occur with adsorbed species, then adsorption/desorption steps are included. Furthermore, chemical reactions may precede or follow the electron transfer step.

exchange current density, diffusion coefficients, or transport numbers. The slowest partial step of this chain is decisive for the rate of the overall reaction. As a consequence, overvoltages, or even limitations of the reaction rate, often are not caused by the electron-transfer step itself, but by preceding or following steps.

Transport of the reacting species is achieved by two mechanisms, diffusion and migration, and, when only one-dimensional transport is assumed, is given by:

$$N_j = \frac{i_j}{n \cdot F} = -D_j \frac{\partial c_j}{\partial \zeta} + \frac{i \cdot t_j}{z_j \cdot F}$$
(8)

where N_j is the flux of species *j* in mol/cm²; i_j/nF the current equivalent; c_j the concentration of species *j* in mol/cm³; $\delta c_j/\delta \zeta$ the concentration gradient in mol/cm⁴; *D* the diffusion coefficient in cm²/s; *t* the transference number; z_j the valence number (charges per ion *i*); and ζ the diffusion direction (cm). Addend 1 describes mass transport by diffusion, which is proportional to the (negative) gradient of the concentration $dc_j/d\zeta$ that often can be approximated as a linear slope $\Delta c = c_j - c_{j,0}$ where c_j is the concentration of the concerned species at the electrode surface, while $c_{j,0}$ denotes the corresponding concentration in the bulk of the electrolyte.

Diffusion can limit the reaction rate when the mass transport by diffusion precedes the electron transfer step. If the concentration c_j attains the value zero at the electrode surface, all the arriving ions or molecules are charged or discharged immediately, and further increase of the current by increased overvoltage is not possible. Thus the current cannot exceed a certain value, the *limiting current* (i_{lim}) that can be derived from the first term in Equation 8 with $c_i = 0$.

Addend 2 in Equation 8 describes ion transport by migration by the ionic current. The transference number t denotes the share of the total current that is carried by the corresponding ionic species. In a binary electrolyte, dissociated into A^+ and B^- , the transference numbers are related by

$$t_{+} + t_{-} = 1 \tag{9}$$

Transference numbers depend on the concentration of the ions and on temperature. In