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Introduction

The papers in this volume were selected for presentation at the
14th International Meshing Roundtable, held September 11-14, 2005 in
San Diego, CA, USA. The conference was started by Sandia National
Laboratories in 1992 as a small meeting of organizations striving to estab-
lish a common focus for research and development in the field of mesh
generation. Now after 14 consecutive years, IMR has become recognized
as an international focal point annually attended by researchers and de-
velopers from dozens of countries around the world.

The 14th International Meshing Roundtable consists of technical
presentations from contributed papers, keynote and invited talks, short
course presentations, and a poster session and competition. The Program
Committee would like to express its appreciation to all who participate to
make the IMR a successful and enriching experience.

The papers in these proceedings were selected from among 46
submissions during the Program Committee meeting that took place in
San Diego on April 29, 2005. Based on input from peer reviews, the
committee selected these papers for their perceived quality, originality, and
appropriateness to the theme of the International Meshing Roundtable.
The Program Committee would like to thank all who submitted papers. We
would also like to thank the colleagues who provided reviews of the sub-
mitted papers. The names of the reviewers are acknowledged on the
previous pages.

As Program Chair, | would like to extend special thanks to the
Program Committee and to the Conference Coordinators for their time and
effort to make the 14th IMR another outstanding conference.

Byron Hanks
Sandia National Laboratories
14th IMR Chair
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Design and Implementation of a Corporate Mesh
Object

John T. Svitek, Wa Kwok, Joseph R. Tristano

{john.svitek,wa.kwok,joe.tristano} @ansys.com

ANSYS, Inc

ABSTRACT

Today, finite element technologies allow engineers to analyze complex assemblies and
subsystems. With CPU power constantly increasing, it is not unreasonable to state that the
engineer will hope to analyze the whole complex system, such as an entire automobile, in a
single study. This study may include parameteric design, result animation, crash analysis,
and so on. The traditional mesh data structure, which mainly serves a particular type of
mesh algorithm, is far from enough to meet the challenges of tomorrow. This paper mainly
focuses on storing, accessing, and manipulating mesh data within the vast scope of the
analysis system for multiple purposes, such as meshing generators, solvers, pre- and post-
processors, and so on. It details the decision-making put into the design of the ANSYS
Corporate Mesh Object, the programming methods used to implement those designs, and
future enhancements planned to meet ever-changing requirements.

1. INTRODUCTION

As machines have become more powerful and finite element analysis methods have be-
come more elaborate, the amount of finite element data that must be managed and stored
has grown to previously unimaginable levels. The vast amount of data produced by today’s
meshing technology needs to be readily available to several different users, accessing it in
several different ways, all the while fitting in the small memory space afforded by a Win-
dows-based PC. The data needs to be accessed quickly for graphical support, accurately for
solving, but also easily for third-party users. In the face of these challenges, ANSYS In-
corporated noticed the need to replace its existing (and very simplistic) mesh data structure
with a much more flexible and powerful data structure, an ANSYS Corporate Mesh Object
or ACMO.
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1.1 Purpose and Previous Work

The main purpose of the ACMO as described in this paper is to act as a repository to
store nodes and elements, whether created by a meshing algorithm or manually created by
the user. This type of mesh object does not contain full mesh generation data such as the
edge or face representations of each element, and the data is not expected to substantially
change very often. Therefore, this object is not suited for use as a data structure for the ac-
tual meshing process, when nodes and elements are being generated, deleted, and changed
continuously. Such data structures have been detailed extensively in the past, often coupled
to a particular algorithm [4,5,6,7,8,10], or rigorously tailored to the output of a particular
algorithm [3,9]. Rather, once a mesh has been successfully and completely created, the
ACMO acts as a common location to store the data, and provides easy access to the data
from a range of different users. Much previous research is available on the various ways of
representing mesh data [1,2], though the ACMO attempts to also address the usability and
accessibility of the data.

1.2 Background

In the ANSYS Workbench software, geometry is stored in a sophisticated object called
the Part Manager (Fig. 1), which encapsulates the geometry data in easy to understand con-
cepts such as “Assembly”, “Part”, “Body”, “Face”, “Edge”, and “Vertex” as well as several
other layers in between. An assembly is a collection of parts, which in turn is a collection
of boundary representations. When a user asks Workbench to mesh geometry, each part in
turn is meshed, and all these part meshes are then collected. In this way, a continuous mesh
exists between bodies, but not between parts. Nodes are not duplicated at places where
bodies share topology.

Unlike the Part Manager, the original mesh data structure used in the ANSYS Work-
bench software took a very simple approach to storing the nodes and elements created dur-
ing meshing. After each part was meshed, the nodal coordinates were stored in an array,
and the element’s nodal connectivity was stored in an array, along with topological infor-
mation. There was no real distinction between different bodies in the mesh, and one part
mesh had no relationship whatsoever to another part mesh. Managing the various part
meshes was the duty of the overall system; for example, a two part meshed assembly had
two nodes numbered zero and it became the system’s job to differentiate between those two
nodes.
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Part
Manager
Assembly

=

Fig. 1. Part Manager

1.3 Need for Change

Originally, the mesh data structure used in ANSYS Workbench was sufficient because
there never was a part containing more than one body. The mesh was not exposed to many
uses beyond graphics and solving. There was very little data actually stored in the mesh
and any newly required data could be programmed in as necessary.

However, as the system around the mesh data structure matured, the mesh itself had
trouble keeping up. The concept of a multiple-bodied part was introduced into the Part
Manager, but the mesh was still stored part by part so that old code using the mesh would
not need to be changed. The nodes and elements were stored exactly as before, so access-
ing them on a body-by-body basis became a time-consuming operation.

Furthermore, the mesh was not easily extensible. If a user wanted to store some data on
each element, such as a value describing the volume of the element, a new array of values
would need to be added to the data structure, along with all supporting implementation such
as saving, resuming, copying, clearing, setting, and getting. If a user then wanted to store
another value per element, such as a metric value, the entire process would have to be re-
peated.

As machines became more powerful, larger and larger meshes were being generated.
Not long ago, one million nodes could be considered a large mesh, but a few short years
later, ten million nodes were on the horizon. Such enormous amounts of data were putting
strain on the mesh data structure, which did not have any kind of memory management sys-
tem. Memory fragmentation became a very real and very serious concern as other uses of
the same memory space (such as solvers) were unable to allocate enough large-block mem-
ory to operate.

New uses of the mesh were constantly being developed, and users often wanted to ac-
cess the data in the mesh in a certain way. A user would need to query for an element
based on its index on the part, or maybe its index on a particular body in that part. Further,
the nodal connectivity of that element could be returned using nodal indices on either the
part or the body. As a result, the user interface to the mesh became monstrous, so that
every permutation of data access could be afforded to the user.
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1.4 Future Challenges

With the need to integrate different mesh technologies into ANSYS Workbench, stan-
dardizing the mesh object became even more paramount. For example, ICEM CFD, Cadoe,
and CFX all brought new technologies to the ANSYS product line, but they all brought dif-
ferent data representations that were not compatible with each other or with existing
ANSYS software. In order to move data between the various technologies, a corporate
mesh object that could be used by everyone was necessary.

2. DESIGN

2.1 Use Types

Before detailing the design process on the ACMO, it is important to illustrate the many
different ways a single mesh could be used. (Fig. 2)

o Mesher: After the meshing process, the nodes and elements need to be stored into the
mesh object. Meshing is done part-by-part, and one part has no bearing on or relation-
ship to another part. Mesher only needs to add data to the mesh object.

e Refiner: An existing mesh can be refined one part at a time. The entire part mesh is re-
moved from the assembly, and replaced with a new mesh after the refinement is fin-
ished. The refiner must be able to easily access all data in a part mesh, and to add data
to the mesh object.

e Graphics: The mesh is drawn to the graphics screen body-by-body. In order to mini-
mize its footprint in memory, graphics requires a reference to the mesh data, instead of a
copy of the data. All nodes of a body are required, and nodal connectivity of elements
must be returned such that it references the body-based indices of the nodes.

e Preprocessor: Data, such as beam orientation nodes and contact or surface effect ele-
ments are added by a separate preprocessor to the solver

e Solver: The solver requires all nodes and elements across the entire assembly. Refer-
ences to the data are necessary to minimize memory usage. All nodes and elements
must be uniquely identified across all parts.

e Postprocessor: The post processor performs calculations on the mesh to report results
on the mesh produced by the solver

e Import/Export: Specialty tools can build a mesh from legacy data such as NASTRAN,
and convert legacy data between different representations. All nodes and elements must
be uniquely identified. Data might be added to the mesh. The import/export operation
exercises all possible permutations of data access. Speed, memory usage, and memory
fragmentation are all very important.

® SDK: An openly published interface to the mesh object for third-party developers. Us-
ability and a well-developed abstraction of the data are more important than speed or
memory usage.

From this sampling of uses of the mesh, there are several clear general requirements for
the ACMO. Mesh data must be accessed by a unique identifier, but also by a direct index
to the data. For example, the first node in a mesh can be access by its index 0, or by a given
identifier that is unique across the entire assembly. Also, some users of the mesh may ac-
cess the node based on the part it exists on while another user may access it based on its lo-
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cation in the entire assembly. A node at index 0 on a certain part is not necessarily at index
0 on the assembly.

Also, different users of the mesh can use the mesh simultaneously. Therefore, the mesh
object must be thread-safe since these users could exist on different threads. But even more
challenging, one user could actually change the mesh while a different user is still using it.
For example, the mesher could remesh (and therefore change) a part that had already been
solved. The original solved part mesh can still exist in graphics and be available for perusal
by the end user, and the newly meshed part must also be available. A single part would
now exist twice in the assembly, and this condition would need to be automatically man-
aged by the mesh object.

Legacy Data
[ MpoHiE sport

Fig. 2. Mesh Uses

2.2 Physical Design of the Mesh

With these cases in mind, the mesh object is designed to closely mirror the Part Manager
in ANSYS Workbench, which manages geometry. An assembly mesh contains a collection
of part meshes, each containing a collection of body meshes. Node and element identifiers
are stored at the assembly, mapped to the physical location of those nodes and elements in
the mesh. Nodal coordinates and topological information are stored on the part mesh be-
cause a node can be shared between multiple bodies. Elements are stored on the body
mesh. To facilitate extensibility, an attribute mechanism that can attach an arbitrary data
field to a node, an element, or an entire mesh is planned, so that any data that must be
added to the mesh in the future could be done so easily.

A thin “configuration” layer between the assembly mesh and its collection of part
meshes allows the assembly to change the collection of part meshes. By changing the as-
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sembly’s configuration, different views of the same assembly are possible, without having
to make an entire copy of the assembly.

2.3 Interface Design

Since the mesh will need to communicate across processes, a COM interface is neces-
sary. The COM interface is a thin layer of code between the user and the core data object.
However, the interface layer is completely separate from the actual core object and is not
required for the actual mesh object to function. The internal core objects have no aware-
ness of the COM interface layer; they are free to communicate with one another directly. In
this way, the core objects can be used independent of the COM interface layer. This type of
functionality facilitates unit-testing the mesh object, since it is trivial to write a driver pro-
gram to create and operate the core objects without the general hassle of using COM.

Code for thread-safing the mesh object is placed in the COM object layer, which makes
the actual implementation of the core objects more understandable and readable. Also, the
COM object layer can be used to hide the internal storage of the data from the user to better
abstract the data. For instance, there is no actual node object inside the mesh object.
Rather, the concept of a node is made up from several data fields in the mesh object, such
as the nodal coordinates stored in one array, the nodal topologies stored in another, and the
elements, which use the node. A lightweight node object can be created in the COM inter-
face layer which encapsulates all this data, allowing a very user-friendly view of the data to
a third party. However, since the various bits of data that makes up the node must be col-
lected and stored together, the advantage of user-friendliness comes at the expense of speed
and memory usage.

2.4 Design Goals

The mesh object typically contains more data than any other object in a finite element
analysis. With this in mind, the ACMO was written primarily to reduce memory fragmen-
tation. Memory fragmentation can become a serious problem, which occurs when small
chunks of memory are requested and then returned to the system. Over time, the largest
free blocks of memory are repeatedly decimated in order to fulfill the user’s request for
smaller blocks, but these smaller blocks may not necessarily be rebuilt into larger blocks as
they are returned to the system. Memory fragmentation can be minimized by preventing
small memory allocations whenever possible using techniques such as pooling, where large
amounts of small allocations are made as one large allocation. Pooling is used extensively
in the ACMO.

Along with memory fragmentation, memory usage is a main concern when dealing with
huge amounts of data. For example, on a 32-bit Windows PC, a single process is limited to
2-3 GB of memory, regardless of how much memory is actually available. At 10 million
nodes, over 8% of usable memory may be utilized just to store the nodal coordinates, which
is just a small fraction of all the data which is stored in the mesh, not to mention the mem-
ory requirements of other objects residing in the same memory space. To minimize mem-
ory usage, “lazy evaluations” are used throughout the ACMO. Lazily evaluated data is
generated at the time of access, such as a node-to-element cross-reference, so it is not
loaded into memory by default. Rather, the first time such data is requested by the user, it
is calculated and stored into memory in its entirety. If the user never requests the data, it is
never loaded into memory.
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Finally, in some situations, the speed of accessing data is extremely important, even
more so than memory issues. Any access to the mesh object during meshing would take
only a minute fraction of the overall time of the meshing operation, and so the speed of the
data access is not too important. On the other hand, when dealing with graphics, speed be-
comes a very real issue, whereby the access to the mesh data can be the limiting factor to
the overall speed of drawing to the screen. Therefore, the data in the mesh is always organ-
ized in such a way to maximize speed when accessing it from the graphics system, even if it
adversely affects speed when accessing the data from one of the users.

3. IMPLEMENTATION

3.1 Programming Conventions

As mentioned earlier, the mesh is comprised of a core group of objects and a COM in-
terface layer. For instance, the top-level mesh object is known as an AnsAssemblyMesh,
and a COM object known as an AssemblyMesh wraps it. The “Ans-" prefix identifies the
object as an internal core object. Since the AssemblyMesh object does not have an “Ans-
prefix, it is understood to be the COM interface to an object named AnsAssemblyMesh.

3.2 Object Overview

The mesh is comprised internally of three main objects. The first, the AnsAssembly-
Mesh, is a top-level object that contains all other objects. The middle-level object is the
AnsPartMesh, and the lowest-level object is the AnsBodyMesh. An AnsAssemblyMesh
contains a collection of AnsPartMeshes, which in turn contains a collection of AnsBody-
Meshes. As mentioned earlier, each of these objects mirrors similar concepts in the
ANSYS Part Manager, in which a geometric assembly is comprised of a collection of parts,
and a part is made up of a collection of bodies. (Fig. 3)
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Fig. 3. Internal Object Model

Each of these core objects has a COM object that “wraps” it and acts as an interface.

For each AnsAssemblyMesh, there exists a corresponding AssemblyMesh object.

The

COM object contains a reference to the core object. A user calls into the mesh object
through these COM objects, which delegates the call into the core object. However, the
core objects know nothing about the COM objects, and in fact can function without them.

(Fig. 4)

COM Interface
o

-,

b
wesship

Fig. 4. COM Interface Model

The three mesh objects all derive from a single base mesh object, the AnsBaseMesh,
which describes their common functionality. For example, a node can be accessed from a
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particular part, or from a body, or from the entire assembly, and so the AnsBaseMesh de-
fines the ability to query for a node. Likewise, the three mesh interfaces all derive from a
common interface, the BaseMesh. Since the functionality to query a node exists in the
AnsBaseMesh, the corresponding interface to that functionality exists in the BaseMesh.

3.3 Identifiers

All data in the ACMO is given an identifier, which is either provided by the user or sim-
ply begins at 1 and accumulates as more data is added to the mesh. The identifiers are
unique to a specific data type such that there can be a node identified as 1, and an element
identified as 1, but never more than one node in the entire mesh identified as 1.

The identifiers are stored in the AnsAssemblyMesh in a grouped hash table, which maps
the identifier to the data’s physical location in the assembly and in its “group,” usually the
part in which the data exists. Entries in the grouped hash table are made in the form group
g: [i, j, k], where i is the identifier, g is the index of the group in the table, j is the index of
the identifier across all groups, and k is the index of the identifier in group g. For example,
a typical entry in the hash table might look like “group 2: [1, 7, 5],” meaning identifier 1 is
found at index 7 in the entire assembly, and at index 5 in its particular group. If this was a
node, then the node identified as 1 is the eighth node in the assembly (located at index 7),
and it is also the sixth node in the third part on the assembly. Using this design, if the
groups of the hash table correspond to the parts in the assembly, the part meshes can be
moved in the assembly mesh, and the hash table is easily manipulated to reflect the change.

When data is actually stored in the mesh object, a reference to the actual location of the
data is used rather than the identifiers. For example, if an element were made up of nodes
identified as 1, 2, and 3, which are located at indices 0, 1, and 2, then the element’s nodal
connectivity would be stored with 0, 1, and 2. This allows quick access to the nodal data
without performing a lookup in the hash table.

3.4 Data Organization

Data stored in the mesh must be well organized in order to be accessed quickly with
minimal memory overhead. Nodal coordinates and nodal topological information is stored
in the part mesh, but it is ordered according to the node’s classification and bodies. A
node’s classification is based on the elements that use the node. If a node only ever lies at
the vertex of an element, it is considered a “corner” node and is placed at the beginning of
the node list. Nodes that lie only on the edges of an element are considered “midside”
nodes, and follow the corner nodes in the node list. Next stored in the node list are “multi-
purpose” nodes that lie on both vertices and edges of elements. Finally, “zombie” nodes,
which are not used by any elements, are stored last. In this way, a user only interested in
corner nodes can easily access the desired type without having to search through the entire
node list.

Within the four categories of nodes, the node list is further organized based on the bod-
ies that use them. Referred to as “exclusive” nodes, any nodes used only by elements that
exist on the first body of the part mesh are stored at the beginning of the list, and so on.
Any nodes shared by elements existing on more than one body are called “interface” nodes
and are stored at the end of the node list following all exclusive nodes. (Fig. 5) Using this
method, it is easy to determine the body on which an exclusive node exists, though an inter-
face node necessarily requires more work.
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Corner Nodes Midside Nodes HMultipurpose Nodas I Zomble Nodes

|Bod,\r‘| |Bndy2 |Int|rf::os Body1| Body 2 |Interfaces | Bodyl Body 2 | Interfaces I All

Fig. 5. Part-based Node Organization

Element connectivity and topological information is stored on the body. Elements of the
same “type” are grouped together. An element type is based on the shape of an element,
whether or not it has midnodes along its edges, and any arbitrary data assigned by the user.
An element shape can be general or concrete. A concrete shape, such as a triangle or tetra-
hedron, has a known number of nodes making up the element and the number is always the
same. In a general shaped element, the number of nodes is unknown; each element of that
particular type is unique. By abstracting the concept of an element type into its own object,
new types can easily be added to the mesh without additional programming.

Some nodes and elements transcend the boundaries of parts and bodies. For instance, a
contact element may exist between two parts, and is used to identify the contact of the two
parts to the solver. Rather than being generated during a normal mesh generation, a contact
element is generally added to the mesh as a preprocess to the solver. Since the contact ele-
ment does not exist on any one body, it is considered “independent,” and is stored in as-
sembly mesh, though it might reference non-independent nodes.

3.5 Memory Pools

Whenever possible, the mesh utilizes memory pools to combine many small allocations
into one large allocation. As just stated, since the number of nodes in a concrete shaped
element is known, the exact amount of memory required to store all element connectivity
can be easily determined. For instance, when storing 1,000 tetrahedron, each with 20 nodes
(which are referenced using one long each), allocating one long array of length 20,000 can
prevent fragmentation of available memory that may occur by allocating 20 longs 1,000
times.

3.6 Decoupled Data Versus Committed Data

Organizing mesh data as described above can be an expensive operation, and in some
cases, the organization is impossible until all data has been added to the mesh. Also, the
exact length of memory pools cannot be determined until all data has already been put into
the mesh. Therefore, data can exist in the mesh in two distinct states: decoupled or com-
mitted.

As data is added into the mesh, it is considered to be in a temporary “decoupled” state.
When decoupled, the data is not organized in any way. Querying for decoupled data based
on its unique identifier requires an expensive linear search through the mesh. However, the
data is only stored in this state until the user is ready to “commit,” or finalize all changes to
the mesh. When the mesh object is committed, the data is sorted and moved to permanent
memory pools. Also, the internal structure of the data is changed to afford the quickest
possible access to the user. For instance, the unique identifiers of the nodes are stored to
describe a decoupled element’s nodal connectivity. However, in a committed element, the
indices of those nodes are stored instead. Small changes to committed mesh data happen
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immediately, such as changing the value of a node’s coordinates, but large changes, such as
adding data or removing data, is deferred until the user commits the mesh, allowing the user
to determine exactly when the speed hit caused by organizing the data occurs.

Storing data quickly and efficiently is the main goal of the decoupled state, rather than
allowing quick access. Since the exact amount of data being added to the mesh may not be
known, granularized memory pools can be utilized to store the data. The first time memory
is requested to store data, enough memory is allocated to store many instances of the data,
instead of just one instance. For example, the first time a user adds a node to the mesh, in-
stead of allocating enough memory to store one node, enough memory to store one thou-
sand nodes may be allocated. Once all of this memory has been used, enough memory for
two thousand more nodes may be allocated. The exact granularities used are left to the
user, allowing the memory allocation to be fine-tuned, and if the exact amount of data being
added to the mesh is known in advance, then that amount can be used as the granularity,
preventing any unnecessary memory reallocations.

Since data in a decoupled state is not tied to the assembly mesh (it does not use the as-
sembly level hash tables to map identifiers to locations in the mesh), the data can be moved
between assemblies. An entire part can be decoupled, basically a reverse-commit. The part
can then be removed safely and easily from one assembly and added to another. Once in
the other assembly, the data can be recommitted and reorganized as necessary, and the sec-
ond assembly’s hash tables would be updated with the new data’s unique identifiers.

3.7 Filtered Data Access

The mesh object affords many different types of access to the same data through the
same interfaces. To accomplish this, all method calls to the mesh object are filtered. A
typical method declaration looks like this:

HRESULT GetNode ( long id,
ULONG ulAppliedFilter,
ULONG ulFiltero,
ULONG ulFilterl,
_sNode *piNode ) ;

where ULONG is an unsigned long, and _sNode is a structure containing nodal informa-
tion such as coordinates.

The three ULONG filter values can affect both the input and output of the method. The
ulAppliedFilter is made up by bitwise OR-ing the desired filters together. Each individual
filter is simply an integer with exactly one bit set to one and all other bits set to zero. When
two individual filters are bitwise OR-ed, the resultant integer has exactly two non-zero bits.
Some filters, called unvalued filters, can work solely on their own and require no other in-
put from the user. For example, the default behavior of the GetNode function treats the id
input as the user-defined unique identifier of the node. By applying the DIRECT ACCESS
filter to the method call, the id input is instead treated as the index of the node at the level
of the mesh from which it is queried. That is, if the GetNode call were made from assem-
bly mesh filtered with DIRECT_ACCESS, then the id input would be treated as the index
of the node on the assembly. If the same call were made from a part mesh, the id input
would instead be the index of the node on that particular part. The same method call can
behave differently based on the filters applied to it or based on the level of the mesh it is
called from. However, if no filter were applied to the GetNode method, it would behave
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exactly the same no matter what level of the mesh it was called from, since the id input
would be treated as a unique identifier, which is the same throughout the mesh.

Some filters require further input from the user, such as BY PART. This filter, when
used in conjunction with the DIRECT ACCESS filter, instructs the method to treat the in-
put as an index on the given part. In this case, the id of the desired part would be provided
in the ulFilter0 field. An example use might be:

HREULT hr = piMeshObject->GetNode( 5, DIRECT ACCESS |
BY PART, 3, 0, &iNode );

In this case, the user is querying for the node at index 5 on part 3. Since the user only
used one valued filter (BY _PART), the ulFilterl is unused. Any number of unvalued fil-
ters, and up to two valued filters, can be applied together to any particular method call.

Some examples of unvalued filters: Some valued filters:
DIRECT ACCESS (1L<<0) BY PART (1L<<24)
DIRECT_RETURN 1L<<1) BY_ BODY (1L<<25)
NO_ALLOC 1L<<2) BY PID (1L<<26)
ASSEMBLY ACCESS 1L<<3) BY ATTRIBUTETYPE (1L<<27)
ASSEMBLY RETURN 1L<<4) BY ATTRIBUTEVALUE (1L<<28)
PART_ACCESS 1L<<5) USE_OPTION (1L<<29)
PART_RETURN 1L<<6)
BODY_ACCESS 1L<<7)
BODY_ RETURN 1L<<8)

)

)

(
(
(
(
(
(
(
(
FORCE_COPY (1L<<9
(
(
(
(
(
(
(

NO_CLEANUP 1L<<9

NO_MIDSIDES 1L<<10)
NO_ERRORCHECK 1L<<11)
EMPTY_ RETURN 1L<<12)
INDEPENDENT 1L<<13)
DECOUPLED 1L<<14)
DESCRIPTION ACCESS (1L<<15)

In these examples, the individual filters are created by shifting the non-zero bit by a
unique amount. DIRECT ACCESS does not shift the non-zero bit, so it remains as integer
1. PART ACCESS shifts the non-zero bit 5 times to the left, and is binary 100000 or
decimal 32. These two values can be bitwise OR-ed together ( DIRECT ACCESS |
PART_ACCESS ) to binary 100001, or decimal 33. Using this implementation, 32 unique
filters can be created, and they can be used together in any combination.

Completely unfiltered methods to the mesh object also exist, mirroring each of the nor-
mal filtered methods. For example, the unfiltered version of GetNode looks like this:

HRESULT GetNodeEZ( long id,
_sNode *piNode ) ;

In this case, the input id is always treated as a unique identifier rather than an index, be-
cause that is the default behavior of the GetNode method. In this way, code that only uses
the default behavior of the mesh is made much cleaner.

The concept of filtered methods works well, but can be improved upon. Most users of
the mesh always use the exact same filters for all method calls. To accommodate, in the fu-
ture, filtered methods will be removed in favor of filtered mesh objects, discussed below in
Section 4.3.
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3.8 Attribute Mechanism

Attributes are used to tag nodes, elements, or entire meshes with arbitrary data. They
are also used to define element types. By utilizing an attribute mechanism, a user can eas-
ily add new data to the mesh without performing any additional programming. In the
ACMO, an attribute is defined with an identifier, an optional description, and a variant data
value. The description makes access easier to the end user (by asking for attribute “vol-
ume” rather than attribute id 4 for example) at the expense of some memory to store the
string. In order to keep memory fragmentation in check, attributes attached to similar data
are stored together in granularized pools, and share strings (rather than making multiple
copies of the same string). For instance, all attributes connected to nodes on a particular
part are stored together in one pool; all attributes connected to the actual part itself are
stored in a separate pool.

To reduce database sizes, attributes can also be treated as transient data that is not saved.
Rather, it needs to be lazily evaluated when required.

Some attributes without fail are tagged to every bit of data in a mesh. For instance, the
user may apply a “volume” attribute to every element. In this case, a meta-attribute is used
to further reduce memory usage. Rather than storing only one variant data value, a meta-
attribute stores an array of such values, one for each possible instance of the attribute. The
identifier of the attribute and a reference to its description only need to be stored one time
for a meta-attribute, instead of multiple times for normal attributes.

3.9 Memory Management

Since the mesh can be accessed in many different ways through the same methods (us-
ing filters), the same method call can sometimes cause a memory allocation and other times
not. Any time possible, the mesh returns references to its data, rather than copies of the
data, though this behavior can also be overridden using the FORCE COPY filter. For ex-
ample, if a user calls GetNodes on a part without filters, the mesh can return a pointer di-
rectly to its nodal coordinates. If the same call is made using the NO_MIDSIDES filter to
only return corner nodes, the mesh might allocate memory for the output. The mesh uses
standard HRESULT return codes such as S_OK for success and E_FAIL for general fail-
ure, but also uses a custom code S ALLOC to signify a success but with memory allocation
that must be freed by the caller.

The S_ ALLOC code (defined as 512) alerts the user that memory has been allocated, but
it cannot tell the user exactly what memory must be freed. Some method calls can return
several different outputs simultaneously, and not all of them may need to be freed. Also,
some methods may return “nested” allocations, when an allocated array contains an allo-
cated array, such as in the case of the GetElements method without filters. By default, the
mesh always uses the global identifiers of nodes and elements, even though internally those
nodes and elements may be stored by reference using indices. If a user calls GetElements,
the mesh will return the nodal connectivity using nodal identifiers, which will require a
memory allocation. In this case, the mesh must allocate an array to store each element, and
a pool to store the nodal connectivity of each element.

To ease the burden on the user, a simple and very lightweight memory manager is in
place to handle memory allocations. For each and every memory allocation made, a refer-
ence to the allocated memory is added to a stack. If a method allocates three arrays, three
memory references are pushed onto the memory stack. After calling a method that allo-
cated memory, the user simply needs to call ReturnFunctionMemory, and any memory al-
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located by the last function call will be freed. In no memory was allocated, the call will be
ignored. If a user calls another method that allocates memory, any references to memory
left on the memory stack will be removed and pushed onto a queue for later handling. Us-
ers can also request to have memory removed from the memory manager, in which case the
user becomes responsible for freeing the memory when it is no longer needed.

3.10 Multiple Configurations

Many times, multiple users of the mesh require simultaneous but conflicting access to
the same data. For example, in the Workbench software, the end user can solve a mesh and
view the results even while remeshing the original mesh. In this case, the same mesh must
exist in multiple states. In the ACMO, configurations allow different “views” of the same
assembly. The assembly mesh contains a configuration manager that can construct the
various views and switch between them. Each configuration contains a list of part “in-
stances”, which are references to actual part meshes. In this way, the same part mesh can
be shared between multiple configurations of the mesh. When the configuration needs to
change, the configuration manager retrieves the necessary part meshes for the assembly,
and then the hash tables that map global identifiers for the nodes and elements are rebuilt.

For instance, if a three-part assembly is meshed and the solved, the assembly mesh will
contain one configuration with three part meshes. If the user then changes the mesh on the
second part, the assembly mesh does not immediately remove the original part mesh that
was remeshed, since the end user can still view the results of the original solve. At this
point, the assembly will contain two configurations, but four part meshes. One configura-
tion has an instance of part one P1', an instance of part two P2', and an instance of part
three P3'. The second configuration has instances of the same parts one and three as in the
first configuration, but it has an instance of a completely different part two P22, As the as-
sembly needs to change its view of the data, these parts are switched in and out of the as-
sembly as required. For example, if the user asks to view the results of the solve, then the
assembly switches to configuration one. If the user asks to view the current mesh, the as-
sembly switches to configuration two. (Fig. 6) If the user resolves the mesh at this point,
the original configuration is no longer required and is deleted. Since one part mesh no
longer has any instances in the configuration manager, it too is deleted. The ACMO relies
on accurate reference counting in the COM interface layer to determine when deletion can
safely take place.
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3 Part Assembly

Fig. 6. Mesh Configurations

3.11 Thread-Safing

A final layer of complexity lies above the configuration manager: multiple threads ac-
cessing the mesh data simultaneously. A meshing process can be writing mesh data into
one configuration of the object while a user is viewing another configuration. In the midst
of the writing process, the user can change the configuration at will, and all the while the
ACMO must be protected from access conflicts that can occur if the same memory is being
read and written at the same time, not to mention that the physical structure of the mesh is
changing while data access is taking place. To prevent such a catastrophe, the mesh object
uses a simple technique utilizing a variation of semaphores called a critical section. A criti-
cal section prevents a thread from accessing an object when another thread has requested
exclusive access to the same object. The mesh uses an extremely lightweight object that
locks the critical section when the object is created, and releases the lock when the object is
destroyed. In this way, it becomes a simple matter to create an instance of this critical sec-
tion object at the beginning of every call into the mesh object in the COM layer. When the
call finishes, the object is automatically released from memory and the critical section is
unlocked. However, when using this method of thread-safing, only one operation can be
performed on the mesh at any given time, so during a long operation such as committing
mesh data, access to the mesh by other threads will be completely blocked until the opera-
tion finishes. The advantages of this method, such as ease of programming and inherent
stability, offset the disadvantage of one thread needing to wait for another thread to com-
pletely finish accessing the data.

Since threads may be using different configurations in the ACMO, the mesh stores a
map of thread ids to configuration ids, and every call into the mesh checks the calling
thread immediately after creating the critical section. If the thread has changed since the
last access to the mesh, then the current configuration is automatically changed. The call-
ing system only needs to set the required mesh configuration once instead of setting it be-
fore every single call into the mesh object.

As an example, consider the situation where a user is refining a mesh that has already
been solved. The refinement process starts on a second thread, and a new configuration is
created in the ACMO that is tied to the refinement thread. While refinement runs, the pri-
mary GUI thread can also access the mesh object. If the user requests to view the results of
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the solve, the GUI thread will try to call into the mesh object, which will first attempt to
lock the critical section. If the refinement thread is currently accessing the mesh, the GUI
thread is forced to wait until the method call on the refinement thread finishes. At that
time, the GUI thread can lock the critical section, forcing the refinement thread to wait if it
attempts to call into the ACMO. Next, the mesh object checks the thread id against the last
stored thread id. Since the id of the GUI thread differs from the stored thread (because the
last access to the mesh object was made by the refinement thread), the ACMO changes the
configuration of the mesh automatically. The GUI’s method call is then allowed to finish.
When the method call completes, the critical section wrapper is destroyed, and the actual
critical section is automatically unlocked. If the refinement thread then accesses the
ACMO, the entire process is repeated. (Fig. 7)

Mesher accesses data and
stores new mesh in another
configuration

User Clicks GUI to view
results on onginal
configuration

X

i

Fig. 7. Multiple Thread Access

4. FUTURE WORK AND ENHANCEMENTS

4.1 Part Spooling

As meshes grow ever larger in size, new ways of reducing memory usage must be pur-
sued. The single largest memory gain may be found in the complete removal of parts from
memory. A part that is not instanced by the current configuration of the assembly mesh can
be spooled off to disk and freed from memory. The part can remain on disk until such time
as it is needed. The configuration manager would then read the part from the disk back into
memory. Though the time to switch between configurations would grow, the memory sav-
ings could be substantial. Along the same line, the implementation of memory map storage
could also benefit the ACMO. A memory map acts like normal memory, except that it is
written to disk instead of actual RAM. Access to the data is slowed considerably, but the
fact that the disk is being used instead of physical RAM is transparent to the user.

4.2 Part Ghosting

Oftentimes, the meshes of several parts are exact copies of one another, but with a trans-
form (a translation or rotation) applied. By storing the data only once and applying the
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transform when the data is accessed, memory usage can be greatly reduced at the expense
of speed.

4.3 Filtered Interfaces to the Mesh

As mentioned briefly, many users always require the same type of access to the mesh
object. The user may always use part-based indices when accessing nodes for instance. In-
stead of being burdened with always remembering to use the right combination of filters
and always calling methods from the right level of the mesh (be it assembly, part, or body),
a user can create a new interface to the mesh data which always acts the same way. As pre-
liminary work, a FilteredBodyMesh interface to the mesh has been created. A user can cre-
ate a FilteredBodyMesh from a normal BodyMesh interface to the mesh. The user can then
apply various filters to the interface, which will always be respected when accessing the
mesh data. This approach leads to much more understandable and readable code than the
filtered methods currently implemented in the mesh, as well as allowing much more com-
plex types of filtering.

4.4 Iterators

Iterator access may be the best solution to the memory management problem in the
mesh, by removing memory allocations all together. When the user first accesses data in
the mesh, instead of retrieving the actual data, the mesh would return an iterator, which
points to the first instance of the data. Once the user queries the data being pointed to by
the iterator, the iterator points to the next instance of the data. For example, if the user que-
ries the mesh for the nodes lying along an edge, instead of building an array containing that
information, the mesh would return an iterator pointing at the first node on the edge. Once
the user has finished querying that node, the iterator moves on and points to the next node
along the edge.

As a compromise between iterator access and array access to the mesh data, a bucket it-
erator can be used to retrieve the data in chunks, the size of which is controlled by the user.
As in the previous example, if the user accesses nodes along an edge using an iterator with
a bucket sized for three nodes, then the first three nodes along the edge would be retrieved
and stored in the iterator. Once the user has queried those three nodes, then the next three
nodes on the edge would be stored in the iterator.

5. CONCLUSION

As meshes become larger and the systems surrounding mesh data structures become
more diverse and complicated, the ability to efficiently store and easily access mesh data
becomes more and more vital. The ACMO strikes a reasonable balance between several
conflicting priorities, such as speed of data access, memory usage, and memory fragmenta-
tion, by identifying the many users of the data and how those users interplay with one an-
other. Further, the ACMO allows users to query for data in many ways, but through the ex-
act same interface. Also, the ACMO is designed to be easily expanded without additional
programming.



18  John T. Svitek, Wa Kwok, Joseph R. Tristano

REFERENCES

1. Beall, Mark W, Shephard, Mark S "A General Topology-Based Mesh Data
Structure", International Journal for Numerical Methods in Engineering, John
Wiley & Sons, Ltd., Vol 40, Num 9, pp.1573-1596, May 1997

2. Garimella, Rao V "Mesh data structure selection for mesh generation and FEA
applications", International Journal for Numerical Methods in Engineering,
John Wiley & Sons, Ltd., Vol 55, Num 4, pp.451 - 478, October 2002

3. George, Paul-Louis and Houman Borouchaki “Delaunay Triangulation and
Meshing: Application to Finite Elements”, Hermes, pp.311-315, 1998

4. Hitchsfeld, N “Algorithms and Data Structures for Handling a Fully Flexible
Refinement Approach in Mesh Generation”, Proceedings, 4™ International
Meshing Roundtable, Sandia National Laboratories, pp.265-276, October
1995

5. Jia, Xiangmin, Herbert Edelsbrunner and Michael T Heath “Mesh Association:
Formulation and Algorithms”, Proceedings, 8" International Meshing Round-
table, South Lake Tahoe, CA, U.S.A., pp.75-82, October 1999

6. Karamete, B K, T Tokdemir and M Ger “Unstructured Grid Generation and A
Simple Triangulation Algorithm For Arbitrary 2-D Geometries Using Object
Oriented Programming”, International Journal for Numerical Methods in En-
gineering, Wiley, Vol 40, pp.251-268, 1977

7. Kwok, W, K Haghighi and E Kang “An Efficient Data Structure for the Ad-
vancing Front Triangular Mesh Generation Technique”, Communications in
Numerical Methods in Engineering, Vol 11, pp.465-473, 1995

8. Mobley, A, J Tristano, and C Hawkins “An Object Oriented Design for Mesh
Generation and Operation Algorithms”, Proceedings, 10™ International Mesh-
ing Roundtable, Newport Beach, CA, U.S.A., pp.179-183, October 2001

9. Noel, FJ C Leon and P Trompette “A Data Structure Dedicated to an Integrated
Free-form Surface Environment”, Computers and Structures, Pergammon,
Vol 57, Num 2, pp.345-355, 1995

10. Remacle, J F , B Karamete, M Shepard “Algorithm Oriented Mesh Database”,
Proceedings, 9th International Meshing Roundtable, Sandia National Labora-
tories, pp.349-359, October 2000



Interface Reconstruction in Multi-fluid,
Multi-phase Flow Simulations

Rao V. Garimella!, Vadim Dyadechko?, Blair K. Swartz?, and Mikhail J.
Shashkov*

Los Alamos National Laboratory, Los Alamos, NM 87545 rao@lanl.gov

Los Alamos National Laboratory, Los Alamos, NM 87545 vdyadechko@lanl.gov
Los Alamos National Laboratory, Los Alamos, NM 87545 bks@lanl.gov

Los Alamos National Laboratory, Los Alamos, NM 87545 shashkov@lanl.gov

LSV R R

Summary. An advanced Volume-of-Fluid or VOF procedure for locally conserva-
tive reconstruction of multi-material interfaces based on volume fraction information
in cells of an unstructured mesh is presented in this paper. The procedure employs
improved neighbor definitions and topological consistency checks of the interface for
computing a more accurate interface approximation. Comparison with previously
published results for test problems involving severe deformation of the materials
(such as vortex-in-a-box problem) show that this procedure produces more accurate
results and reduces the “numerical surface tension” typically seen in VOF methods.

1 Introduction

Hydrodynamic simulations of flows involving multiple fluids and/or multiple phases
are an important research area with many applications such as droplet deposition,
sandwich molding processes, underwater explosions, mold-filling in casting, simula-
tions of micro-jetting devices, etc.

A very important feature of multi-fluid, multi-phase flow simulations is the in-
terface between materials and phases, and it is often crucial to follow such interfaces
at each step of the simulation. Lagrangian simulations (where the mesh deforms
with the material) automatically maintain interfaces, but fail if the mesh is exces-
sively deformed and the interface topology changes. On the other hand, Eulerian
simulations (where the material moves through a stationary mesh) but often require
special procedures to keep track of the interfaces in the flow.

In general, there are three broad categories of methods to track interfaces in
hydrodynamic simulations — front tracking[GLIM98a], level set methods[OSHEO1a,
SUSS98a| and interface reconstruction [YOUNS82a, RIDE98a|. Front tracking meth-
ods advect marker points on an initial interface with the flow so that a continuous,
piecewise smooth interface approximation is known at each time step. In general,
in this method, the global topology of the interface is fixed at the initial and not
changed during the simulation. This is obviously disadvantageous for flows in which
materials coalesce or fragment. Level set methods model the interface as the zero



