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Introduction

In the last centuries, partial differential equations have been used to model
many physical problems: the Navier-Stokes and Euler equations in fluid
dynamics, the Boltzmann and Vlasov equations in statistical mechanics,
the Schrodinger equation in quantum physics, and many other PDEs con-
cerning, for instance, material science or meteorology. The richness of
mathematical structure in these equations is always reason of surprise.
As a motivating example, we introduce the Vlasov-Poisson system. It

describes the evolution of particles under their self-consistent electric or
gravitational field. It is the continuous counterpart of the N -body prob-
lem, which describes the motion of N mass points under the influence of
their mutual attraction governed by Newton’s law of gravity. The N -body
problem has applications in astronomy and plasma physics; for instance,
it describes the solar system or the motion of galaxies. In the gravita-
tional models, each element of unit mass with position x and velocity v
obeys the equation {

ẋ = v

v̇ = −∂xVt(x),

where Vt(x) is the gravitational potential depending on time t and po-
sition x . Collisions between different masses are considered as an ex-
tremely unlikely event and are therefore neglected. Since the number of
involved elements in a galaxy can be of order 1010–1012, the galaxy is de-
scribed in the Vlasov-Poisson system in a statistical way rather than keep-
ing track of each mass point. For this reason, we introduce the quantity
ft(x, v), which describes the distribution of particles with given position
x and velocity v at time t . The density ft solves a first order conservation
law on phase space

∂t ft + v · ∇x ft −∇xVt · ∇v ft = 0 in (0,∞)× Rd × Rd, (1)

whose characteristics are the equations of motion of a single test particle.
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In turn, the gravitational potential Vt is obtained from the physical density

ρt(x) =
∫

Rd
ft(x, v) dv in (0,∞)× Rd (2)

by solving the Poisson equation

−�Vt = σρt in Rd, lim|x |→∞ Vt(x) = 0. (3)

Here, σ ∈ {±1} distinguishes the gravitational (attractive) and the elec-
trostatic (repulsive) problem.
The nonlinear system of partial differential equations (1), (2), and (3)

has a transport structure: indeed it can be rewritten as

∂t ft + bt · ∇x,v ft = 0, (4)

where the vector field bt(x, v) = (v, Et(x)) : R2d → R2d is coupled to
ft via the relation Et = σcdρt ∗(x/|x |d) and cd is a dimensional constant.
Indeed, the force field Et is obtained as −∇xVt and Vt can be written as
the convolution of ρt with a singular kernel by solving (3). Since the
vector field is divergence free, it can be also rewritten as a continuity
equation

∂t ft +∇x,v ·
(
bt ft) = 0. (5)

Solutions of (5), when considering a fixed vector field b, turn out to be ob-
tained by flowing the initial datum f0 along the characteristics of the vec-
tor field b. The deep connection between the transport/continuity equa-
tion (Eulerian point of view) and the notion of flow (Lagrangian point of
view) is one of the most fascinating aspects of this theory. It is the basis
of many results regarding the continuity equation and the flows even in a
non-smooth setting, starting from the fundamental papers of DiPerna and
Lions [78] and Ambrosio [5].
Many questions regarding the Vlasov-Poisson equation are nowadays

little understood and some of them are deeply related to the dual, La-
grangian and Eulerian, nature of the equation. One of the main open
problems in statistical mechanics is, for instance, the rigorous derivation
of the equation. It amounts in proving that, when a sequence of configu-
rations with finitely many particles approximates a continuous initial dis-
tribution of particles, the solutions of the approximate systems converge
to the solution of the Vlasov-Poisson equation. As well as the Boltz-
mann equation, the Vlasov equation has been rigorously derived only
under restrictive smallness assumptions on the time of observation, the
total mass of matter, or the distance of the distribution function to equi-
librium. Moreover, all derivations of the Vlasov equation assume that the
interaction at small scales is either smooth or not too singular.
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As we saw above, the Vlasov-Poisson equation can be seen as a trans-
port equation in the phase space, coupled with a PDE which determines
the gravitational field in terms of the distribution of particles. The main
scope of our thesis is a further step in understanding some aspects of the
interaction between transport equations and PDEs. More precisely, we
consider the following problems, which regard the DiPerna-Lions theory
and the regularity of degenerate elliptic equations, together with the anal-
ysis of the interaction between these points of view in models coming
from mathematical physics.

• The Di Perna-Lions and Ambrosio theory for flows of non-smooth vec-
tor fields: We develop a local version of the DiPerna-Lions theories for
ODE’s, providing a complete analogy with the Cauchy-Lipschitz the-
ory. More precisely, we prove existence and uniqueness of a maximal
regular flow for non-smooth vector fields using only local regularity
and summability assumptions on the vector field, in analogy with the
classical theory, which uses only local regularity assumptions.

• The quantitative estimates for the ODE: They constitute a different ap-
proach to the DiPerna-Lions theory, this time relying on a priori esti-
mates on solutions of the ODE rather than on the connection between
Lagrangian and Eulerian structure. We apply these estimates in the Eu-
lerian setting to obtain renormalized solutions of the continuity equa-
tion with a linear source term; this equation is not easily covered by the
methods of DiPerna and Lions.

• The regularity of very degenerate elliptic equations: This problem
comes from a model in traffic dynamic and it is a variant of the op-
timal transport problem, which takes into account congestion effects in
the transportation. It leads to different equivalent formulations; they
employ in one case some concepts related to flows of vector fields,
in another case the minimization of a variational integral, where the
convexity of the integrand degenerates on a full convex set. We are
interested in the regularity of solutions.

• The Vlasov-Poisson system: This equation, introduced above, couples
the transport structure in the phase space (namely, the space of po-
sitions and velocities of particles) with the Laplace equation, which
describes the force field. The existence of classical solutions is lim-
ited to dimensions d ≤ 3 under strong assumptions on the initial data,
while weak solutions are known to exist under milder conditions. How-
ever, in the setting of weak solutions it is unclear whether the Eulerian
description provided by the equation physically corresponds to a La-
grangian evolution of the particles. Through general tools concerning
the Lagrangian structure of transport equations with non-smooth vector
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fields, we show that weak solutions of Vlasov-Poisson are Lagrangian
and we obtain global existence of weak solutions under minimal as-
sumptions on the initial data.

• The semigeostrophic system: It was introduced in meteorology to de-
scribe atmospheric/ocean flows. After a suitable change of variable, it
has a dual version which couples a transport equation with a nonlin-
ear elliptic PDE, namely the Monge-Ampère equation. We study the
problem of existence of distributional solutions to the original system.

In the following, we give a quick overview on all these problems and an
outline of the thesis’ content, postponing a more detailed mathematical
and bibliographical description of the single problems to the beginning
of each chapter. The results in this thesis are the final outcome of several
collaborations developed during the PhD studies and have been presented
in a series of papers, already published or submitted.

Flows of non-smooth vector fields. Given a vector field b : (0, T ) ×
Rd → Rd we consider the ordinary differential equation{

∂tX(t, x) = b(t, X(t, x)) ∀t ∈ (0, T )

X(0, x) = x,
(6)

which is strictly related (via the method of characteristics) to the conti-
nuity equation{

∂t u +∇ · (bu) = 0 in (0, T )× Rd

u0 = ū given,
(7)

where u : (0, T )×Rd → R. If the vector field b is Lipschitz with respect
to space uniformly in time, the Cauchy-Lipschitz theory and classical
PDE arguments provide existence and uniqueness of a solution to (6) and
(7). In their fundamental papers, exploiting the connection between (6)
and (7), Di Perna and Lions [81] and Ambrosio [5] proved existence and
uniqueness of a so called regular lagrangian flow, namely a certain solu-
tion to (6), even in the case of Sobolev and BV vector fields. However,
the Cauchy-Lipschitz theory is not only pointwise but also purely local,
meaning that existence and uniqueness for small intervals of time depend
only on local regularity properties of the vector fields bt(x). On the other
hand, not only the DiPerna-Lions theory is an almost everywhere theory
(and this really seems to be unavoidable) but also the existence results
for the flow depend on global in space growth estimates on |b|, the most
typical one being

|bt(x)|
1+ |x | ∈ L1

(
(0, T ); L1(Rd)

)+ L1
(
(0, T ); L∞(Rd)

)
,
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which prevent the trajectories of the flow from blowing up in finite time.
In Chapter 2, based on a joint work [10] with Ambrosio and Figalli, under
purely local and natural assumptions on the vector field, we prove exis-
tence of a unique maximal regular flow X(t, x), defined up to a maximal
time TX(x) which is positiveL d-a.e. in Rd , with

lim sup
t→TX (x)

|X(t, x)| = ∞ forL d-a.e. x ∈ Rd such that TX(x) < T .

We then study, in Chapter 3, the natural semigroup and stability proper-
ties of this object; finally we analyze the blow-up of the maximal regular
flow X(·, x) at the maximal time TX(x). Surprisingly enough, indeed,
the proper blow up of trajectories, namely

lim
t→TX (x)

|X(t, x)| = ∞ forL d-a.e. x ∈ Rd such that TX(x) < T

happens only under a global bound on the divergence of b, whereas there
are counterexamples if only local bounds are assumed.

Quantitative estimates for the continuity equation. Another aspect of
the theory of regular lagrangian flows are the so called “quantitative es-
timates”, developed in the Lagrangian case (namely, for solutions of (6))
by Ambrosio, Lecumberry, and Maniglia [22], Crippa and De Lellis [67].
This theory allows to prove uniqueness and stability of flows, in an inde-
pendent way with respect to the analysis of the solutions to the continuity
equation. More precisely, the fundamental a-priori estimate is the follow-
ing: given a small parameter δ > 0, if X1 and X2 are the flows of two
vector fields b1 and b2 we consider the functional

�δ(t) :=
∫

Rd
log
(
1+ |X1(t, x)− X2(t, x)|2

δ

)
dx,

whose time derivative is bounded independently on δ under suitable as-
sumptions on the vector fields. A similar functional can be employed also
in the Eulerian setting to estimate the distance of two solutions of the con-
tinuity equation (7). This approach is followed in joint works with Crippa
and Spirito [56, 57], presented in Chapter 5, where we consider (7) with
a non-smooth vector field and a linear source term, called damping term
(although its sign may be either positive or negative), namely a right-hand
side of the form cu with c : (0, T )× Rd → R. In their fundamental pa-
per [81], DiPerna and Lions proved that, when c is bounded in space and
time, the equation is well posed in the class of distributional solutions
and the solution is transported by suitable characteristics of the vector
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field. Thanks to the quantitative estimates for the solution of the conti-
nuity equation, existence and uniqueness of solutions holds under more
general assumptions on the data, for instance, assuming only integrability
of the damping term.

Regularity of degenerate elliptic PDEs. In Chapter 6 and 7 we study the
gradient regularity of local minimizers of the functional∫

�

F(∇u)+ f u, (8)

where we are given a bounded open subset � of Rd , a convex function
F : Rd → R which exhibits a large degeneracy set, and an integrable
function f : � → R. Our model function is

F(v) = 1

p
(|v| − 1)p+ ∀ v ∈ Rd, (9)

so that the degeneracy set is the entire unit ball. This problem comes from
a model by Beckmann [30], where, given an urban area where people
move from home to work, the optimal traffic flow σ solves the minimum
problem

min

{∫
�

F∗(σ ) : σ ∈ L p′(�), ∇ · σ = f, σ · ν∂� = 0

}
. (10)

Here, F∗ denotes the convex conjugate of the function F ; by the choice
of F in (9), we have that

F∗(σ ) = |σ | + 1

p′
|σ |p′ ∀σ ∈ Rd

where p′ satisfies 1/p + 1/p′ = 1. The function F is chosen so that its
convex conjugate F∗ has more than linear growth at infinity (so to avoid
“congestion”) and satisfies lim infw→0 |∇F∗(w)| > 0 (which means that
moving in an empty street has a nonzero cost).
Problem 10 is equivalent to the problem of minimizing the energy (8)

with the particular choice of F given by (9). The unique optimal min-
imizer σ̄ in problem (10) turns out to be exactly ∇F(∇u), where F is
defined by (9). The continuity of σ̄ is meaningful in terms of traffic mod-
els, as shown in [49]. Indeed, one can consider measures on the space of
possible paths and select an optimal measure which satisfies a Wardrop
equilibrium principle: no traveler wants to change his path, provided all
the other ones keep the same strategy. According to this optimal mea-
sure, every path is a geodesic with respect to a metric on � of the form
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g(|σ̄ (x)|)I d (where g(t) = 1 + t p−1 is the so-called “congestion func-
tion”), which is defined in terms of the optimal traffic distribution itself.
The continuity of σ̄ and, therefore, of the metric allows to set and study
the geodesic problem in the usual sense.
In order to understand the regularity of minimizers of functionals as

in (8), we first recall that, when ∇2F is uniformly elliptic, namely there
exist λ,� > 0 such that λI d ≤ ∇2F ≤ �I d, the regularity results of
u rely on De Giorgi theorem and Schauder estimates. If the ellipticity of
F degenerates at only one point, then several results are still available.
For instance, in the model case of the p-Laplace equation, that is when
F(v) = |v|p and f = 0, the C1,α regularity of u has been proved by
Uraltseva for p ≥ 2, initiating a wide literature.
With the choice of F in (9), the Lipschitz regularity of a local min-

imizer u follows by standard techniques [87], since the equation is the
classical p-Laplace equation when the gradient is large. In general no
more regularity than L∞ can be expected on∇u. Indeed, whenF is given
by (6.5) and f is identically 0, every 1-Lipschitz function is a global min-
imizer of (6.4). However, in Chapters 6 and 7, based on joint works with
Figalli [55, 59] we prove the continuity of ∇F(∇u), extending a previ-
ous result of Santambrogio and Vespri [114] which holds only in dimen-
sion 2.

The Vlasov-Poisson system. The structure of transport equation hidden
in the nonlinear Vlasov-Poisson system, presented at the beginning of
this Introduction, has been exploited in a huge literature, in order to ob-
tain existence and uniqueness of classical solutions, namely, solutions
where all the relevant derivatives exist. The first existence results were
obtained in dimension 1 by Iordanskii [99], in dimension 2 by Ukai and
Okabe [120], in dimension 3 for small data by Bardos and Degond [26],
and for symmetric initial data in [29, 123, 95, 116]. Finally, in 1989 Pfaf-
felmöser [111] and Lions and Perthame [105] were able to prove global
existence of classical solutions starting from general data. Moreover, the
uniqueness problem has been addressed under more restrictive assump-
tions on the initial datum in [105] and [108], and both proofs employ
the Lagrangian flow associated to the solution, which is regular enough
under a global bound on the space density.
In recent years, an interesting direction of research in the context of

the Vlasov-Poisson system is given by the analysis of existence, unique-
ness and properties of weak solutions. In particular, when one drops
the assumption of boundedness of the initial density (this assumption is
preserved along solutions thanks to the transport structure of the equa-
tion) and assumes only that ft ∈ L1(R2d), the term Et ft appearing in
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the equation is not even locally integrable. For this reason, Di Perna
and Lions [78] introduced the concept of renormalized solution, which is
equivalent to the notion of weak (distributional) solution under suitable
integrability assumptions on ft . In this context, DiPerna and Lions an-
nounced global existence of solutions when the total energy is finite and
f0 log(1+ f0) ∈ L1(R2d).
In the setting of weak solutions, due to the low regularity of the den-

sity and of the vector field, it is unclear whether the Eulerian description
provided by the equation physically corresponds to a Lagrangian evo-
lution of the particles. In Chapter 8 (based on a joint work with Am-
brosio and Figalli [11]), we investigate this problem and we apply the
general tools developed in Chapter 4 to prove that the Lagrangian struc-
ture holds even in the context of weak/renormalized solutions. We obtain
also global existence of weak solutions under minimal assumptions on
the initial data and improve the result in [78], dropping the hypothesis
f0 log(1+ f0) ∈ L1(R2d) and assuming only the finiteness of energy.

The semigeostrophic system. The semigeostrophic system models ath-
mosperic/ocean flows on large scales. The problem can be described
in the case of periodic solutions in R2, namely on the 2-dimensional
torus T2

⎧⎪⎨⎪⎩
∂t∇Pt(x)+

(
ut(x)·∇

)∇Pt(x)=J (∇Pt(x)−x) (x,t)∈T2×(0,∞)

∇·ut(x)=0 (x,t)∈T2×[0,∞)

P0(x)=P0(x) x∈T2.

(11)
where P0 is the initial datum, J ∈ R2×2 is a rotation matrix, ut represents
the velocity, and ∇Pt is related to the pressure of the fluid.
Energetic considerations show that it is natural to assume the convexity

of the function Pt(x). The system (11) has a dual formulation obtained
with a change of variable⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tρt +∇ · (Utρt) = 0

Ut(x) = J (x −∇P∗
t (x))

ρt = (∇Pt)L T2

P0(x) = p0(x)+ |x |2/2,
where P∗

t is the convex conjugate of Pt . The existence of dual solutions
was proved in 1998 by Benamou and Brenier [31], and, starting from the
lagrangian solutions of the dual equation, in [69] the authors managed
to build a very weak solution of (11) of lagrangian type, by reversing



xix Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations

the change of variables. The formal expression for the velocity ut of the
original system, given a solution (Pt , ρt) of the dual system, is given by

ut(x) := [∂t∇P∗
t ](∇Pt(x))+ [∇2P∗

t ](∇Pt(x))J (∇Pt(x)− x). (12)

However, the existence of distributional solutions to (11) stayed as an
open problem due to the low regularity of the change of variable, since a
priori ∇2P∗

t is only a matrix-valued measure and one needs also differ-
entiability in time of ∇P∗

t to give a meaning to (12). The existence of
Eulerian solutions is shown in joint works with Ambrosio, De Philippis,
and Figalli [7, 8], thanks to the recent regularity results on solutions of
the Monge-Ampère equation [73], and it is the content of Chapter 9.

In the final part of this introduction, we outline other works developed
during the PhD that present some common underlying ideas and tech-
niques with the ones outlined above in this introduction.

Regularity of double phase variational problems. Degenerate elliptic
problems arise also to model strongly anisotropic materials. Given � ⊂
Rd , d ≥ 2, we are here interested in the regularity of local minimizers
u : � → R of a class of variational integrals whose model is given by the
functional

P(w) :=
∫
�

(|Dw|p + a(x)|Dw|q) dx , (13)

which is naturally defined on W 1,1(�), where

1 < p < q , 0 ≤ a ∈ C0,α(�) , α ∈ (0, 1] .
The functional P belongs to the class of functionals with non-standard
growth conditions, which have been widely studied in recent years. These
are integral functionals of the type

w →
∫
�

f (x, Dw) dx ,

where the integrand f : � × Rn → R satisfies unbalanced polynomial
growth conditions of the type

|z|p � f (x, z) � |z|q + 1 for every z ∈ Rd .

In (13), the coefficient a(x) describes the geometry of a composite, made
of two different materials, with power hardening of rate p and q, respec-
tively. From the mathematical viewpoint, the integrand of (13) switches
between two different types (phases) of elliptic behaviors according to
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the coefficient a(·). Since a interacts directly with the ellipticity of the
problem, the presence of x is not any longer a perturbation, and this has
direct consequences on the regularity of minimizers. More precisely, the
regularity of the minimizer holds if the gap between the exponents p and
q is controlled in terms of the regularity of a by

q ≤ p + α. (14)

This condition is sharp, as shown in the counterexample in [83]. In [62],
Mingione and I proved that bounded local minimizers of (13) under the
assumption (14) have Hölder continuous gradients, namely ∇u ∈ C0,β

for some β > 0. Boundedness is a rather common feature since it for
instance follows by maximum principle when considering solutions of
Dirichlet problems involving a bounded boundary datum u0 ∈ L∞(�) ∩
W 1,p(�). In a companion paper [61] we prove that the same regularity
holds also in the case of unbounded local minimizers, but this time we
assume a different relation between the exponents p, q and the regularity
of a:

q < p + αp

n
.

The proofs in [61, 62] rely on many different technical tools, going from
the p-harmonic approximation lemma to a fractional Caccioppoli in-
equality. A common underlying idea is to consider, at each scale, namely
on every ball BR ⊂ �, an alternative according to the fact that

sup
x∈BR

a(x)

Rα
≤ M

holds or not, for a threshold M to be chosen. If it holds, then at this fixed
scale we are in the p-phase and we compare our minimizer to a solution
of the p-Laplace equation in the same ball. Otherwise, we are in the
(p, q)-phase and the solution is compared to the solution of a functional
like (13) with frozen coefficient a(·) = a0. The regularity for the frozen
problem has been studied in [104].
Many questions arise from the results presented above. For instance,

in collaboration with Baroni and Mingione [27, 28], we see that Harnack
inequalities, in analogy with the results of [76], hold also for minimizers
of double phase integrals and that the regularity theory developed in [61]
can be generalized to different ellipticity types. In particular, we consider
a functional of the type

Pln(w) :=
∫
�

[|Dw|p + a(x)|Dw|pln(1+ |Dw|)] dx
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and correspondingly, the coefficient a is allowed to have a logarithmic
modulus of continuity in order to obtain the Hölder continuity of the min-
imizer.

Optimal transport with Coulomb cost. In some recent papers, Buttazzo,
De Pascale and Gori-Giorgi [40] and Cotar, Friesecke and Klüppelberg
[66] consider a mathematical model for the strong interaction limit of the
density functional theory (DFT). In particular, the model for the mini-
mal interaction of N electrons is formulated in terms of a multimarginal
Monge transport problem. Let c : (Rd)N → R be the Coulomb cost
function

c(x1, . . . , xN ) =
∑

1≤i< j≤N

1

|xi − x j | ∀(x1, . . . , xN ) ∈ (Rd)N , (15)

ρ ∈ P(Rd) be a given probability measure on Rd , and T (ρ) be the set
of transport maps T (ρ) = {T : Rd → Rd Borel : Tρ = ρ}, where Tρ
represents the pushforward measure of the measure ρ through the Borel
map T . We consider the Monge multimarginal problem

(M) = inf

{∫
Rd
c(x, T2(x), . . . , TN (x)) dμ(x) : T2, . . . , TN ∈ T (ρ)

}
and its cyclical version

(Mcycl)=inf
{∫

Rd
c(x,T (x),...,T (N−1)(x))dμ(x):T∈T (ρ),T (N )=I d

}
,

which is meaningful since the cost function is symmetric. Following the
standard theory of optimal transport, we introduce the set of transport
plans

�(ρ) = {γ ∈ P(RdN ) : π i
γ = ρ, i = 1, . . . , N

}
,

where π i : (Rd)N → Rd are the projections on the i-th component for
i = 1, . . . , N , and the Kantorovich multimarginal problem

(K ) = min

{∫
(Rd )N

c(x1, . . . , xN )dγ (x1, . . . , xN ) : γ ∈ �(ρ)

}
,

where, in contrast with (M), we allow the splitting of mass. To every
(N − 1)-uple of transport maps T2, . . . , TN ∈ T (ρ) we associate the
transport plan

γ = (I d, T2, . . . , TN )ρ ∈ �(ρ).
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We remark that the existence of an optimal transport plan, namely a mini-
mizer of (K ), follows from the lower semicontinuity of the cost, from the
linearity of the cost of a plan γ with respect to γ and from the fact that
the admissible plans form a tight subset of the set of measures on (Rd)N .
In a joint paper with Di Marino [53], under the sharp assumption that ρ
is non-atomic, we prove that (K ) = (M) = (Mcycl). In particular, if an
optimal transport map exists, it has the cyclical structure that appears in
(Mcycl). This result reduces the optimization problem (K ) over measures
on RNd to the problem (Mcycl) over functions on RN and is useful in de-
riving numerical methods to compute the value of (K ). In a companion
paper [54], joint work with Di Marino and De Pascale, we address the
problem of existence of optimal transport maps in dimension d = 1, pro-
viding an explicit construction of the optimal map. For N = 2, in any
dimension, existence follows from the standard optimal transport theory
(see [124]) since the so called “twist condition” is formally satisfied by
the Coulomb cost (15). In the multimarginal case N ≥ 3, there is no gen-
eral theory for the existence of optimal maps and the construction in [54]
heavily relies on the assumption d = 1. The generalization of this result
to higher dimensions is open. Finally, in a paper with Stra [64] we be-
gin the analysis of the case of spherically symmetric data, which model
for instance Litium and Berillium atoms. We disprove a conjecture on
the structure of the optimal transport, showing that some special maps,
introduced by Seidl, Gori Giorgi and Savin, are not always optimal in
the corresponding transport problem. We also provide examples of maps
satisfying optimality conditions for special classes of data.

Geometric characterizations of rigidity in symmetrization inequalities
and nonlocal perimeters. Symmetrization inequalities are among the
most basic tools of the Calculus of Variations. They include the Polya-
Szego inequality for the Dirichlet energy, the Steiner symmetrization and
its analogous in the Gaussian setting, named Ehrhard symmetrization,
which is a well-known tool in Probability Theory, arising in the study of
geometric variational problems in Gauss space.
The study of their equality cases plays a fundamental role in the ex-

plicit characterization of minimizers, thus in the computation of optimal
constants in geometric and functional inequalities. Although it is usually
easy to derive useful necessary conditions for equality cases, the analysis
of rigidity of equality cases (that is, the situation when every set realizing
equality in the given symmetrization inequality turns out to be symmet-
ric) is a much subtler issue. Sufficient conditions for rigidity have been
known, and largely used, in the case of the Polya-Szego inequality for the
Dirichlet energy [39], and of Steiner inequality for perimeter [50]. How-
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ever, these sufficient conditions fail to be also necessary: for example,
the one proposed in [50] fails to characterize rigidity even in the class
of polyhedra in R3. A preliminary analysis of some examples indicates
that, in order to formulate geometric conditions which could possibly be
suitable for characterizing rigidity, one needs a measure-theoretic notion
which describes when a Borel set “disconnects” another Borel set. This
notion, called essential connectedness, was first introduced in a joint pa-
per with Cagnetti, De Philippis, and Maggi [47] and it is inspired by the
notion of indecomposable current adopted in Geometric Measure Theory
(see [86, 4.2.25]). It allows to formulate in its terms a simple geometric
condition that characterizes rigidity in Ehrhard inequality for Gaussian
perimeter. The same notion can be employed, together with a fine analy-
sis of the differentiability properties of the barycenter function of a set of
finite perimeter whose sections are segments, to provide various charac-
terizations of rigidity in Steiner inequality for Euclidean perimeter. This
was done in collaboration with Cagnetti, De Philippis, and Maggi [48].



Chapter 1
An overview on flows of vector fields
and on optimal transport

The aim of this Chapter is twofold. On one side, we give an overview
on the classical results regarding flows of vector fields, the regularity of
degenerate elliptic PDEs and, in particular, the Monge-Ampère equation.
These results and ideas will be fundamental for the development of all the
subsequent chapters. On the other side, we present the classical theory
according to a point of view that will be useful in the rest of this the-
sis, showing refinements of the known theorems that suit the subsequent
discussions.

1.1. Classical and nonsmooth theory

Given a vector field b : (0, T ) × Rd → Rd we consider the ordinary
differential equation{

∂tX(t, x) = bt(X(t, x)) ∀t ∈ (0, T )

X(0, x) = x,
(1.1)

In the smooth setting, namely when b is locally Lipschitz with respect
to the space variable, existence and uniqueness of a solution to (1.1) is
guaranteed by the Cauchy-Lipschitz theorem.

Theorem 1.1 (Cauchy-Lipschitz). Let T > 0, b ∈ L1((0, T );
Liploc(R

d;Rd)). Then for every x ∈ Rd there exists a unique maximal
solution X(·, x) of (1.1) defined in a nonempty maximal existence time
[0, TX(x)). Moreover, the map TX is lower semicontinuous, for every
x ∈ Rd such that TX(x) < T the trajectory X(·, x) blows up properly,
namely

lim
t→TX (x)

|X(t, x)| = ∞,

and the map X(t, ·) is locally Lipschitz in space on its finiteness domain.
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The ODE (1.1) is strictly related (via the method of characteristics) to
the transport equation{

∂t u + b · ∇u = 0 in (0, T )× Rd

u0 = ū given.
(1.2)

Indeed, if u is a smooth solution of (1.2) and x ∈ Rd , we have

d

dt
ut(X(t, x)) = ∂t ut(X(t, x))+ ∂tX(t, x) · ∇ut(X(t, x))

= ∂t ut(X(t, x))+ bt(X(t, x)) · ∇ut(X(t, x)) = 0,

so that u is constant along the characteristics of b. Hence, given an initial
datum u0 = ū, we expect

ut(x) = ū(X(t, ·)−1(x))
to be a solution of the transport equation, and this can be easily checked
by direct computation. In the last thirty years, a huge effort has been
made in order to develop a theory of flows of vector fields in the non-
smooth setting, in view of applications to physical systems. In the fol-
lowing, we precise the meaning of the ODE (1.1) and of the continuity
and transport equation in a non-smooth setting. The continuity equation
is {

∂t u +∇ · (bu) = 0 in (0, T )× Rd

u0 = ū given,
(1.3)

where u : (0, T )×Rd → R; in the case of a divergence-free vector field,
it is equivalent to the transport equation (1.2). We mostly use standard
notation, denoting by L d the Lebesgue measure in Rd , and by f#μ the
push-forward of a Borel nonnegative measure μ under the action of a
Borel map f , namely f#μ(B) = μ( f −1(B)) for any Borel set B in the
target space. We denote by B(Rd) the family of all Borel sets in Rd . In
the family of positive finite measures in an open set �, we will consider
both the weak topology induced by the duality with Cb(�) that we will
call narrow topology, and the weak topology induced by Cc(�). Also,
M+

(
Rd
)
will denote the space of finite Borel measures on Rd , while

P
(
Rd
)
denotes the space of probability measures.

In the non-smooth setting, given a Borel vector field b : (0, T )×Rd →
Rd , an integral curve γ : [0, T ] → Rd of the equation ∂tγ = bt(γ ) (see
(1.1)) is an absolutely continuous curve in AC([0, T ];Rd)which satisfies
the previous ODE for almost every t ∈ [0, T ]. The continuity equation is
intended in distributional sense, according to the following definition.
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Definition 1.2 (Distributional solutions). A family {μt}t∈[0,T ] of locally
finite signed measures on Rd such that btμt is a locally finite measure is
a solution of the continuity equation if it solves

∂tμt +∇ · (btμt) = 0

in the sense of distributions, namely for every φ ∈ C∞
c ((0, T )× Rd)∫ T

0

∫
Rd

[
∂tφt(x)+∇xφt(x) · bt(x)

]
dμt(x) dt = 0.

The family {μt}t∈[0,T ] is a solution of the continuity equation with initial
datum μ0 if for every φ ∈ C∞

c ([0, T )× Rd)∫
Rd

φ0(x)μ0(x)+
∫ T

0

∫
Rd

[
∂tφt(x)+∇xφt(x) · bt(x)

]
dμt(x) dt = 0.

When we consider possibly singular measures μt , the vector field bt has
to be defined pointwise and not only L d-a.e., since the product btμt is
sensitive to modifications of bt in L d-negligible sets. In the following,
in particular with Sobolev or BV vector fields, we will often consider
only measures μt which are absolutely continuous with respect to L d ,
so everything is well posed and does depend only on the equivalence class
of b in L1loc((0, T )× Rd).
If we consider a function β ∈ C1(R) and we multiply the transport

equation (1.2) by β ′(u), we see that, if u is a smooth solution of the
transport equation, so is β(u). The previous observation is encoded in
the following definition.

Definition 1.3 (Renormalized solutions). Let b∈L1loc((0,T);L1loc(Rd;Rd))

be a vector field with div b∈L1loc((0,T );L1loc(Rd;Rd)). Let u∈L∞loc((0,T );
L∞loc(R

d)) and assume that, in the sense of distributions, there holds

c := ∂t u + b · ∇u ∈ L1loc((0, T ); L1loc(Rd;Rd)). (1.4)

Then, u is a renormalized solution of (1.4) if for every β ∈ C1(R) ∩
L∞(R)

∂tβ(u)+ b · ∇β(u) = cβ ′(u).

in the sense of distributions. Analogously, we say that u is a renormalized
solution starting from a Borel function u0 : Rd → R if

∫
Rd
φ0(x)β(u0(x))dx+

∫ T

0

∫
Rd
[∂tφt(x)+∇φt(x)·bt(x)]β(ut(x))dxdt=0

for all φ ∈ C∞
c ([0, T )× Rd) and all β ∈ C1 ∩ L∞(R).
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The renormalization property describes a property of solutions of a
wide class of PDEs related to the transport equation (1.2); for this reason,
we will introduce in the following Chapters a few definitions of renor-
malized solutions that capture better the features of each single prob-
lem. The renormalization property can be also used to give a meaning
to equation (1.3) when the boundedness (or even the integrability) of u
is not any more assumed as an assumption. Indeed, although the product
bt ut may not even be locally integrable if bt ∈ L1loc((0, T ) × Rd) and
ut ∈ L1loc((0, T ) × Rd), the term btβ(ut) appearing in (5.11) is always
locally integrable. This will be used in Chapter 8 to give a general no-
tion of solution to the Vlasov-Poisson equation and in Chapter 5 for the
continuity equation with an integrable damping term (see Definition 8.1
and 5.3 respectively).

If the vector field b is not assumed to be smooth, namely locally Lip-
schitz in space, but only Sobolev or BV, easy one dimensional examples
show that the uniqueness of trajectories of the ODE 1.1 fails. For in-
stance, if we consider the autonomous vector field b(x) = √|x |, x ∈ R,
then we have many solutions of the ODE, which start from x0 = −c2 <
0, reach the origin in time 2c, stay at the origin for any time T ≥ 0, and
continue as (t − T − 2c)2.
However, one can still associate to the vector field b a notion of flow,

made of a selection of trajectories of the ODE. Among all possible selec-
tions, we prefer the ones that do not allow for concentration, as presented
in the following definition.

Definition 1.4. Let T > 0 and b : (0, T ) × Rd → Rd a Borel, locally
integrable vector field. We say that the Borel map X : Rd ×[0, T ] → Rd

is a regular Lagrangian flow of b if the following two properties hold:

(i) for L d-a.e. x ∈ Rd , X(·, x) ∈ AC([0, T ];Rd) and solves the
ODE ẋ(t) = bt(x(t)) L 1-a.e. in (0, T ), with the initial condition
X(0, x) = x ;

(ii) there exists a constant C = C(X) satisfying X(t, ·)#L d ≤ CL d

for every t ∈ [0, T ].
It can be easily checked that the definition of regular Lagrangian flow
depends on the equivalence class of b in L1loc((0, T )×Rd) rather then on
the pointwise values of b.
The well-celebrated papers of DiPerna and Lions [81] and Ambrosio

[5] provide existence and uniqueness of the regular Lagrangian flow as-
suming local Sobolev or BV regularity of b, boundedness of the distri-
butional divergence div b, and some growth conditions on b.
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Theorem 1.5. Let b ∈ L1((0, T ); BVloc(Rd;Rd)) be a vector field that
satisfies the bound on the divergence (div b)− ∈ L1((0, T ); L∞(Rd)) and
the growth condition

|bt(x)|
1+ |x | ∈ L1((0, T ); L1(Rd))+ L1((0, T ); L∞(Rd)).

Then there exists a unique regular Lagrangian flow X of b.

The previous theorem has been extended to different classes of vector
fields; some of them are listed in Remark 1.9 below. Thanks to the exis-
tence and uniqueness of a regular Lagrangian flow, it is possible to define
the notion of Lagrangian solution for the continuity and transport equa-
tion. These are solutions obtained by flowing the initial datum according
to the regular Lagrangian flow of b.
The proof of the previous theorem is based on the interaction between

the PDE point of view on the continuity equation and the Lagrangian
techniques. In the following two sections, we present two key ideas be-
hind Theorem 1.5, which in turn will be fundamental in order to develop
a local version of Theorem 1.5.

1.2. A bridge between Lagrangian and Eulerian solutions:
the superposition principle

This section is devoted to the so called “superposition principle”, which
encodes the connection between the Eulerian and the Lagrangian formu-
lation of the continuity equation, namely between nonnegative distribu-
tional solutions of the PDE and solutions transported by a set of (possibly
branching) curves. The aim of Section 1.3 is, then, to show that, under
more restrictive assumptions on the vector field, this set of curves is given
exactly by the flow of b.
Let us fix T ∈ (0,∞) and consider a weakly continuous family μt ∈

M+
(
Rd
)
, t ∈ [0, T ], solving in the sense of distributions the continuity

equation
d

dt
μt +∇ · (btμt) = 0 in (0, T )× Rd

for a Borel vector field b : (0, T ) × Rd → Rd , locally integrable with
respect to the space-time measure μt dt . When we restrict ourselves to
probability measuresμt , then weak and narrow continuity with respect to.
t are equivalent; analogously, we may equivalently consider compactly
supported test functions ϕ(t, x) in the weak formulation of the continuity
equation, or functions with bounded C1 norm whose support is contained
in I × Rd with I � (0, T ). If J ⊂ R is an interval and t ∈ J , we
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denote by et : C(J ;Rd) → Rd the evaluation map at time t , namely
et(η) := η(t) for any continuous curve η : J → Rd .
We now recall the so-called superposition principle. We prove it under

the general assumption that μt may a priori vanish for some t ∈ [0, T ],
but satisfies (1.5); we see in Remark 1.7 that this assumption implies that
there is no mass loss, namely μt(R

d) = μ0(R
d) for every t ∈ [0, T ].

Remark 1.7 allows the reduction of the superposition principle, as stated
below, to [12, Theorem 12], which presents the same result assuming
that the family μt is made of probability measures. We mention also [19,
Theorem 8.2.1], where a proof is presented in the even more special case
of L p integrability on b for some p > 1∫ T

0

∫
Rd
|bt(x)|p dμt(x) dt < ∞.

The superposition principle will play a role in the proof of the compari-
son principle stated in Proposition 1.11, in the blow-up criterion of The-
orem 3.13 and in Theorem 4.9, where a completely local version of the
superposition principle is presented.

Theorem 1.6 (Superposition principle and approximation).
Let b : (0, T ) × Rd → Rd be a Borel vector field. Let μt ∈ M+

(
Rd
)
,

0 ≤ t ≤ T , with μt weakly continuous in [0, T ] solution to the equation
d
dtμt + div (bμt) = 0 in (0, T )× Rd , with∫ T

0

∫
Rd

|bt(x)|
1+ |x | dμt(x) dt < ∞. (1.5)

Then there exists η ∈ M+
(
C([0, T ];Rd)

)
satisfying:

(i) η is concentrated on absolutely continuous curves η in [0, T ], solv-
ing the ODE η̇ = bt(η) L 1-a.e. in (0, T );

(ii) μt = (et)#η (so, in particular, μt(R
d) = μ0(R

d)) for all t ∈ [0, T ].
Moreover, there exists a family of measures μR

t ∈ M+
(
Rd
)
, narrowly

continuous in [0, T ], solving the continuity equation and supported on
BR , such that μR

t ↑ μt as R →∞ for all t ∈ [0, T ].
Remark 1.7. We show that, if μt and bt are taken as in Theorem 1.6 then
μt does not loose or gain mass, namely

μt(R
d) = μ0(R

d) ∀t ∈ [0, T ]. (1.6)

Indeed, let R ≥ 1 and χR ∈ C∞
c (B3R) be a cut-off function with 0 ≤

χR ≤ 1, χR ≡ 1 on a neighborhood of BR and |∇χR| ≤ χB3R\BR . Since
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μt solves the continuity equation and since 1/R ≤ 4/(1+ |x |) for |x | ∈
B3R \ BR , we have∣∣∣ ∫

Rd
χR dμ0 −

∫
Rd

χR dμt

∣∣∣ ≤ ∫ T

0

∣∣∣ d
dt

∫
Rd

χR dμt

∣∣∣ dt
=
∫ T

0

∣∣∣ ∫
B3R\BR

bt · ∇χR dμt

∣∣∣ dt
≤ 1

R

∫ T

0

∫
B3R\BR

|bt | dμt dt

≤ 4
∫ T

0

∫
B3R\BR

|bt(x)|
1+ |x | dμt(x) dt.

Hence we deduce that

μ0(BR)− μt(B3R) ≤
∫

Rd
χR dμ0 −

∫
Rd

χR dμt

≤ 4
∫ T

0

∫
B3R\BR

|bt(x)|
1+ |x | dμt(x) dt

(1.7)

and

μt(BR)− μ0(B3R) ≤
∫

Rd
χR dμt −

∫
Rd

χR dμ0

≤ 4
∫ T

0

∫
B3R\BR

|bt(x)|
1+ |x | dμt(x) dt.

(1.8)

Letting R → ∞ in (1.7) and (1.8), the right-hand sides converge to 0 by
(1.5) and we find (1.6).

The proof of the superposition principle, as stated in Theorem 1.6, can
be found in [12, Theorem 12], once Remark 1.7 is taken into account.
The proof is based on a clever regularization argument: we consider a
family of convolution kernels {ρε}ε∈(0,1), having integral 1 and supported
on the whole Rd , and we define

με
t := μt ∗ ρε, bε := (bμt) ∗ ρε

μt ∗ ρε
.

We call Xε the flow of the vector field bε, so that με solves the continuity
equation and it is transported by Xε, since bε satisfies some local Lips-
chitz bounds, uniformly in time. Then, we define ηε∈M (AC([0,T ];Rd))

as the law under με
0 of the map x → Xε(·, x), namely ηε := Xε(·, x)#με

0.
Assumption (1.5) (which holds uniformly also for bε and με) allows to


