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Preface

The General Theory of Relativity is an extremely successful theory, with a
well-established experimental footing, at least for weak gravitational fields. Its
predictions range from the existence of black holes, gravitational radiation (now
confirmed) to the cosmological models, predicting a primordial beginning, namely
the big-bang. All these solutions have been obtained by first considering a plausible
distribution of matter, and through the Einstein field equation, the spacetime metric
of the geometry is determined. However, one may solve the Einstein field equation
in the reverse direction, namely one first considers an interesting and exotic
spacetime metric and then finds the matter source responsible for the respective
geometry. In this manner, it was found that some of these solutions possess a
peculiar property, namely “exotic matter,” involving a stress-energy tensor that
violates the null energy condition. These geometries also allow closed timelike
curves, with the respective causality violations. It is thus perhaps important to
emphasize that these solutions are primarily useful as “gedanken-experiments” and
as a theoretician’s probe of the foundations of general relativity, and include tra-
versable wormholes and superluminal “warp drive” spacetimes. This book, in
addition to extensively exploring interesting features, in particular, the physical
properties and characteristics of these “exotic spacetimes,” is meant to present a
state of the art of wormhole physics, warp drive spacetimes and recent research on
the energy conditions. The ideal audience is intended for undergraduate and
postgraduate students, with a knowledge of general relativity, and researchers in the
field, who are interested in exploring new avenues of research in these topics.

More specifically, in this book, general relativistic rotating wormhole solutions,
supported by a phantom scalar field, are presented. The properites of these rotating
wormhole solutions including their mass, angular momentum, quadrupole moment,
and ergosphere are discussed, and the stability issues are explored. Concerning the
astrophysical signatures, physical properties and characteristics of matter forming
thin accretion disks in wormhole geometries are analyzed. It is shown that specific
signatures appear in the electromagnetic spectrum of thin disks around wormhole
spacetimes, thus leading to the possibility of distinguishing these geometries by
using astrophysical observations of the emission spectra from accretion disks.
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Explicit examples of globally regular static, spherically symmetric solutions in
general relativity are also constructed with scalar and electromagnetic fields,
describing traversable wormholes with flat and AdS asymptotics and regular black
holes, in particular, black universes. (A black universe is a regular black hole with
an expanding, asymptotically isotropic spacetime beyond the horizon.) Such objects
exist in the presence of scalar fields with negative kinetic energy (“phantoms,” or
“ghosts”), which are not observed under usual physical conditions. To account for
that, “trapped ghosts” (scalars whose kinetic energy is only negative in a
strong-field region of spacetime) are considered, as well as “invisible ghosts,” i.e.,
phantom scalar fields sufficiently rapidly decaying in the weak-field region.
Self-sustained traversable wormholes, which are configurations sustained by their
own gravitational quantum fluctuations, are also considered. The investigation is
evaluated by means of a variational approach with Gaussian trial wave functionals
to one loop, and the graviton quantum fluctuations are interpreted as a kind of exotic
energy. It is shown that for every framework, the self-sustained equation will
produce a Wheeler wormhole of Planckian size. Some consequences on topology
change are discussed together with the possibility of obtaining an enlarged
wormhole radius.

In the context of modified theories of gravity, it is shown that the higher-order
curvature terms, interpreted as a gravitational fluid, can effectively sustain worm-
hole geometries, while the matter threading the wormhole can be imposed to satisfy
the energy conditions. In this context, a systematic analysis of static spherically
symmetric solutions describing a wormhole geometry in a Horndeski model with
Galileon shift symmetry is presented. In addition to this, working in a metric-affine
framework, explicit models are explored in four and higher dimensions. It is shown
that these solutions represent explicit realizations of the concept of geon introduced
by Wheeler, interpreted as topologically nontrivial self-consistent bodies generated
by an electromagnetic field without sources. Several of their properties are dis-
cussed. Furthermore, using exactly solvable models, it is shown that black hole
singularities in different electrically charged configurations can be cured. These
solutions describe black hole spacetimes with a wormhole giving structure to the
otherwise point-like singularity. It is shown that geodesic completeness is satisfied
despite the existence of curvature divergences at the wormhole throat. In some
cases, physical observers can go through the wormhole, and in other cases, the
throat lies at an infinite affine distance. The removal of singularities occurs in a
nonperturbative way.

Quantum field theory violates all the classical energy conditions of general
relativity. Nonetheless, it turns out that quantum field theories satisfy remnants
of the classical energy conditions, known as quantum energy inequalities (QEIs),
that have been developed by various authors since the original pioneering work of
Ford in 1978. Here, an introduction to QEIs is introduced, as well as to some of the
techniques of quantum field theory in curved spacetime (particularly, the use of
microlocal analysis together with the algebraic formulation of QFT) that enable
rigorous and general QEIs to be derived. Specific examples are computed for the
free scalar field, and their consequences are discussed. QEIs are also derived for the
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class of unitary, positive energy conformal field theories in two spacetime
dimensions. In that setting, it is also possible to determine the probability distri-
bution for individual measurements of certain smearings of the stress-energy tensor
in the vacuum state. Semiclassical quantum effects also typically violate the energy
conditions. The characteristics of a nonlinear energy condition and the flux energy
condition (FEC) are also studied, and a quantum version of this energy condition
(QFEC) is presented, which is satisfied even in more situations of physical interest.
Other possible nonlinear energy conditions are introduced, namely the
“trace-of-square” (TOSEC) and “determinant” (DETEC) energy conditions.

While General Relativity (GR) ranks undoubtedly among the best physical
theories ever developed, it is also among those with the most striking implications.
In particular, GR admits solutions that allow faster-than-light motion and conse-
quently allow closed timelike curves, with the respective causality violations, such
as warp drive spacetimes. The basic definition and interesting aspects of these
spacetimes are extensively discussed, such as the violation of the energy conditions
associated with these spacetimes, the appearance of horizons for the superluminal
case, and the possibility of using a warp drive to create closed timelike curves.
Applying linearized gravity to the weak-field warp drive, it is found that the energy
condition violations in this class of spacetimes are generic to these geometries and
are not simply a side effect of the superluminal properties. Furthermore, a “pre-
emptive” chronology protection mechanism is considered that destabilizes super-
luminal warp drives via quantum matter back-reaction and hence forbids even the
conceptual possibility to use these solutions for building a time machine. This result
will be considered both in standard quantum field theory in curved spacetime and in
the case of a quantum field theory with Lorentz invariance breakdown at high
energies. Some lessons and future perspectives will be finally discussed.

Lisbon, Portugal Francisco S.N. Lobo
December 2016
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Chapter 1
Introduction

Francisco S.N. Lobo

1.1 Historical Background

Traversable wormholes and “warp drive” spacetimes are solutions to the Einstein
field equation that violate the classical energy conditions and are primarily useful as
“gedanken-experiments” and as a theoretician’s probe of the foundations of general
relativity. They are obtained by solving the Einstein field equation in the reverse
direction, namely, one first considers an interesting and exotic spacetime metric,
then finds the matter source responsible for the respective geometry. It is interesting
to note that they allow “effective” superluminal travel, although the speed of light
is not surpassed locally, and generate closed timelike curves, with the associated
causality violations.

Wormhole physics can originally be tentatively traced back to Flamm in 1916
[1, 2], where his aim was to render the conclusions of the Schwarzschild solution
in a clearer manner. Recall that Schwarzschild published two remarkable papers
in 1916, where the first is related to the exterior static and spherically symmetric
vacuum solution [3], and the second to the interior solution of a general relativistic
incompressible fluid [4]. Flamm in his paper showed through sketches of an equa-
torial plane that the spatial sections of Schwarzschild’s interior solution possess the
geometry of a portion of a round sphere. Furthermore, he showed that the surface
of revolution is isometric to a planar section of the Schwarzschild exterior solution.
Now, he considered that the meridional curve is a parabola, where the surface of
revolution joins two asymptotically flat sheets, which in a modern terminology can
be considered as a tunnel. However, we emphasize that he was not contemplating
the possibility of bridge-like, or wormhole-like, solutions [2].

It was only in 1935, that specific wormhole-type solutions were considered by
Einstein and Rosen [5]. Their motivation was to construct an elementary particle
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2 F.S.N. Lobo

model represented by a “bridge” connecting two identical sheets. This mathematical
representation of physical space being connected by a wormhole-type solution was
subsequently denoted as an “Einstein–Rosen bridge”. In fact, the neutral version
of the Einstein–Rosen bridge is an observation that a suitable coordinate change
seems to make the Schwarzschild (coordinate) singularity disappear, at r = 2M . In
particular, Einstein and Rosen discovered that certain coordinate systems naturally
cover only two asymptotically flat regions of the maximally extended Schwarzschild
spacetime. Thus, the key ingredient of the bridge construction is the existence of an
event horizon, and the Einstein–Rosen bridge is a coordinate artefact arising from
choosing a coordinate patch, which is defined to double-cover the asymptotically flat
region exterior to the black hole event horizon.

The field lay dormant for approximately two decades after the work by
Einstein and Rosen, and it was only in 1955 that John Wheeler began to be
interested in topological issues in General Relativity [6]. More specifically, in a
multiply-connected spacetime, where two widely separated regions were connected
by a tunnel, and taking into account the coupled Einstein–Maxwell field equations,
Wheeler constructed hypothesized “geon” solutions. These denote a “gravitational-
electromagnetic entity” and in modern language, the geon may be considered as
a hypothetical “unstable gravitational-electromagnetic quasisoliton” [7]. Building
on this work, in 1957, Misner and Wheeler presented an extensive analysis, where
Riemannian geometry of manifolds of nontrivial topology was investigated with an
ambitious view to explain all of physics [8]. Their objective was essentially to use the
source-freeMaxwell equations, coupled to Einstein gravity, in the context of nontriv-
ial topology, to build models for classical electrical charges and all other particle-like
entities in classical physics. Indeed, this work was one of the first uses of abstract
topology, homology, cohomology, and differential geometry in physics [7] and their
point of view is best summarized by the phrase: “Physics is geometry”. It is interest-
ing to note that this is also the first paper [8] that introduces the term “wormhole”.
In fact, Misner and Wheeler considered that the existing well-established “already
unified classical theory” allows one to describe in terms of empty curved space [8]
the following concepts: gravitation without gravitation; electromagnetism without
electromagnetism; charge without charge; andmass without mass (where around the
mouth of the “wormhole” lies a concentration of electromagnetic energy that gives
mass to this region of space).

Despite of the fact that considerable effortwas invested in attempting to understand
the “geon” concept, the geonlike-wormhole structures seem to have been considered
a mere curiosity and after the solutions devised by Wheeler and Misner, there is a
30-year gap between their original work and the 1988 Morris–Thorne renaissance
of wormhole physics [9]. However, isolated pieces of work appeared in the 1970s,
such as the Homer Ellis’ drainhole [10, 11] concept and Bronnikov’s tunnel-like
solutions [12]. It is only in 1988 that a renaissance of wormhole physics took place,
through the seminal paper by Morris and Thorne [9]. In 1995, Matt Visser wrote a
full-fledged treatise on wormhole physics and we refer the reader to [13] for a more
recent review on wormhole physics and warp drive spacetimes.
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1.2 State of the Art: Wormhole Geometries and Warp
Drive Spacetimes

The purpose of the present book is to provide an update on the state of the art on
several topics of research in wormhole physics and warp drive spacetimes. Although
rather incomplete in all the existing topics, we present the relevant fields of modern
research in this interesting topic throughout the book.

In Chap.2, the basics of wormhole physics are briefly reviewed, where the
interesting properties and characteristics of static spherically symmetric traversable
wormholes are considered, such as, the mathematics of embedding, equations of
structure for the wormhole, the traversability conditions, the necessity of exotic mat-
ter to support these geometries and wormhole solutions in modified gravity. Further-
more, recent advances are presented on dynamic spherically symmetric thin-shell
traversable wormholes. More specifically, a novel approach is considered in the sta-
bility analysis of thin-shell wormholes, by reversing the logic flow and the surface
mass is determined as a function of the potential. This procedure implicitly makes
demands on the equation of state of the matter residing on the transition layer, and
demonstrates in full generality that the stability of thin-shell wormholes is equivalent
to choosing suitable properties for the material residing on the thin shell.

In Chap.3, rotating wormholes in General Relativity are presented in four and
five dimensions. Their nontrivial topology is supported by a phantom field, and it is
shown that the wormhole solutions depend on three parameters, which are associated
with the size of the throat, the magnitude of the rotation, and the symmetry of the
two asymptotic regions. The physical properties of these wormholes are discussed
in detail. Their global charges are derived, including the mass formulae for the
symmetric and nonsymmetric cases, and their geometry is discussed, a definition
of their throat is presented in the nonsymmetric case, and their ergoregions are
investigated. Furthermore, the existence of limiting configurations are demonstrated,
which correspond to extremal rotating vacuum black holes. Since a stability analysis
of rotatingwormholes in four dimensions is very involved, a stability analysis of five-
dimensional rotating wormholes is performed, with equal magnitude of the angular
momenta only, where the investigation is restricted to the unstable radial modes. It
is interesting to note that when the rotation is sufficiently fast, the radial instability
disappears for these five dimensional wormholes.

In Chap.4, the observational and astrophysical features are considered and the
physical properties of matter forming thin accretion disks in static spherically
symmetric and stationary axially symmetric wormhole spacetimes are discussed.
The time averaged energy flux, the disk temperature and the emission spectra of the
accretion disks are obtained for these exotic geometries, and are compared with the
Schwarzschild and Kerr solutions, respectively. For static and spherically symmetric
wormholes it is shown that more energy is emitted from the disk than in the case
of the Schwarzschild potential and the conversion efficiency of the accreted mass
into radiation is more than a factor of two higher for wormholes than for static black
holes. For axially symmetric wormhole spacetimes, by comparing themass accretion

http://dx.doi.org/10.1007/978-3-319-55182-1_2
http://dx.doi.org/10.1007/978-3-319-55182-1_3
http://dx.doi.org/10.1007/978-3-319-55182-1_4


4 F.S.N. Lobo

with the one of a Kerr black hole, it is verified that the intensity of the flux emerging
from the disk surface is greater for wormholes than for rotating black holes with the
same geometrical mass and accretion rate. Furthermore, it is shown that the rotating
wormholes provide a much more efficient engine for the transformation of the accre-
tion mass into radiation than the Kerr black holes. It is then concluded that specific
signatures appear in the electromagnetic spectrum, thus leading to the possibility
of distinguishing wormhole geometries by using astrophysical observations of the
emission spectra from accretion disks.

In Chap.5, wormhole geometries in modified gravity are considered, in particular,
a systematic analysis of static spherically symmetric solutions describing awormhole
geometry in a specific Horndeski model with Galileon shift symmetry is presented.
The Lagrangian of the theory contains the term (εgμν + ηGμν)φ,μφ,ν and represents
a particular case of the general Horndeski lagrangian, which leads to second-order
equations of motion. The Rinaldi approach is used to construct analytical solutions
describing wormholes with nonminimal kinetic coupling. It is shown that worm-
holes exist only if ε = −1 (phantom case) and η > 0. The wormhole throat connects
two anti-de Sitter spacetimes. The wormhole metric has a coordinate singularity at
the throat. However, since all curvature invariants are regular, there is no curvature
singularity there.

In Chap.6, self sustained traversable wormholes are considered, which are con-
figurations sustained by their own gravitational quantum fluctuations. The analysis
is evaluated by means of a variational approach with Gaussian trial wave functionals
to one loop, and the graviton quantum fluctuations are interpreted as a kind of exotic
energy. Since these fluctuations usually produce ultra-violet divergences, two proce-
dures to keep them under control are introduced. The first consists of a zeta function
regularization and a renormalization process that is introduced to obtain a finite one
loop energy. The second approach considers the case of distorted gravity, namely,
when either Gravity’s Rainbow or a noncommutative geometry is used as a tool to
keep under control the ultra-violet divergences. In this context, it is shown that for
every framework, the self-sustained equation will produce a Wheeler wormhole of
Planckian size. Some consequences on topology change are discussed together with
the possibility of obtaining an enlarged wormhole radius.

Chapter7 reviews the properties of static and spherically symmetric configura-
tions of general relativity with a minimally coupled scalar field φ, whose kinetic
energy is negative in a restricted (strong-field) region of space and positive outside
it. This “trapped ghost” conceptmay, in principle, explainwhy no ghosts are observed
under usual weak-field conditions. The configurations considered are wormholes and
regular black holes without a center in particular, black universes (black holes with
an expanding cosmology beyond the event horizon). Spherically symmetric pertur-
bations of these objects are considered, and it is stressed that, due to the universal
shape of the effective potential near a transition surface from canonical to phantom
behavior of the scalar field, such surfaces restrict the possible perturbations and play
a stabilizing role.

In Chap.8, an explicit implementation of geons in the context of gravitational
theories extending General Relativity is discussed in detail. Such extensions are

http://dx.doi.org/10.1007/978-3-319-55182-1_5
http://dx.doi.org/10.1007/978-3-319-55182-1_6
http://dx.doi.org/10.1007/978-3-319-55182-1_7
http://dx.doi.org/10.1007/978-3-319-55182-1_8


1 Introduction 5

formulated in the Palatini approach, where the metric and affine connection are
regarded as independent entities. This formulation is inspired on the macroscopic
description of the physics of crystalline structures with defects in the context of solid
state physics. Several theories for the gravitational field are discussed, including
additional contributions of theRicci tensor in four andhigher dimensions.As opposed
to the standard metric approach, which generically develops higher order derivative
field equations and ghost-like instabilities, the Palatini formulation generates ghost-
free and second-order equations that reduce to the general relativistic equations in
vacuum. In this context, static and spherically symmetric solutionswith electric fields
generate a plethora of wormhole solutions satisfying the classical energy conditions,
and whose properties allow to identify them with the concept of the geon, originally
introduced by Wheeler. These solutions provide new insights on the avoidance of
spacetime singularities in classical effective geometries.

The standard energy conditions of classical general relativity are (mostly) linear in
the stress–energy tensor, and have clear physical interpretations in terms of geodesic
focussing, but suffer the significant drawback that they are often violated by semi-
classical quantum effects. In contrast, it is possible to develop non-standard energy
conditions that are intrinsically non-linear in the stress–energy tensor, and which
exhibit much better well-controlled behavior when semi-classical quantum effects
are introduced, at the cost of a less direct applicability to geodesic focussing. In
Chap.9, a review of the standard energy conditions and their various limitations
is presented. (Including the connection to the Hawking–Ellis type I, II, III, and IV
classification of stress-energy tensors). One then turns to the averaged, nonlinear, and
semi-classical energy conditions, and see howmuch can be done once semi-classical
quantum effects are included.

Chapter10 surveys the violation of classical energy conditions in quantum field
theory (QFT) and the theory of Quantum Energy Inequalities (QEIs). The latter
QEIs are lower bounds on local averages of energy densities and related quantities
in QFT. They replace the classical energy conditions of classical general relativity.
In particular, (a) the main properties of QEIs are indicated using the example of
a free scalar field in Minkowski spacetime; (b) a rigorous derivation of a QEI for
scalar fields in general curved spacetimes is given; (c) the resulting QEI is evaluated
explicitly in some specific cases; (d) further recent developments, including QEIs
for conformal field theories and an integrable QFT are presented, along with work
on the probability distribution for measurements of averaged energy densities; (e)
the status of QEIs in interacting models is discussed; (f) various applications of the
QEIs are presented.

Moving on to “warp drive” spacetimes, the basic definition is considered and
interesting aspects of these spacetimes are explored, in Chap. 11. In particular, the
violation of the energy conditions associated with these spacetimes is discussed, as
well as some other interesting properties such as the appearance of horizons for the
superluminal case, and the possibility of using a warp drive to create closed timelike
curves. Applying linearized gravity to the weak-field warp drive, it is found that the
energy condition violations in this class of spacetimes is generic to the form of the
geometry under consideration and is not simply a side-effect of the “superluminal”

http://dx.doi.org/10.1007/978-3-319-55182-1_9
http://dx.doi.org/10.1007/978-3-319-55182-1_10
http://dx.doi.org/10.1007/978-3-319-55182-1_11


6 F.S.N. Lobo

properties. Fundamental limitations of “warp drive” spacetimes are also found, by
proving extremely stringent conditions placed on these geometries.

An interesting aspect of the warp drive resides in the fact that points on the outside
front edge of a superluminal bubble are always spacelike separated from the centre
of the bubble. This implies that an observer in a spaceship cannot create nor control
on demand an Alcubierre bubble. However, causality considerations do not prevent
the crew of a spaceship from arranging, by their own actions, to complete a round
trip from the Earth to a distant star and back in an arbitrarily short time, as measured
by clocks on the Earth, by altering the metric along the path of their outbound trip.
Thus, Krasnikov introduced a metric with an interesting property that although the
time for a one-way trip to a distant destination cannot be shortened, the time for a
round trip, as measured by clocks at the starting point (e.g., Earth), can be made
arbitrarily short. Interesting properties of this solution, denoted as the Krasnikov
tube are presented such as its four-dimensional generalization, the violations of the
energy condition, among other features. Finally, the generation of closed timelike
curves are considered in the warp spacetime and the Krasnikov tube.

Faster than light travel and time machines are among the most tantalizing possi-
bilities allowed for by Einstein’s General Relativity. In Chap.12, the main features of
these phenomena are reviewed, namely, in which spacetimes they appear to be real-
ized, and it is explained why they are interconnected with the Einsteinian framework.
The paradoxes related to the possibility of time travel of the proposed solutions are
then briefly discussed. Finally, an explicit example is provided where a purely semi-
classical gravity framework seems sufficient to prevent the stability of a spacetime
allowing faster than light propagation. It is argued that this supports a sort of “pre-
emptive” chronology protection that forbids the generation of the very spacetime
structures which could lead to the construction of time machines.
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Part I
Traversable Wormholes



Chapter 2
Wormhole Basics

Francisco S.N. Lobo

2.1 Static and Spherically Symmetric Traversable
Wormholes

2.1.1 Spacetime Metric

Throughout this book, unless stated otherwise, we will consider the following spher-
ically symmetric and static wormhole solution [1]

ds2 = −e2Φ(r) dt2 + dr2

1 − b(r)/r
+ r2 (dθ2 + sin2 θ dφ2) . (2.1)

The metric functions Φ(r) and b(r) are arbitrary functions of the radial coordinate
r . As Φ(r) is related to the gravitational redshift, it has been denoted the redshift
function, and b(r) is called the shape function, as it determines the shape of the
wormhole [1–3], which will be shown below using embedding diagrams. The radial
coordinate r is non-monotonic in that it decreases from +∞ to a minimum value r0,
representing the location of the throat of the wormhole, where b(r0) = r0, and then
increases from r0 to +∞. Although the metric coefficient grr becomes divergent at
the throat, which is signalled by the coordinate singularity, the proper radial distance
l(r) = ± ∫ r

r0
[1 − b(r)/r ]−1/2 dr is required to be finite everywhere. The proper

distance decreases from l = +∞, in the upper universe, to l = 0 at the throat, and
then from zero to−∞ in the lower universe. Onemust verify the absence of horizons,
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in order for the wormhole to be traversable. This condition must imply that gtt =
−e2Φ(r) �= 0, so that Φ(r) must be finite everywhere.1

Another interesting feature of the redshift function is that its derivativewith respect
to the radial coordinate also determines the “attractive” or “repulsive” nature of
the geometry. In order to verify this, consider the four-velocity of a static observer
given byUμ = dxμ/dτ = (e−Φ(r), 0, 0, 0). The observer’s four-acceleration isaμ =
Uμ;ν U ν , which has the following components:

at = 0 , ar = Φ ′
(

1 − b

r

)

, (2.2)

where the prime denotes a derivative with respect to the radial coordinate r . Now,
note that from the geodesic equation, a radially moving test particle which starts
from rest initially has the equation of motion

d 2r

dτ 2
= −Γ r

tt

(
dt

dτ

)2

= −ar . (2.3)

Here,ar is the radial component of proper acceleration that an observermustmaintain
in order to remain at rest at constant r, θ, φ, so that from Eq. (2.2), a static observer
at the throat for generic Φ(r) is a geodesic observer. In particular, for a constant
redshift function, Φ ′(r) = 0, static observers are also geodesic. Thus, a wormhole
is “attractive” if ar > 0, i.e. observers must maintain an outward-directed radial
acceleration to keep from being pulled into the wormhole. If ar < 0, the geometry
is “repulsive”, i.e. observers must maintain an inward-directed radial acceleration to
avoid being pushed away from the wormhole. Indeed, this distinction depends on the
sign of Φ ′, as is transparent from Eq. (2.2).

2.1.2 The Mathematics of Embedding

We can use embedding diagrams to represent a wormhole and extract some useful
information for the choice of the shape function, b(r). Due to the spherically sym-
metric nature of the problem, onemay consider an equatorial slice, θ = π/2, without
loss of generality. The respective line element, considering a fixed moment of time,
t = const, is given by

ds2 = dr2

1 − b(r)/r
+ r2 dφ2 . (2.4)

1This follows from a result originally due to C.V. Vishveshwara stated as follows: In any asymptoti-
cally flat spacetimewith aKilling vector ξ (ξ = e0 for themetric (2.1))which (i) is the ordinary time-
translation Killing vector at spatial infinity and (i i) is orthogonal to a family of three-dimensional
surfaces, the 3-surface ξ · ξ = 0, i.e. e0 · e0 = gtt = 0, is a null surface that cannot be crossed by
any outgoing, future-directed timelike curves, i.e. a horizon.
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Fig. 2.1 The embedding
diagram of a
two-dimensional section
along the equatorial plane
(t = const, θ = π/2) of a
traversable wormhole. For a
full visualization of the
surface sweep through a 2π
rotation around the z−axis,
as can be seen from the
graphic on the right

To visualize this slice, one embeds this metric into three-dimensional Euclidean
space, in which the metric can be written in cylindrical coordinates, (r, φ, z), as

ds2 = dz2 + dr2 + r2 dφ2 . (2.5)

In the three-dimensional Euclidean space the embedded surface has equation
z = z(r), so that the metric of the surface can be written as

ds2 =
[

1 +
(
dz

dr

)2
]

dr2 + r2 dφ2 . (2.6)

Comparing Eq. (2.4) with (2.6), one deduces the equation for the embedding surface,
which is given by

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

. (2.7)

To be a solution of a wormhole, the geometry has a minimum radius, r = b(r) = r0,
denoted as the throat, at which the embedded surface is vertical, i.e. dz/dr → ∞.
Far from the throat, one may consider that space is asymptotically flat, dz/dr → 0
as r → ∞.

To be a solution of a wormhole, one also needs to impose that the throat flares
out (see Fig. 2.1 for details). This flaring-out condition entails that the inverse of the
embedding function r(z) must satisfy d2r/dz2 > 0 at or near the throat r0. Differ-
entiating dr/dz = ±(r/b(r) − 1)1/2 with respect to z, we have
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d2r

dz2
= b − b′r

2b2
> 0 . (2.8)

This “flaring-out” condition is a fundamental ingredient of wormhole physics, and
plays a fundamental role in the analysis of the violation of the energy conditions. At
the throat we verify that the form function satisfies the condition b′(r0) < 1. Note,
however, that this treatment has the drawback of being coordinate dependent, and
we refer the reader to Refs. [4, 5] for a covariant treatment.

2.1.3 Equations of Structure for the Wormhole

From the metric expressed in the form ds2 = gμν dxμ dxν , one may determine the
Christoffel symbols (connection coefficients), Γ μ

αβ , defined as

Γ μ
αβ = 1

2
gμν

(
gνα,β + gνβ,α − gαβ,ν

)
, (2.9)

which for the metric (2.1) have the following nonzero components:

Γ t
r t = Φ ′ , Γ r

tt =
(

1 − b

r

)

Φ ′ e2Φ , Γ r
rr = b′r − b

2r(r − b)
,

Γ r
θθ = −r + b , Γ r

φφ = −(r − b) sin2 θ ,

Γ θ
rθ = Γ φ

rφ = 1

r
, Γ θ

φφ = − sin θ cos θ , Γ φ
θφ = tan θ . (2.10)

The Riemann tensor is defined as

Rα
βγ δ = Γ α

βδ,γ − Γ α
βγ,δ + Γ α

λγ Γ λ
βδ − Γ α

λδΓ
λ
βγ . (2.11)

However, the mathematical analysis and the physical interpretation is simplified
using a set of orthonormal basis vectors. These may be interpreted as the proper
reference frame of a set of observers who remain at rest in the coordinate system
(t, r, θ, φ), with (r, θ, φ) fixed. Denote the basis vectors in the coordinate system as
(et , er , eθ , eφ). Thus, the orthonormal basis vectors are given by

⎧
⎪⎪⎨

⎪⎪⎩

et̂ = e−Φ et
er̂ = (1 − b/r)1/2 er
eθ̂ = r−1 eθ

eφ̂ = (r sin θ)−1 eφ

. (2.12)

The nontrivial Riemann tensor components, given in the orthonormal reference
frame, take the following form:
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Rt̂
r̂ t̂ r̂ = −Rt̂

r̂ r̂ t̂ = Rr̂ t̂ t̂ r̂ = −Rr̂ t̂r̂ t̂ =
(

1 − b

r

)[

−Φ ′′ − (Φ ′)2 + b′r − b

2r(r − b)
Φ ′
]

, (2.13)

Rt̂
θ̂ t̂ θ̂ = −Rt̂

θ̂ θ̂ t̂ = Rθ̂
t̂ t̂ θ̂ = −Rθ̂

t̂ θ̂ t̂ = −
(

1 − b

r

)
Φ ′
r

, (2.14)

Rt̂
φ̂ t̂ φ̂ = −Rt̂

φ̂φ̂ t̂ = Rφ̂
t̂ t̂ φ̂ = −Rφ̂

t̂ φ̂ t̂ = −
(

1 − b

r

)
Φ ′
r

, (2.15)

Rr̂
θ̂ r̂ θ̂ = −Rr̂

θ̂ θ̂ r̂ = Rθ̂
r̂ θ̂ r̂ = −Rθ̂

r̂ r̂ θ̂ = b′r − b

2r3
, (2.16)

Rr̂
φ̂r̂ φ̂ = −Rr̂

φ̂φ̂r̂ = Rφ̂
r̂ φ̂r̂ = −Rφ̂

r̂ r̂ φ̂ = b′r − b

2r3
, (2.17)

Rθ̂
φ̂θ̂ φ̂

= −Rθ̂
φ̂φ̂θ̂

= Rφ̂
θ̂ φ̂θ̂

= −Rφ̂
θ̂ θ̂ φ̂

= b

r3
, (2.18)

where, as before, a prime denotes a derivative with respect to the radial coordinate
r .

The Ricci tensor, Rμ̂ν̂ , is given by the contraction Rμ̂ν̂ = Rα̂
μ̂α̂ν̂ , and the nonzero

components are the following:

Rt̂t̂ =
(

1 − b

r

)[

Φ ′′ + (Φ ′)2 − b′r − 3b + 4r

2r(r − b)
Φ ′
]

, (2.19)

Rr̂r̂ = −
(

1 − b

r

)[

Φ ′′ + (Φ ′)2 + b − b′r
2r(r − b)

Φ ′ + b − b′r
r2(r − b)

]

, (2.20)

Rθ̂ θ̂ = Rφ̂φ̂ =
(

1 − b

r

)[
b′r + b

2r2(r − b)
− Φ ′

r

]

. (2.21)

The curvature scalar or Ricci scalar, defined by R = gμ̂ν̂ Rμ̂ν̂ , is given by

R = −2

(

1 − b

r

)[

Φ ′′ + (Φ ′)2 − b′

r(r − b)
− b′r + 3b − 4r

2r(r − b)
Φ ′
]

. (2.22)

Thus, the Einstein tensor, given in the orthonormal reference frame by Gμ̂ν̂ =
Rμ̂ν̂ − 1

2 R gμ̂ν̂ , yields for the metric (2.1), the following nonzero components:

Gt̂t̂ = b′

r2
, (2.23)

Gr̂r̂ = − b

r3
+ 2

(

1 − b

r

)
Φ ′

r
, (2.24)

G θ̂ θ̂ =
(

1 − b

r

)[

Φ ′′ + (Φ ′)2 − b′r − b

2r(r − b)
Φ ′ − b′r − b

2r2(r − b)
+ Φ ′

r

]

, (2.25)

G φ̂φ̂ = G θ̂ θ̂ , (2.26)

respectively.
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2.1.4 Stress–Energy Tensor

Through theEinsteinfield equation,Gμ̂ν̂ = 8πTμ̂ν̂ , one verifies that the stress–energy
tensor Tμ̂ν̂ has the same algebraic structure as Gμ̂ν̂ , Eqs. (2.23)–(2.26), and the only
nonzero components are precisely the diagonal terms Tt̂t̂ , Tr̂r̂ , Tθ̂ θ̂ and Tφ̂φ̂ . Using
the orthonormal basis, these components carry a simple physical interpretation, i.e.

Tt̂t̂ = ρ(r) , Tr̂r̂ = −τ(r) , Tθ̂ θ̂ = Tφ̂φ̂ = p(r) , (2.27)

where ρ(r) is the energy density, τ(r) is the radial tension, with τ(r) = −pr (r), i.e.
it is the negative of the radial pressure, p(r) is the pressure measured in the tangential
directions, orthogonal to the radial direction.

Thus, the Einstein field equation provides the following stress–energy scenario:

ρ(r) = 1

8π

b′

r2
, (2.28)

τ(r) = 1

8π

[
b

r3
− 2

(

1 − b

r

)
Φ ′

r

]

, (2.29)

p(r) = 1

8π

(

1 − b

r

)[

Φ ′′ + (Φ ′)2 − b′r − b

2r2(1 − b/r)
Φ ′

− b′r − b

2r3(1 − b/r)
+ Φ ′

r

]

. (2.30)

Note that one now has three equations with five unknown functions of the radial
coordinate. Several strategies to solve these equations are available, for instance, one
can impose an equation of state [6–10] and consider a specific choice of the shape
function or of the redshift function.

Note that the sign of the energy density depends on the sign of b′(r). One often
comes across the misleading statement, in the literature, that wormholes should
necessarily be threaded by negative energy densities, or negative matter; however,
this is not necessarily the case. Note, however, that due to the flaring-out condition,
observers traversing thewormhole with sufficiently high velocities, v → 1, will mea-
sure a negative energy density. This will be shown below. Furthermore, one should
perhaps correctly state that it is the radial pressure that is necessarily negative at the
throat, which is transparent for the radial tension at the throat, which is given by
pr (r) = −τ(r0) = −(8πr20 )

−1.
By taking the derivative with respect to the radial coordinate r , of Eq. (2.29), and

eliminating b′ and Φ ′′, given in Eqs. (2.28) and (2.30), respectively, we obtain the
following equation:

τ ′ = (ρ − τ)Φ ′ − 2

r
(p + τ) . (2.31)
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Equation (2.31) is the relativistic Euler equation, or the hydrostatic equation for
equilibrium for the material threading the wormhole, and can also be obtained using
the conservation of the stress–energy tensor, T μ̂ν̂ ;ν̂ = 0, inserting μ̂ = r .

The effective mass, m(r) = b(r)/2 contained in the interior of a sphere of radius
r , can be obtained by integrating Eq. (2.28), which yields

m(r) = r0
2

+
∫ r

r0

4π ρ(r ′) r ′2 dr ′ . (2.32)

Therefore, the form function has an interpretation which depends on the mass dis-
tribution of the wormhole.

2.1.5 Exotic Matter and Modified Gravity

2.1.5.1 Exoticity Function

To gain some insight into the matter threading the wormhole, Morris and Thorne
defined the dimensionless function ξ = (τ − ρ)/|ρ| [1], which taking into account
Eqs. (2.28) and (2.29) yields

ξ = τ − ρ

|ρ| = b/r − b′ − 2r(1 − b/r)Φ ′

|b′| . (2.33)

Combining the flaring-out condition, given by Eq. (2.8), with Eq. (2.33), the exoticity
function takes the form

ξ = 2b2

r |b′|
d2r

dz2
− 2r

(

1 − b

r

)
Φ ′

|b′| . (2.34)

Now, taking into account the finite character of ρ, and consequently of b′, and the
fact that (1 − b/r)Φ ′ → 0 at the throat, we have the following relationship:

ξ(r0) = τ0 − ρ0

|ρ0| > 0 . (2.35)

The restriction τ0 > ρ0 is a somewhat troublesome condition, depending on one’s
point of view, as it states that the radial tension at the throat should exceed the energy
density. Thus,Morris and Thorne coinedmatter constrained by this condition “exotic
matter” [1]. We shall verify below that this is defined as matter that violates the null
energy condition (in fact, it violates all the energy conditions) [1, 2].

Exotic matter is particularly troublesome for measurements made by observers
traversing through the throatwith a radial velocity close to the speed of light. Consider
a Lorentz transformation, x μ̂′ = Λμ̂′

ν̂ x ν̂ , withΛμ̂
α̂′ Λα̂′

ν̂ = δμ̂
ν̂ andΛμ̂

ν̂ ′ defined as
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(Λμ̂
ν̂ ′) =

⎡

⎢
⎢
⎣

γ 0 0 γ v
0 1 0 0
0 0 1 0
γ v 0 0 γ

⎤

⎥
⎥
⎦ . (2.36)

The energy density measured by these observers is given by T0̂′0̂′ = Λμ̂
0̂′ Λν̂

0̂′ Tμ̂ν̂ ,
i.e.

T0̂′0̂′ = γ 2 (ρ0 − v2τ0) , (2.37)

with γ = (1 − v2)−1/2. For sufficiently high velocities, v → 1, the observer will
measure a negative energy density, T0̂′0̂′ < 0.

This feature also holds for any traversable, nonspherical and nonstatic wormhole.
To see this, one verifies that a bundle of null geodesics that enters the wormhole at
one mouth and emerges from the other must have a cross-sectional area that initially
increases, and then decreases. This conversion of decreasing to increasing is due
to the gravitational repulsion of matter through which the bundle of null geodesics
traverses.

2.1.5.2 The Violation of the Energy Conditions

The exoticity function (2.33) is closely related to the null energy condition (NEC),
which asserts that for any null vector kμ, we have Tμνkμkν ≥ 0. For a diagonal
stress–energy tensor, this implies ρ − τ ≥ 0 and ρ + p ≥ 0. Using the Einstein field
equations (2.28) and (2.29), evaluated at the throat r0, and taking into account the
finite character of the redshift function so that (1 − b/r)Φ ′|r0 → 0, we verify the
condition (ρ − τ)|r0 < 0. This violates the NEC. In fact, it implies the violation of
all the pointwise energy condition. Although classical forms of matter are believed
to obey the energy conditions, it is a well-known fact that they are violated by certain
quantum fields, amongst which we may refer to the Casimir effect. Thus, the flaring-
out condition (2.8) entails the violation of the NEC, at the throat. Note that negative
energy densities are not essential, but negative pressures are necessary to sustain the
wormhole throat.

It is interesting to note that the violations of the pointwise energy conditions led
to the averaging of the energy conditions over timelike or null geodesics [11]. The
averaged energy conditions permit localized violations of the energy conditions, as
long on average the energy conditions hold when integrated along timelike or null
geodesics. Now, as the averaged energy conditions involve averaging over a line
integral, with dimensions (mass)/(area), not a volume integral, they do not provide
useful information regarding the “total amount” of energy condition violatingmatter.
In order to overcome this shortcoming, the “volume integral quantifier”was proposed
[12]. Thus, the amount of energy condition violations is then the extent that these
integrals become negative.
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2.1.5.3 Wormholes in Modified Theories of Gravity

Generally, the NEC arises when one refers back to the Raychaudhuri equation,
which is a purely geometric statement, without the need to refer to any gravitational
field equations. Now, in order for gravity to be attractive, the positivity condition
Rμνkμkν ≥ 0 is imposed in the Raychaudhuri equation. In general relativity, con-
tracting both sides of the Einstein field equationGμν = κ2Tμν (where κ2 = 8π ) with
any null vector kμ, one can write the above condition in terms of the stress–energy
tensor given by Tμνkμkν ≥ 0, which is the statement of the NEC.

In modified theories of gravity the gravitational field equations can be rewritten
as an effective Einstein equation, given by Gμν = κ2T eff

μν , where T
eff
μν is an effective

stress–energy tensor containing thematter stress–energy tensor Tμν and the curvature
quantities, arising from the specific modified theory of gravity considered [13]. Now,
the positivity condition Rμνkμkν ≥ 0 in the Raychaudhuri equation provides the
generalized NEC, T eff

μν k
μkν ≥ 0, through the modified gravitational field equation.

Therefore, the necessary condition to have a wormhole geometry is the violation
of the generalized NEC, i.e. T eff

μν k
μkν < 0. In classical general relativity this simply

reduces to the violation of the usual NEC, i.e. Tμνkμkν < 0. However, in modified
theories of gravity, one may in principle impose that the matter stress–energy tensor
satisfies the standard NEC, Tμνkμkν ≥ 0, while the respective generalized NEC is
necessarily violated, T eff

μν k
μkν < 0, in order to ensure the flaring-out condition.

More specifically, consider the generalized gravitational field equations for a large
class of modified theories of gravity, given by the following field equation: [13]

g1(Ψ
i )(Gμν + Hμν) − g2(Ψ

j ) Tμν = κ2 Tμν , (2.38)

where Hμν is an additional geometric term that includes the geometrical modifi-
cations inherent in the modified gravitational theory under consideration; gi (Ψ j )

(i = 1, 2) are multiplicative factors that modify the geometrical sector of the field
equations, andΨ j denote generically curvature invariants or gravitational fields such
as scalar fields; the term g2(Ψ i ) covers the coupling of the curvature invariants or
the scalar fields with the matter stress–energy tensor, Tμν .

It is useful to rewrite this field equation as an effective Einstein field equation, as
mentioned above, with the effective stress–energy tensor, T eff

μν , given by

T eff
μν ≡ 1 + ḡ2(Ψ j )

g1(Ψ i )
Tμν − H̄μν , (2.39)

where ḡ2(Ψ j ) = g2(Ψ j )/κ2 and H̄μν = Hμν/κ
2 are defined for notational conve-

nience.
In modified gravity, the violation of the generalized NEC, T eff

μν k
μkν < 0, implies

the following restriction:


