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Preface

This volume represents presentations given at the 81st annual meeting of the
Psychometric Society in Asheville, North Carolina, during July 11–15, 2016. The
meeting, organized by the University of North Carolina at Greensboro, was one
of the largest Psychometric Society meetings in the United States, both in terms
of participants and number of presentations. It attracted 415 participants, with
204 papers being presented, along with 95 poster presentations, 3 pre-conference
workshops, 3 keynote presentations, 6 invited presentations, 2 career-award presen-
tations, a debate, 2 dissertation-award winners, 9 symposia, a trivial-pursuit lunch,
and Psychometrika’s 80th anniversary celebration.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society so as to allow
presenters to quickly make their ideas available to the wider research community
while still undergoing a thorough review process. The first four volumes of the
meetings in Lincoln, Arnhem, Madison, and Beijing were received successfully,
and we expect a successful reception of these proceedings too.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 36 state-of-the-art chapters addressing a diverse set of topics, including
item response theory, equating, classical test theory, factor analysis, structural equa-
tion modeling, dual scaling, multidimensional scaling, power analysis, cognitive
diagnostic models, and multilevel models.

Amsterdam L. Andries van der Ark
Umeå Marie Wiberg
Urbana-Champaign, IL Steven A. Culpepper
Urbana-Champaign, IL Jeffrey A. Douglas
Hong Kong Wen-Chung Wang
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New Results on an Improved Parallel EM
Algorithm for Estimating Generalized Latent
Variable Models

Matthias von Davier

Abstract The second generation of a parallel algorithm for generalized latent
variable models, including MIRT models and extensions, on the basis of the general
diagnostic model (GDM) is presented. This new development further improves the
performance of the parallel-E parallel-M algorithm presented in an earlier report by
means of additional computational improvements that produce even larger gains
in performance. The additional gain achieved by this second-generation parallel
algorithm reaches factor 20 for several of the examples reported with a sixfold
gain based on the first generation. The estimation of a multidimensional IRT
model for large-scale data may show a larger reduction in runtime compared to
a multiple-group model which has a structure that is more conducive to parallel
processing of the E-step. Multiple population models can be arranged such that
the parallelism directly exploits the ability to estimate multiple latent variable
distributions separately in independent threads of the algorithm.

Keywords Parallel EM-algorithm • MIRT • Diagnostic modeling • Estimation
• Latent variable modeling

1 Introduction

This work was partially completed while the author was at the Educational Testing Service.

M. von Davier (�)
National Board of Medical Examiners, 3750 Market Street, Philadelphia, PA, 19104-3102, USA
e-mail: mvondavier@nbme.org

© Springer International Publishing AG 2017
L.A. van der Ark et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 196, DOI 10.1007/978-3-319-56294-0_1
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This chapter reports on the second generation of a parallel algorithm for generalized
latent variable models on the basis of the general diagnostic model (von Davier
2005, 2008, 2014). This new development further improves the performance of the
parallel-E parallel-M algorithm presented in an earlier report (von Davier 2016) by

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-56294-0_37

mailto:mvondavier@nbme.org
https://doi.org/10.1007/978-3-319-56294-0_37


2 M. von Davier

means of additional computational improvements that produce even larger gains
in performance. The additional gain achieved by this second-generation parallel
algorithm reaches factor 20 for several of the examples were reported with a
sixfold gain based on the first generation. The estimation of a multidimensional
IRT model for large-scale data may show a larger reduction in runtime compared
to a multiple-group model which has a structure that is more conducive to parallel
processing of the E-step. Multiple population models can be arranged such that
the parallelism directly exploits the ability to estimate multiple latent variable
distributions separately in independent threads of the algorithm.

This development allows estimation of advanced psychometric models for very
large datasets in a matter of seconds or minutes, rather than hours. Unlike methods
that rely on simplifications of the likelihood equations that are only available for a
specific set of constrained problems such as bifactor models, the approach presented
here is applicable to all types of multidimensional latent variable models, including
multidimensional models, multigroup and mixture models, as well as growth curve
and growth mixture models.

Parallel processing is now available in a number of compilers and hence found
its way into software packages such as LatentGold, Mplus, and FlexMirt. While
these packages allow users to utilize one or multiple cores, their documentation is
somewhat limited. In the present report, the approach to parallelism is detailed at
the level of algorithmic description, and the types of gains are exemplified based
on a range of hardware platforms that are typically available as workstations or
servers. Moreover, the software presented here is available for research purposes on
all major operating systems, in particular, on Linux, Microsoft Windows, and Apple
OS X platforms.

2 A General Latent Variable Model

The general latent variable model used in this evaluation of an improved algorithm
for parallel processing is based on the general diagnostic model (GDM) (von Davier
2005). This family of models contains a large class of well-known psychometric
approaches as special cases, including IRT, MIRT, latent class models, HYBRID
models, and mixture models (von Davier 2008), as well as models for longitudinal
data (von Davier et al. 2011) and several diagnostic models (von Davier 2014, 2016).

The probability of a correct item response X D 1 by a respondent from a
population C D c and with skill attribute pattern a D (a1, : : : , ak) on item i can be
written as

P .X D 1ji; a; c/ D
exp

�
ˇic C

PK
kD1�ickh .qik; ak/

�

1 C exp
�
ˇic C

PK
kD1�ickh .qik; ak/

� (1)

This is the general model introduced by von Davier (2005). The qik are indicator
variables for i D 1 , . . , I and k D 1 , : : : , K and are provided as an input. These
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Q-matrix entries qik describe which of the skill attributes is required for which item.
Note that Eq. (1) also contains a population indicator c, which makes it suitable
both for multiple-group and mixture distribution models (von Davier and Rost
1995; von Davier and Yamamoto 2004; von Davier 2005, 2008; von Davier and
Rost 2016). While the general model given in Eq. (1) served as the basis for the
formal specification of the log-linear cognitive diagnostic model (L-CDM) (Henson,
Templin and Willse 2009) and other developments for binary skill attributes and
data, von Davier (2005, 2008) utilized the general form to derive the linear or partial-
credit GDM:

P .X D xji; a; c/ D
exp

�
ˇixc C

PK
kD1x�ickh .qik; ak/

�

1 C
Pm

i

�
ˇiyc C

PK
kD1y�ickh .qik; ak/

� (2)

Note that this leads to a model that contains located latent class models, multiple
classification latent class models, IRT models, and multidimensional IRT models,
as well as a compensatory version of the reparameterized unified model, as special
cases (von Davier 2005). In addition, the linear GDM as well as the general family
is suitable for binary, polytomous ordinal, and mixed-format item response data.

One common application of generalized latent variable models is the use for
confirmatory analysis. In this case, a Q-matrix provides the required loading pattern,
and constraints on the skill attribute space provide the structure of the model. One
example is what is commonly called a multi-trait-multi-method model, in which
each observed indicator variable is cross classified with respect to two different sets
of latent variables. In the examples analyzed for this report, a seven-dimensional
model of this type is analyzed, which contains two loadings for each item, one
for a set of four latent variables (subdomains) and one for a set of three variables
(processes). Figure 1 provides an illustration of this model used as example.

3 Method

The EM algorithm (Dempster et al. 1977) is one of the most frequently used
approaches for estimating latent variable models (e.g., McLachlan and Krishnan
1997). The name of the algorithm stems from the alternating, iterative repetition of
two steps, the E (expectation) step and the M (maximization) step. The estimation of
generalized latent variable models using the EM algorithm requires the estimation
of expected values for all required sufficient statistics of the structural parameters
of the measurement model as well as the estimation of latent variable distributions
in one or more populations. In the M-step, the expected values serve as sufficient
statistics for the maximization of parameters. Parallel implementations of the EM
algorithm have been used in image processing, in particular in Gaussian mixture
modeling for some time (Cui et al. 2014; Cui et al. 2010; Das et al. 2007; Lopez
de Teruel et al. 1999). In contrast to Gaussian mixtures, certain latent variable
models require computationally more costly calculations in the M-step as well.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

knowledge application reasoning

x12

number algebra geometry data

Fig. 1 Confirmatory multidimensional IRT model with seven dimensions. Three of the variables
describe processing skills, and four variables describe subdomains of mathematics. While the
figure uses on only 12 items, the real data example contains 214 items in a balanced incomplete
block design administered to approx. 8000 students

While parallelizing the E-step is straightforward in terms of distribution of the
work, the aggregation of the partial results obtained in distributed ways separately
by each core is again a potentially costly calculation or aggregation process. A
new algorithm was developed based on the first generation parallel-E parallel-M
algorithm described in von Davier (2016). This new algorithm can be described as
a parallel-E parallel-M algorithm with tiling-based aggregation of results. This new
approach is based on three different phases of parallel execution of the necessary
calculations:

1. Parallel E-step: Distributed calculation of expected counts for sufficient statistics
2. Tiling: Rearranging distributed latent variable space and parallel aggregation
3. Parallel M-Step: ML-estimation of parameters based on aggregated counts

Gains are largest for the parallelism introduced in part (1) that concerns the
E-step by conducting estimation of expected counts separately in subsamples
distributed across cores. The smallest gains are obtained by the conversion of the
M-step to parallel execution in part (3). The aggregation step that follows the E-step
in part (2) provides somewhat more advantages than the parallel M-step, either in the
form of a multiple-group approach where aggregation can be completely avoided,
or in the form of tiling, where the latent variable space aggregation is rearranged
so that it can take place in parallel as well. Shared memory allocation of all latent
variable distributions and rearranging the direction of aggregation are crucial in the
process. More details about the different approaches utilized in version 1 can be
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Table 1 Summary of example analyses used in the comparisons

Case Scales Model Groups Items Sample QPT Total Ncat

A 1 2PL/GPCM 312 293 1,614,281 21 21 2–4
B 1 2PL/GPCM 283 133 1,803,599 21 21 2–4
C 7 MTMM 1 214 7377 3 2187 3
D 2 MIRT 1 175 5763 15 225 3
E 2 MIRT 1 175 5763 31 961 3
F NA LCA 54 54 246,112 1 1 6
G 5 MIRT 1 150 2026 5 3125 2

The examples cover a wide range of latent variable models from IRT to MIRT, confirmatory
models, and latent class models. The items are mixed format, and their number varies from 54
to 293; the number of respondents varies from 2026 to 1.8 million

found in von Davier (2016). The tiling process resulting in an improved ability to
utilize parallelism in aggregation is detailed in Gan et al. (2009).

4 Data

Table 1 shows an overview of the test cases. All test cases reported here are based
on sequential and parallel versions, except two additional ones, that were only run
on the fastest hardware platform, and only in parallel mode, since sequential mode
or running these on a laptop would take unacceptably long periods of time. The test
cases are from typical applications of generalized latent variable models, ranging
from IRT, to classification of respondents by means of a latent class analysis, to
MIRT applications with 2, 5, and 7 dimensions, and finally multiple population
IRT for linking in large-scale international assessments with approximately 300
populations and 2,000,000 test takers distributed across these populations.

5 Results

Table 2 shows the results for a (somewhat older) Dual-CPU 12-Core Intel Xeon
workstation running at 3.46 GHZ per core. These are given for the sequential
algorithm, running only on a single core, as well as for parallel-E parallel-M version
1 and the improved version 2 of the PE-PM algorithm, running on all available cores.

Table 3 shows the results for a 4-CPU AMD Opteron (Piledriver architecture)
server with 64/32 cores, running at 2.6 GHZ per core. This architecture offers 64
integer arithmetic cores, with each CPU offering 16 integer units that share eight
floating point units. In this sense, we see a performance that is more reflective of
32 FPUs, but with some added capacity for caching and pre-fetching and integer
processing. The measures are given for the sequential algorithm, running only on a
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Table 2 Results of the comparison of parallel-E parallel-M versions 1 and 2 on a 12-Core Xeon
workstation as well as the sequentially executed algorithm

Parallel V1 Parallel V2
Case Iterations Likelihood Sec. Sec. Speedup Sec.

A 126 �14,547,731.24 1356 168 807% 153
B 112 �14,639,728.20 1127 117 963% 96
C 165 �125,200.51 2465 314 785% 343
D 76 �14,468,510.90 44 11 400% 11
E 86 �14,468,485.63 1155 163 708% 145
F 1028 �1,234,570.30 7444 1039 716% 964
G 277 �130,786.39 2499 949 263% 726

Table 3 Results of the comparison of parallel-E parallel-M versions 1 and 2 on a 64/32-Core
AMD Piledriver server as well as the sequentially executed algorithm

Parallel V1 Parallel V2
Case Iterations Likelihood Sec. Sec. Speedup Sec.

A 126 �14,547,731.24 2074 256 810% 114
B 112 �14,639,728.20 1553 185 839% 90
C 165 �125,200.51 6131 889 689% 300
D 76 �14,468,510.90 116 21 552% 5
E 86 �14,468,485.63 1945 150 1296% 116
F 1028 �1,234,570.30 6427 377 1704% 227
G 277 �130,786.39 6771 287 2359% 563

single core, as well as for parallel-E parallel-M version 1 and the improved version
2 of the PE-PM algorithm, running on all available cores.

These results show that a gain in the order of 800% for a 12 core workstation
and in the order of 2000% for a 32/64 core 4-CPU server is well within reach.
The examples provided here show also that for most cases, the version 2 of the
parallel algorithm that uses tiling reduction performs for most cases at a much higher
level than version 1. Unlike algorithms that either utilize reduction of dimensionality
(Gibbons and Hedeker 1992; Rijmen et al. 2014; Cai 2010, 2013), the algorithm
presented here is a general-purpose solution for speeding up calculations and can
be applied to any latent variable model available through this family of models (von
Davier and Rost 2016) to speed up estimation substantially.

6 Discussion

Massive gains in processing speed can be realized by using the parallel-E parallel-M
algorithm with tile reduction (PEPM-TR) for estimating generalized latent variable
models. The present paper shows that gains in the order of 2000% in processing
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speed are not uncommon. That is, according to Amdahl’s (1967) law, the percent
parallel processing with 32 cores is at a level of

P D

�
1 �

1

G

��
C

C � 1

�

see von Davier (2016). For G D 20 and C D 64, we obtain a value of P D 0.965
or a level of parallism of 96.5% for this algorithm. For gains around 800%
obtained with the 12 core hardware, we obtain a very similar estimate of a level
of 95.5% parallelism. This is a gain that allows using all available data in almost
any psychometric analysis. Recent analyses of the combined database of the first
five PISA data collections were conducted with almost two million students in
more than 300 populations (approximately 60 countries or country/language groups
participating on average across 5 cycles) and up to 300 items. The analysis with an
IRT model of this very large dataset takes about 2–3 min on the workstation and
about 90 s on the server hardware tested here. Multidimensional models for this
type of massive databases are easily within reach and can be estimated in less than
an hour. This enables a much more rigorous quality control and allows analysts to
rerun and to obtain results based on more stringent convergence criteria, resulting
in more accurate estimates.
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Properties of Second-Order Exponential Models
as Multidimensional Response Models

Carolyn J. Anderson and Hsiu-Ting Yu

Abstract Second-order exponential (SOE) models have been proposed as item
response models (e.g., Anderson et al., J. Educ. Behav. Stat. 35:422–452, 2010;
Anderson, J. Classif. 30:276–303, 2013. doi: 10.1007/s00357-00357-013-9131-x;
Hessen, Psychometrika 77:693–709, 2012. doi:10.1007/s11336-012-9277-1 Hol-
land, Psychometrika 55:5–18, 1990); however, the philosophical and theoretical
underpinnings of the SOE models differ from those of standard item response
theory models. Although presented as reexpressions of item response theory models
(Holland, Psychometrika 55:5–18, 1990), which are reflective models, the SOE
models are formative measurement models. We extend Anderson and Yu (Psy-
chometrika 72:5–23, 2007) who studied unidimensional models for dichotomous
items to multidimensional models for dichotomous and polytomous items. The
properties of the models for multiple latent variables are studied theoretically and
empirically. Even though there are mathematical differences between the second-
order exponential models and multidimensional item response theory (MIRT)
models, the SOE models behave very much like standard MIRT models and in some
cases better than MIRT models.

Keywords Dutch Identity • Log-multiplicative association models • Formative
models • Reflective models • Composite indicators • Skew normal • Bi-variate
exponential

1 Introduction

Philosophical, theoretical, and empirical differences between second-order
exponential (SOE) models and multidimensional item response theory (MIRT)
models exist; however, these differences that have not been fully discussed nor
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widely recognized in the literature on SOE models are derived based on the
Dutch Identity (Holland 1990; Hessen 2012). Equivalent to SOE models, log-
multiplicative association (LMA) models were derived as latent variable models
from statistical graphical models (Anderson and Vermunt 2000), as well as from
item response models using rest scores in lieu of the latent variables (Anderson and
Yu 2007; Anderson et al. 2010). Anderson and Yu (2007) studied unidimensional
LMA models for dichotomous data. The LMA models are formative measurement
models, and they are item response models in their own right. A better understanding
of the properties of LMA models as item response models leads to implications
regarding the use and performance of LMA models for analyzing response data.
The LMA models have a number of advantages, including maximum likelihood
estimation does not require an assumption for the marginal distribution of the latent
variables and the models can be fit directly to response patterns using Newton-
Raphson. The goal of this paper is to extend Anderson and Yu (2007) to study the
properties of multidimensional LMA (or equivalently SOE) models for dichotomous
and polytomous items.

Holland (1990) proposed and used the Dutch Identity to derive SOE models for
data based on underlying uni- and multidimensional IRT models for dichotomous
items. The SOE models are equivalent to LMA models, which are special cases of
a log-linear model with two-way interactions. Hessen (2012) extended the Dutch
Identity to polytomous items and derived an LMA model; however, he focused on
models analogous to the partial credit model (i.e., models in the Rasch family),
even though his extension of the Dutch Identity is more general. For models in the
Rasch family, category scores are set to fixed values (e.g., consecutive integers).
Hessen (2012) mentioned that the category scores could be treated as parameters
and estimated. We treat category scores as parameters that are estimated. We extend
and generalize the results in Anderson and Yu (2007) and Hessen (2012) to the case
of multidimensional models for dichotomous and polytomous items. We highlight
the philosophical, theoretical, and empirical differences between LMA and MIRT
models.

In the first section of this paper, we discuss the philosophical and theoretical dif-
ferences between standard MIRT and LMA models. In the following two sections,
two properties of LMA are theoretically and empirically studied: the downward
collapsibility of LMA models and the effect of different marginal distributions of
the latent variables on the models’ performance. We conclude with a discussion the
potential uses of LMA models in measurement contexts.

2 Reflective and Formative Models

The differences between reflective and formative latent variable models have been
discussed by Markus and Borsboom (2013), Bollen and Bauldry (2011), and others.
Our intent here is to show the philosophical differences between LMA and MIRT
models and how they lead to different mathematical models.
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Fig. 1 Graphs corresponding to reflective (left) and formative (right) models for six items and two
latent continuous variables

A reflective model posits that latent variables are prior to behavior, and the
latent variables are conceived of as existing whether they are measured or not.
A reflective model is illustrated by the graph on the left in Fig. 1. The values on the
latent variables lead to observed responses; therefore, behavior indicates or reflects a
person’s value on the unobserved quantity. A change in the value of a latent variable
causes a change in the response behavior. The items are effect indicators (Bollen
and Bauldry 2011).

To algebraically take into account the directional nature of the relationship
between � and y, models are developed by writing the joint distribution of �

and y as f .y;�/ D f .yj�/f .�/. For a MIRT model, the marginal distribution of
the latent variables f .�/ is typically assumed to be multivariate normal, and the
distribution for the responses conditional on the latent variables f .yj�/ is a product
of multinomial logistic regression models. The model for responses to items is
found by numerically integrating over the latent variables; that is, the probability
of response pattern y is

P.y/ D

Z

�1

: : :

Z

�M

IY
iD1

expŒˇij C
P

m ˛ijm�m�P
h expŒˇih C

P
m ˛ihm�m�

f .�/d.�/; (1)

where ˇij is a location parameter for response option j of item i, and ˛ijm is the slope
parameter for response option j of item i on latent variable �m.

In a formative model, the direction of the relationship between � and y is
reversed relative to the reflective model. A graph representing a formative model
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is illustrated on the right in Fig. 1. Items define and give meaning to latent variables.
The items are composite indicators because � are composites of the values of
the items (Bollen and Bauldry 2011). The joint distribution of y and � is found
by first specifying the distribution for f .y/ and then the distribution for f .�jy/;
that is, f .y;�/ D f .�jy/f .y/. Assuming that f .y/ is multinomial and f .�jy/ is
a homogeneous conditional, Gaussian distribution leads to an LMA model for
the probabilities of observed response patterns y (Anderson and Vermunt 2000;
Anderson et al. 2010). The model for data is

P.y/ D exp

2
4�C

IX
iD1

�ij C
X

i

X
k�i

X
m

X
m0¤m

�mm0�ijm�kjm0

3
5 ; (2)

where � ensures probabilities sum to 1 over response patterns, �ij is the marginal
effect term for response option j to item i, �ijm is the category scale value for response
j to item i on latent variable m, and �mm0 is a within response pattern variance or
covariance of the latent variable(s). The �ijs and �ijms in (2) are analogous to the ˇijs
and ˛ijms, respectively, in (1). Based on the LMA model, the conditional means of
the latent variables given y equal:

E.�mjy/ D

MX
m0D1

�mm0

 
IX

iD1

�ijm0

!
: (3)

Models (1) and (2) are very general models. In this paper, we study the case
where each item is directly related to one and only one latent variable, that is,
�ijm ¤ 0 and ˛ijm ¤ 0 for one and only one m. We expect that the results we find
will be the same for more complex models, but we leave this for future study.

The MIRT model given in (1) is not only philosophically different but mathemat-
ically different from the LMA model given in (2).

3 Downward Collapsibility of LMA Models

If an item is dropped from data generated from a MIRT model, the data excluding
the item still follow a MIRT model and theoretically yield the same estimates of item
parameters for the remaining items. If an item is dropped from (or added to) an LMA
model, the resulting model is a different model with different parameter estimates.
We theoretically and empirically study the effect on LMA model parameter
estimates when dropping an item from data (i.e., collapse data over an item). In
the first section, we consider the case when data are generated from an LMA model
(not collapsible), and in the second section, we consider the case when data are
generated from a MIRT model (downward collapsible).



Multinomial Models 13

3.1 LMA-Generated Data

Suppose that item 1 is directly related to �1 and it is dropped from the data. Let y�1

indicate the data excluding item 1. Rather than (3), the conditional means for �1 and
�m are

E.�1jy�1/ D �11
X
i¤1

�ij1 C
X
m>1

 
�1m

X
k

�kjm

!
C �11

X
j

�1j1P.Y1 D jjy�1/

and

E.�mjy�1/ D �1m

X
i¤1

�ij1 C
X
m0>1

 
�mm0

X
k

�kjm0

!
C �1m

X
j

�1j1P.Y1 D jjy�1/;

respectively. The last term in each of these equations for the conditional means is
unobserved and equals the expected biases of the means due to dropping item 1.

Dropping an item that is directly related to �1 changes the conditional variances
of �1 and any �m directly related to �1 (i.e., �1m ¤ 0). In particular, the conditional
variances after collapsing over item 1 are

var.�1jy�1/ D �11 C �211

0
B@
X

j

�2ij1P.Y1 D jjy�1/ �

0
@X

j

�ij1P.Y1 D jjy�1/

1
A
2
1
CA ;

and

var.�mjy�1/ D �mm C �21m

0
B@
X

j

�2ij1P.Y1 D jjy�1/ �

0
@X

j

�ij1P.Y1 D jjy�1/

1
A
2
1
CA :

The conditional variances will increase for larger values of �11 and �1m. The change
of var.�mjy�1/ is smaller than that for var.�1jy�1/ because �21m � �211. Regardless of
the value of �11 and �1m, the conditional means and variances are affected the most
when an item with the largest values of �ij1 is dropped, and they are least affected
when the item with the smallest values of �ij1 is dropped.

Our interest is in the theoretical behavior of the LMA models; therefore, P.y/s
were computed from an LMA (six items, three response options per item), so the
LMA model fits the data perfectly. The size of the scale values for an item was
measured by

P
j �
2
ijm. Two additional data sets were created by collapsing over the

item with the smallest value and the largest value of
P

j �
2
ijm. The item with the

weakest relationship to a �m should have the smallest effect on the results, and
collapsing over the item with the strongest relationship to a �m should have the
largest effect.
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Throughout this paper, maximum likelihood estimation was used to estimate
parameters of LMA and MIRT models. The LMA models were fit to data using
SASő PROC NLP (version 9.4, SAS Institute Inc. 2015). The MIRT models were
fit to data using flexMIRT (Houts and Cai 2013) assuming bivariate (multivariate)
normality.1

In terms of goodness of fit, the likelihood ratio goodness-of-fit statistic (G2)
is used as an index but is not compared to a �2 distribution because there is no
sampling variability. As a second index, we used the dissimilarity index:

D D
X

y

jP.y/ � OP.y/j
2

;

where the sum is over all response patterns, P.y/ is the probability of response
pattern y, and OP.y/ is the fitted value of the probability of response pattern y from a
model. The index D is interpretable as the proportion of data that would have to be
moved from one response pattern to another for the model to fit perfectly (Agresti
2013).

Any misfit of the LMA model fit to the six items is due to numerical inaccuracy in
the data generation and/or model estimation. The LMA model fits the probabilities
of response patterns for the six items nearly perfectly. When collapsing over the
weak item, the parameter estimates and goodness-of-fit statistics of the LMA model
were nearly identical to those when the model was fit to all six items. Specifically,
collapsing over the weak item had a smaller impact on the goodness of fit than
collapsing over the strong item (i.e., G2 D 0:0000 versus G2 D 0:0002 and D D

0:0002 versus D D 0:0049). All of the LMA models fit the probabilities better than
all of the MIRT models.

When collapsing over the strong item, there were noticeable differences between
the estimated parameters from the LMA model fit to those used to generate the data.
The variance of �m increased the most when the item dropped is the strong item.
Specifically, when the strong item is dropped, the variance of the latent variable to
which it is connected goes from 0:87 to 1:66, but when the weak item is dropped,
the variance of the latent variable to which it is connected goes from 0:77 to 0:88.
As predicted, both O�11 and O�22 increased when collapsing over either the weak or
strong item. The change in both variances occurs because when we collapse over an
item related to, say �1, leads to less information to estimate the latent variable �2,
which increases uncertainty (i.e., larger �22).

1Files containing code and data that reproduce all analyses can be downloaded from http://faculty.
education.illinois.edu/cja/homepage.

http://faculty.education.illinois.edu/cja/homepage
http://faculty.education.illinois.edu/cja/homepage
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3.2 MIRT-Generated Data

If �1 and �2 were discrete, then we could collapse over, for example, item 1 and
expect O�ijm for i ¤ 1 to remain the same. Since for the LMA models O� equals a
weighted sum of category scores, O� is empirically discrete and LMA models might
be collapsible. When data are generated from a model that implies collapsibility,
whether LMA scale values are affected by dropping items is an open question.
Since MIRT models imply collapsibility, probabilities were generated from a two-
dimensional MIRT model with � � MVN.� D .0; 0/; 	 D 0:5/ for eight items
where items 1–4 were related to �1, and items 5–8 were related to �2. The generated
probabilities were collapsed over one item at a time until there were only four items
remaining. We alternated collapsing over an item related to �1 and one related to �2.

Since LMA models are formative measurement models, we are primarily
interested in the O�ijms, which are used to compute estimates of the conditional
means of the latent variables (i.e., OE.�mjy/). The scale values O�ijm were essentially
unaffected by collapsing the data. When data were collapsed over an item, both of
the O�mms increased. When the first item was dropped, which was related to �2, the
increase of O�22 was greater than that for O�11. When the second item was dropped,
which was related to �1, the increase in O�11 was greater than that for O�22. This pattern
continued until there are only four items remaining.

In sum, if data are generated from a MIRT model, which collapsibility, then the
LMA model yields nearly the same O�ijms when items are dropped. Conversely, we
can consider adding items. If the data come from a model that implies collapsibility
and then when adding items (assuming that the added items are related to the
underlying latent variable(s)), the O�ijms are not expected to change, and O�mms are
expected to be smaller.

4 Different Marginal Distributions

A property often given as an advantage of LMA models is that a marginal
distribution of the latent variables is a mixture of normals, which can take on many
different shapes. The goal of this section is to determine whether and when an LMA
model may perform well in terms of goodness of fit and parameter recovery and
compare LMA model performance with a corresponding MIRT model.

In this study, we generated probabilities for response patterns by numerically
integrating out the latent variables from a MIRT model assuming one of four
different underlying distributions. The multivariate normal (MVN) was chosen
because this is the typical assumption made when fitting a MIRT model. The
multivariate skew normal was chosen because the MVN is a special case of the skew
normal, and there has been some interest in using the skew normal as an alternative
to the normal distribution (Azevedo et al. 2011; Casabianca and Junker 2016; Lee
2002). Marshall-Olkin bivariate exponential distribution (Mardia et al. 1979) was
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chosen because some variables in the data that we often analyze are very skewed.
Lastly, a mixture of two multivariate normal distributions was chosen to mimic a
situation where individuals have opposite attitudes or views. This also reflects a
situation where there is an important group variable that has not been included in
the model, and there is differential item functioning.

As the number of items increases to 1, �mm �! 0, an LMA model will yield the
actual marginal distribution of the latent variables. The behavior of LMA models
for short tests or subscales is less certain; therefore, we empirically examine the
behavior of the models when fit to generated data for short tests. Probabilities of
response patterns were generated using the MIRT model in (1) for M D 2 latent
variables and I D 4 or 6 items with J D 2, 3, or 4 response options. For the
multivariate normal distribution, we also fit models to data with M D 3 and I D 6

items.
Both the MIRT and the LMA models were fit to all of the data sets. Albeit

naive, when the distribution generating the data is not normal, the MIRT models
were fit to data assuming multivariate normality. Although not reported here, two
additional models were fit as baseline models: the log-linear model of independence
and the homogeneous (all two-way interaction) log-linear model. The probabilities
of response patterns were multiplied by 1,000,000 to retain more decimal places and
accuracy. Besides the dissimilarity index D, a second measure of goodness of fit is
reported for the models: the percent of association accounted for by a model,

Percent association D
G2

independence � G2
model

G2
independence

� 100%;

where the likelihood ratio statistic G2 from the independence model is a measure of
the amount of association in the data.

To examine parameter recovery, we used the correlation between the parameters
used to generate the data and the estimated parameters from the LMA and MIRT
models. Given our focus on LMA models, we are primarily interested in the
estimation of the �ijm parameters. The marginal effect terms �ij generally are viewed
as nuisance parameters from an LMA model framework, but the correlations for
marginal terms are reported for the sake of completeness.

The results for different numbers of items and response options are all very
similar; therefore, we only report the result for one case (i.e., six items, three
response options, and two latent variables). Goodness-of-fit statistics are reported in
Table 1, and correlations between estimated parameters and those used to generate
the data are reported in Table 2.

When data were generated using the bivariate normal distribution (� D 0, 	 D

0:5), the MIRT model should fit perfectly. Any misfit is due to numerical inaccuracy
in generating the probabilities and/or estimating the model. The MIRT models
essentially fit perfectly; however, the goodness-of-fit indices for the LMA models
are just shy of perfect. When data were generated using a skew normal (i.e., � D 0,
	 D 0:75, and shape parameters 2 and 3) or a bivariate exponential distribution (i.e.,
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Table 1 Goodness-of-fit statistics for LMA and MIRT models fit to date generated from a MIRT
model with different underlying distributions for f .�/

Dissimilarity Percent association

Underlying distribution LMA MIRT LMA MIRT

Bivariate normal 0:0016 0:0002 99:99 100.00

Skew normal 0:0268 0:0268 97:14 97.16

Bivariate exponential 0:0127 0:0129 98:44 98.39

Mixture of normals 0:0346 0:0708 99:43 96.05

Table 2 Correlations between LMA and MIRT model parameter estimates and parameters used
generated MIRT model probabilities for different f .�/s

LMA MIRT LMA MIRT

Underlying distribution r.˛ijm; O�ijm/ r.˛ijm; Oaijm/ r.ˇij; O�ij/ r.ˇijm; Obij/

Bivariate normal 0:9980 1:0000 0:9839 1:0000

Skew normal 0:9950 0:9962 0:8361 0:7506

Bivariate exponential 0:9326 0:9077 0:8257 0:7894

Mixture of normals 0:9971 0:9430 0:9665 0:9428

f .�/ D exp.�1:0�1 � 0:5�2 � 0:2max.�1; �2//
 where 
 normalized the function),
the LMA and MIRT models both provide good representations of the data, and
there are no systematic differences in terms of which model fits the data better.
When data were generated from the mixture of two normals (i.e., �1 D .�2;�2/0,
�2 D .2; 2/0, 	 D 0:5, and mixing weight of 0:5), the LMA models clearly fit the
data better than the MIRT models.

More differences between the models’ performance were found in terms of
parameter recovery. When data were from the bivariate normal, MIRT parameters
are perfectly correlated with those used to generate the data; however, the LMA
parameters were just short of perfect. For the skew normal, the correlations between
the ˛ijms used to generate the data and the estimated �ijms parameters from the LMA
models were about the same as the corresponding correlations of parameters from
the MIRT models; however, the correlations for the ˇijms were much larger for
the LMA model than the MIRT model. For the exponential and mixture of normal
distributions, the correlations for the estimated �ijms and �ijs from the LMA models
were considerably larger than those for parameters from the MIRT models.

5 Discussion

The LMA models and standard MIRT models were shown to be philosophically and
mathematically different models; however, they share some important properties.
For short tests, the LMA models performed nearly as well as standard MIRT models
when the underlying distribution of the latent variables is multivariate normal, and
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the LMA and MIRT models empirically perform equally well when the underlying
distribution is skew normal. With the skew normal, the goodness of fit is about
the same for both the LMA and MIRT models; however, the estimation of the ˇijs
parameters had lower correlations with the parameters used to generate the data than
the LMA model parameters. The LMA models perform better than MIRT models in
terms of goodness of model fit to data and parameter recovery when data arise from
an LMA model and when f .�/ follows either a bivariate exponential distribution or
a mixture of two normal distributions.

The LMA models are more flexible than discussed in this paper. The LMA
models can include covariates for the latent variables, the marginal effect terms
(i.e., the �ij), and the conditional variances and covariances of the latent variables
(Anderson 2013). The models also permit various restrictions on parameters,
including equality, ordinal, partially ordinal, linear transformations, and/or any
desired transformation (Anderson 2013). The LMA models can also represent more
complex latent variable structures than those studied in this paper, such as those
where items “load” on multiple correlated or uncorrelated latent variables (e.g., bi-
factor models). Since the assumptions and theory are the same, we expect the same
results for more complex models such as those that we found for the simpler models
reported in this paper.

Our focus was on short tests because these are cases where LMA and MIRT
models may differ. Although we used common commercial software (SAS) to fit
the LMA models to data, one bottleneck to more widespread applications of LMA
models is a limitation to the size of the problem that can be handled. The size
of the cross-classification of items (i.e., number of response patterns) increases
exponentially when adding items and/or categories per item. When scores are input,
the pseudo-likelihood method given in Anderson et al. (2007) works well and can
be implemented in any program that fits conditional multinomial logistic models.
Recently Paek (2016), Paek and Anderson (2017) proposed a solution to the more
general problem where scores are estimated. In simulations, Paek (2016) showed
that the algorithm yields nearly identical parameter estimates as MLE of LMA
models for short tests and that the algorithm recovers parameters used to simulate
the data in longer tests (i.e., 20 and 50 items). The more general algorithm also can
be implemented in any software program that fits conditional multinomial logistic
regression models.

We do not advocate that LMA models replace MIRT models because they
are philosophically and theoretically different measurement models. The LMA
models actually may be complimentary to applications of MIRT models. Suppose a
researcher desires a reflective model but does not know what marginal distribution of
the latent variable(s) should be used when fitting a MIRT model to data. The LMA
models can be used to estimate the marginal distribution of the latent variables,
which could confirm or suggest a distribution to be used when fitting the MIRT
model to data.

The empirical studies in this paper imply that one cannot conclusively determine
whether the model should be formative or reflective. Whether one performs better
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than the other is an empirical question. The choice between using an LMA model
or a MIRT model for a particular case depends on a researcher’s conceptualization
of the latent variable.
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Pseudo-likelihood Estimation
of Multidimensional Response Models:
Polytomous and Dichotomous Items

Youngshil Paek and Carolyn J. Anderson

Abstract Log-multiplicative association (LMA) models have been proposed as
uni- and multidimensional item response models for dichotomous and/or polyto-
mous items. A problem that prevents more widespread use of LMA models is that
current estimation methods for moderate to large problems are computationally
prohibitive. As a special case of a log-linear model, maximum likelihood estimation
(MLE) of LMA models requires iteratively computing fitted values for all possible
response patterns, the number of which increases exponentially as the number of
items and/or response options per item increases. Anderson et al. (J. Stat. Softw.
20, 2007, doi:10.18637/jss.v020.i06) used pseudo-likelihood estimation for linear-
by-linear models, which are special cases of LMA models, but in their proposal,
the category scores are fixed to specific values. The solution presented here extends
pseudo-likelihood estimation to more general LMA models where category scores
are estimated. Our simulation studies show that parameter estimates from the new
algorithm are nearly identical to parameter estimates from MLE, work for large
numbers of items, are insensitive to starting values, and converge in a small number
of iterations.

Keywords Log-multiplicative association models • Log linear-by-linear models •
Second-order exponential models • Multidimensional item response theory • For-
mative measurement models

1 Introduction

Log-multiplicative association (LMA) models have been proposed as uni- and
multidimensional item response models for dichotomous and/or polytomous items
(Anderson et al. 2010; Holland 1990; Hessen 2012, and others). They are formative
measurement models (Anderson and Yu 2017) that do not require an assumption
for the marginal distribution of the latent variables. Although maximum likelihood
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estimation can be accomplished for small numbers of items, the estimation of LMA
models for moderate to large problems is computationally prohibitive because fitted
values for all possible response patterns must be iteratively computed. The number
of response patterns increases exponentially as the number of items and/or response
options per item increases. Pseudo-likelihood estimation (PLE) was proposed by
Anderson et al. (2010) for log linear-by-linear models which are special cases of
LMA models where the category scores (e.g., slopes for the latent variables) are
set to fixed values at input. We extend the pseudo-likelihood approach to general
LMA models where category scores are treated as parameters and are estimated.
This method works for large numbers of items and response options.

One of the most widely used programs for estimating LMA models is `EM

(Vermunt 1997), which used quasi- or unidimensional Newton-Raphson. With `EM

we were able to fit an LMA model to 12 binary items (i.e., 212 D 4096 response
patterns). LMA models can also be fit using analytic derivatives and a Newton-
Raphson algorithm as implemented in SAS® procedure NLP (SAS Institute Inc.
2015). Using SAS, the largest problem that we successfully fit had seven items each
with five response categories (i.e., 57 D 78; 125 response patterns). Adding a single
item increased the number of response patterns to 390; 625, and estimation became
problematic. Ten items with five response categories per item (i.e., 9; 765; 625
response patterns) are beyond the capability of current estimation methods.

Pseudo-likelihood estimation simplifies estimation of large complex models by
maximizing the product of likelihoods of a set of conditional models based on the
complex model. The method, first proposed by Besag (1974), has been used to solve
estimation problems in a number of different settings (Huwang and Huwang 2002;
Geys et al. 1999; Liang and Yu 2003; Johnson and Riezler 2002; Strauss and Ikeda
1990; Wasserman and Pattison 1990; Molenberghs and Verbeke 2005). The original
uses of PLE to estimate parameters of Rasch models were limited to unidimensional
models for pairs of binary items (Arnold and Strauss 1991; Zwinderman 1995). Smit
(2000) extended the use of PLE to a set of dichotomous items and studied the quality
of the estimates relative to other standard estimation methods. Pseudo-likelihood
estimation (Anderson et al. 2007) of LMA models was developed to handle only the
special case, when category scale values are assumed and set to fixed values. The
estimation method and algorithm that we propose use pseudo-likelihood estimation
but add a step for estimating the category scores.

PLE parameter estimates are asymptotically normal and consistent (Geys et al.
1999; Aerts et al. 2002), which is important for forming confidence intervals and
hypothesis testing. Other advantages of PLE are that it is fast and stable, and
implementation is straightforward.

The structure of the paper is as follows. In the first section, LMA models are
presented in a form that is key to our algorithm. In the second section, we discuss
pseudo-likelihood estimation and present our algorithm. In the subsequent sections,
we present the results of simulation studies showing that the new step for estimation
of category scores works (i.e., one latent variable) and simulation studies showing
that the method works for multidimensional models. We conclude with a discussion
and possible extensions of the algorithm.


