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Preface

The Third International Workshop on Numerical Analysis and Lattice QCD
took place at the University of Edinburgh from June 30th to July 4th, 2003. It
continued a sequence which started in 1995 at the University of Kentucky and
continued in 1999 with a workshop at the University of Wuppertal. The aim of
these workshops is to bring together applied mathematicians and theoretical
physicists to stimulate the exchange of ideas between leading experts in the
fields of lattice QCD and numerical analysis. Indeed, the last ten years have
seen quite a substantial increase in cooperation between the two scientific
communities, and particularly so between numerical linear algebra and lattice
QCD.

The workshop was organised jointly by the University of Edinburgh and
the UK National e-Science Centre. It promoted scientific progress in lattice
QCD as an e-Science activity that encourages close collaboration between the
core sciences of physics, mathematics, and computer science.

In order to achieve more realistic computations in lattice quantum field
theory substantial progress is required in the exploitation of numerical meth-
ods. Recently, there has been much progress in the formulation of lattice chiral
symmetry satisfying the Ginsparg–Wilson relation. Methods for implement-
ing such chiral fermions efficiently were the principal subject of this meeting,
which, in addition, featured several tutorial talks aiming at introducing the
important concepts of one field to colleagues from the other. These proceed-
ings reflect this, being organised in three parts: part I contains introductory
survey papers, whereas parts II and III contain latest research results in lattice
QCD and in computational methods.

Part I starts with a survey paper by Neuberger on lattice chiral symmetry:
it reviews the important mathematical properties and concepts, and related
numerical challenges. This article is followed by a contribution of Davies and
Higham on numerical techniques for evaluating matrix functions, the matrix
sign function being the common link between these two first articles. Then,
Boriçi reviews the state-of-the-art for computing the fermion determinant with
a focus on Krylov methods. He also shows that another version of fermions
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respecting chiral symmetry, so-called domain wall fermions, is very closely
related to overlap fermions when it comes to numerical computations. Finally,
Peardon addresses aspects of stochastic processes and molecular dynamics in
QCD simulations. In particular, he reviews the Hybrid Monte Carlo method
(HMC), the work-horse of lattice QCD simulations.

Part II starts with a contribution by Boriçi on statistical aspects of the
computation of the quark determinant: he suggests using order-statistics esti-
mators rather than noisy methods to eliminate bias, and illustrates this with
results for the Schwinger model. The paper by de Forcrand and Jahn studies
Monte Carlo for SU(N) Young-Mills theories: instead of the usual approach of
accumulating SU(2) updates, they perform overrelaxation in full SU(N) and
show that this approach is more efficient in practical simulations. In the next
article, Follana considers various improvements of classical staggered fermi-
ons: for the pion spectrum he shows that undesirable doublers at light quark
masses can indeed be avoided by such improvements. Drummond et al. also
consider improved gauge actions, now using twisted boundary conditions as
an infrared regulator: as they show, the resulting two-loop Landau-mean-links
accurately describe high-β Monte Carlo simulations. The contribution by Joó
is devoted to the study of potential instabilities in Hybrid Monte Carlo sim-
ulations: a theoretical study is presented for the simple harmonic oscillator;
implications for (light quark) QCD simulations are discussed and illustrated
by numerical experiments. The paper by Liu discusses a canonical ensemble
approach to finite baryon density algorithms: several stochastic techniques are
required there, including a new Hybrid Noisy Monte Carlo algorithm to re-
duce large fluctuations. The article by Young, Leinweber and Thomas presents
finite-range regularized effective field theory as an efficient tool to study the
quark mass variation of QCD observables: this includes regularisation schemes
and extrapolation methods for the nucleon mass about the chiral limit.

Part III starts with a paper by Ashby, Kennedy and O’Boyle on a new soft-
ware package implementing Krylov subspace solvers in a modular manner: the
main idea is to gain flexibility and portability by separating the generation
of the basis from the actual computation of the iterates. The paper by van
den Eshof, Sleijpen and van Gijzen analyses Krylov subspace methods in the
presence of only inexact matrix vector products; as an important practical
consequence, they are able to devise strategies on how to tune the accuracy
requirements yielding an overall fastest method, recursive preconditioning be-
ing a major ingredient. Fleming addresses data analysis and modelling for
data resulting from lattice QCD calculations: he shows that the field might
highly profit from elaborate techniques used elsewhere, like Baysian methods,
constrained fitting or total least squares. The paper by Arnold et al. compares
various Krylov subspace methods for different formulations of the overlap op-
erator; a less known method (SUMR), having had no practical applications so
far, turns out to be extremely relevant here. In the next article, Kennedy dis-
cusses theoretical and computational aspects of the Zolotarev approximation.
This is a closed formula L∞ best rational approximation to the sign function
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on two intervals left and right of zero, and its efficient matrix evaluation is of
crucial importance in simulations of overlap fermions. Finally, Wenger uses a
continued fraction expansion of the sign function to show that overlap fermi-
ons are intimately related to the 5-dimensional formulation of lattice chiral
symmetry: based on this he shows he that equivalence transformations can be
used to make the operators involved better conditioned.

We would like to express our gratitude to the authors of the present volume
for their effort in writing their contribution. All papers have undergone a strict
refereeing process and we would like to extend our thanks to all the referees
for their thorough reviewing. AF and ADK gratefully acknowledge support by
the Kavli Institute of Theoretical Physics (KITP), Santa Barbara (supported
in part by the National Science Foundation under Grant No. PHY99–07949).

The book cover shows a QCD-simulation of quark confinement, a result
from a simulation run at Wuppertal University. We are very thankful to
Thomas Lippert and Klaus Schilling for providing us with the picture. Spe-
cial thanks are also due to the LNCSE series editors and to Thanh-Ha Le Thi
from Springer for the always very pleasant and efficient cooperation during
the preparation of this volume.

Edinburgh, Santa Barbara, Pahrump, Tirana Artan Boriçi
March 2005 Andreas Frommer

Bálint Joó
Anthony D. Kennedy

Brian Pendleton
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Bálint Joó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Finite Baryon Density Algorithm
Keh-Fei Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

The Nucleon Mass in Chiral Effective Field Theory
Ross D. Young, Derek B. Leinweber, Anthony W. Thomas . . . . . . . . . . . . 113

Part III Computational Methods

A Modular Iterative Solver Package in a Categorical Language
T.J. Ashby, A.D. Kennedy, M.F.P. O’Boyle . . . . . . . . . . . . . . . . . . . . . . . . . 123

Iterative Linear System Solvers with Approximate
Matrix-vector Products
Jasper van den Eshof, Gerard L.G. Sleijpen, Martin B. van Gijzen . . . . . 133

What Can Lattice QCD Theorists Learn from NMR
Spectroscopists?
George T. Fleming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Numerical Methods for the QCD Overlap Operator: II.
Optimal Krylov Subspace Methods
Guido Arnold, Nigel Cundy, Jasper van den Eshof, Andreas Frommer,
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An Introduction to Lattice Chiral Fermions

Herbert Neuberger

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08540,
USA neuberg@physics.rutgers.edu

Summary. This write-up starts by introducing lattice chirality to people possessing
a fairly modern mathematical background, but little prior knowledge about modern
physics. I then proceed to present two new and speculative ideas.

1 Review

1.1 What are Dirac/Weyl Fermions?

One can think about (Euclidean) Field Theory as of an attempt to define integrals
over function spaces [1]. The functions are of different types and are called fields. The
integrands consist of a common exponential factor multiplied by various monomials
in the fields. The exponential factor is written as exp(S) where the action S is a
functional of the fields. Further restrictions on S are: (1) locality (2) symmetries.
Locality means that S can be written as an integral over the base space (space-time)
which is the common domain of all fields and the integrand at a point depends at
most exponentially weakly on fields at other, remote, space-time points. S is required
to be invariant under an all important group of symmetries that act on the fields. In
a sense, S is the simplest possible functional obeying the symmetries and generically
represents an entire class of more complicated functionals, which are equivalently
appropriate for describing the same physics.

Dirac/Weyl fields have two main characteristics: (1) They are Grassmann valued,
which means they are anti-commuting objects and (2) there is a form of S, possibly
obtained by adding more fields, where the Dirac/Weyl fields, ψ, enter only quadrat-
ically. The Grassmann nature of ψ implies that the familiar concept of integration
needs to be extended. The definition of integration over Grassmann valued fields is
algebraic and for an S where the ψ fields enter quadratically, as in S = ψ̄Kψ + ....,
requires only the propagator, K−1, and the determinant, detK. Hence, only the
linear properties of the operator K come into play, and concepts like a “Grassmann
integration measure” are, strictly speaking, meaningless, although they make sense
for ordinary, commuting, field integration variables.

Let us focus on a space-time that is a a 4D Euclidean flat four torus, with
coordinates xµ, µ = 1, 2, 3, 4. Introduce the quaternionic basis σµ represented by
2 × 2 matrices:
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σ1 =

(
0 1
1 0

)
σ2 =

(
0 −ı
ı 0

)
σ3 =

(
−1 0
0 1

)
σ4 =

(
ı 0
0 ı

)
The ψ fields are split into two kinds, ψ̄ and ψ, each being a two component function
on the torus. In the absence of other fields the Weyl operators playing the role of
the kernel K are W = σµ∂µ and W † = −σ†

µ∂µ. The Dirac operator is made by
combining the Weyl operators:

D =

(
0 W

−W † 0

)
=

(
0 σµ

σ†
µ 0

)
∂µ ≡ γµ∂µ = −D†

The σµ obey
σ†

µσν + σ†
νσµ = 2δµν σµσ

†
ν + σνσ

†
µ = 2δµν

which implies W †W = −∂µ∂µ = −∂2

(
1 0
0 1

)
. Thus, one can think about W as a

complex square root of the Laplacian. Similarly, one has D†D = DD† = −D2, with
D2 being −∂2 times a 4 × 4 unit matrix.

When we deal with gauge theories there are other important fields [2]. These are
the gauge fields, which define a Lie algebra valued one-form on the torus, denoted by
A ≡ Aµdxµ. We shall take Aµ(x) to be an anti-hermitian, traceless, N ×N matrix.
The 1-form defines parallel transport of N -component complex fields Φ by:

Φ(x(1)) = Pe
∫
C A·dxΦ(x(0))

where xµ(t), t ∈ [0, 1] is a curve C connecting x(0) to x(1) and P denotes path order-
ing, the ordered product of N×N matrices being implicit in the exponential symbol.
Covariant derivatives, Dµ = ∂µ−Aµ, have as main property the transformation rule:

g†(x)Dµ(A)g(x) = Dµ(Ag) Ag ≡ A− g†dg

where the g(x) are unitary N × N matrices with unit determinant. The replace-
ment of ∂µ by Dµ is known as the principle of minimal substitution and defines
A-dependent Weyl and Dirac operators. A major role is played by local gauge trans-
formations, defined by ψ → gψ, ψ̄ → ψ̄g† and A → Ag where ψ is viewed as a
column and ψ̄ as a row. The gauge transformations make up an infinite invariance
group and only objects that are invariant under this group are of physical interest.
In particular, S itself must be gauge invariant and the ψ dependent part of it is of
the form Sψ =

∫
x
ψ̄Wψ with W possibly replaced by W † or by D.

Formally, W−1 is gauge covariant and detW is gauge invariant. Both the con-
struction of W and of D meet with some problems: (1) W may have exact “zero
modes”, reflecting a nontrivial analytical index. The latter is an integer defined as
dimKerW †(A)−dim KerW (A). It is possible for this integer to be non-zero because
the form A is required to be smooth only up to gauge transformations. The space
of all A’s then splits into a denumerable collection of disconnected components,
uniquely labeled by the index. The integration over A is split into a sum over com-
ponents with associated integrals restricted to each component. (2) detW cannot
always be defined in a gauge invariant way, but det(W †W ) = | detW |2 can. Thus,
detW is to be viewed as a certain square root of | detW |2, but, instead of being
a function over the spaces of A it is a line bundle. As a line bundle it can be also
viewed as a line bundle over the space of gauge orbits of A, where a single orbit
is the collection of all elements Ag for a fixed A and all g. The latter bundle may
be twisted, and defy attempts to find a smooth gauge invariant section. When this
happens we have an anomaly.



An Introduction to Lattice Chiral Fermions 5

1.2 Why is There a Problem on the Lattice?

Lattice field theory [3] tries to construct the desired functional integral by first
replacing space-time by a finite, uniform, toroidal square lattice and subsequently
constructing a limit in which the lattice spacing, a, is taken to zero. Before the limit
is taken functional integration is replaced by ordinary integration producing well
defined quantities. One tries to preserve as much as possible of the desired symmetry,
and, in particular, there is a symmetry group of lattice gauge transformations given
by
∏

x SU(N), where x denotes now a discrete lattice site.
The one-form A is replaced by a collection of elementary parallel transporters,

the link matrices Uµ(x), which are unitary and effect parallel transport from the site
x to the neighboring site to x in the positive µ direction. Traversal in the opposite
direction goes with U†

µ(x). The fields ψ̄ and ψ are now defined at lattice sites only. As
a result, W,W † become finite square matrices. Here are the main problems faced by
this construction: (1) The space of link variables is connected in an obvious way and
therefore the index of W will vanish always. Indeed, W is just a square matrix. (2)
detW is always gauge invariant, implying that anomalies are excluded. In particular,
there no longer is any need to stop the construction at the intermediate step of a
line bundle. These properties show that no matter how we proceed, the limit where
the lattice spacing a goes to zero will not have the required flexibility.

1.3 The Basic Idea of the Resolution

The basic idea of the resolution [4] is to reintroduce a certain amount of indeter-
minacy by adding to the lattice version a new infinite dimensional space in which
ψ is an infinite vector, in addition to its other indices. Other fields do not see this
space, and different components of ψ are accordingly referred to as flavors. Among
all fields, only the ψ fields come in varying flavors. W shall be replaced by a linear
operator that acts nontrivially in the new flavor space in addition to its previous
actions. The infinite dimensional structure is chosen as simple as possible to provide
for, simultaneously, good mathematical control, the emergence of a non-zero index
and the necessity of introducing an intermediary construction of detW as a line
bundle [5].

The structure of the lattice W operator is that of a lattice Dirac type operator.
This special lattice Dirac operator, D, has a mass, acting linearly in flavor space.
With this mass term, the structure of our lattice D is:

D =

(
aM† aW

−aW † aM

)
Only M acts nontrivially in flavor space. To obtain a single Weyl field relevant for
the subspace corresponding to small eigenvalues of −D2, the operator M is required
to satisfy: (1) the index of M is unity (2) the spectrum of MM† is bounded from
below by a positive number, Λ2. (Λa)2 is of order unity and kept finite and fixed
as a → 0. In practice it is simplest to set the lattice spacing a to unity and take
all other quantities to be dimensionless. Dimensional analysis can always be used
to restore the powers of a. In the continuum, we always work in the units in which
c = � = 1. Numerical integration routines never know what a is in length units. The
lower bound on MM† is taken to be of order unity.
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The index structure of M ensures that, for eigenvalues of −D2 that are small
relative to unity, the relevant space is dominated by vectors with vanishing upper
components. These vectors are acted on by the W sub-matrix of D. Moreover, the
main contribution comes from the zero mode of M , so, both the infinite flavor space
and the extra doubling implicit in using a Dirac operator, become irrelevant for the
small eigenvalues of −D2 and their associated eigenspace.

The standard choice for M stems from a paper by Callan and Harvey [6] which
has been ported to the lattice by Kaplan [7]. The matrix M is given by a first order
differential (or difference) operator of the form −∂s +f(s), where s is on the real line
and represents flavor space. f(s) is chosen to be the sign function, but could equally
well just have different constant absolute values for s positive and for s negative.

The construction of the lattice determinant line bundle will not be reviewed here
and we shall skip ahead directly to the overlap Dirac operator.

1.4 The Overlap Dirac Operator

The continuum Dirac operator combines two independent Weyl operators. The Weyl
components stay decoupled so long as there is no mass term, and admit indepen-
dently acting symmetries. Thus, zero mass Dirac fields have more symmetry than
massive ones. In particular, this implies that radiative corrections to small Dirac
masses must stay proportional to the original mass, to ensure exact vanishing in the
higher symmetry case. A major problem in particle physics is to understand why all
masses are so much smaller than the energy at which all gauge interactions become
of equal strength and one of the most important examples of a possible explana-
tion is provided by the mechanism of chiral symmetry. Until about six years ago it
was believed that one could not keep chiral symmetries on the lattice and therefore
lattice work with small masses required careful tuning of parameters.

Once we have a way to deal with individual Weyl fermions, it must be possible
to combine them pair-wise just as in the continuum and end up with a lattice Dirac
operator that is exactly massless by symmetry. This operator is called the overlap
Dirac operator and is arrived at by combining the two infinite flavor spaces of each
Weyl fermion into a new single infinite space [8]. However, unlike the infinite space
associated with each Weyl fermion, the combined space can be viewed as the limit
of a finite space. This is so because the Dirac operator does not have an index –
unlike the Weyl operator – nor does it have an ill defined determinant. Thus, there
is no major problem if the lattice Dirac operator is approximated by a finite matrix.
The two flavor spaces are combined simply by running the coordinate s first over
the values for one Weyl component and next over the values for the other Weyl
component. Since one Weyl component comes as the hermitian conjugate of the
other it is no surprise that the coordinate s will be run in opposite direction when
it is continued. Thus, one obtains an infinite circle, with a combined function f(s)
which is positive on half of the circle and negative on the other. The circle can be
made finite and then one has only approximate chiral symmetry [9]. One can analyze
the limit when the circle goes to infinity and carry out the needed projection on the
small eigenvalue eigenspaces to restrict one to only the components that would
survive in the continuum limit. The net result is a formula for the lattice overlap
Dirac operator, Do [8].

To explain this formula one needs, as a first step, to introduce the original lattice
Dirac operator due to Wilson, DW . That matrix is the most sparse one possible with
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the right symmetry properties, excepting chiral symmetry. It is used as a kernel of
the more elaborate construction needed to produce produce Do. Any alternative to
DW will produce, by the same construction, a new Do, possibly enhancing some of
its other properties. The original Do is still the most popular, because the numerical
advantage of maximal sparseness of DW has proven hard to beat by benefits coming
from other improvements. Thus, we restrict ourselves here only to DW .

DW = m+ 4 −∑µ Vµ

Vµ =
1−γµ

2
Tµ +

1+γµ

2
T †

µ

〈x|Tµ|Φi〉 = Uµ(x)ij〈x|Φj〉

Uµ(x)U†
µ(x) = 1 γµ =

(
0 σµ

σ†
µ 0

)
γ5 = γ1γ2γ3γ4

|Φi〉 is a vector with components labeled by the sites x. The notation indicates
that this is the i-th component of a vector |Φ〉 with components labeled by both a
site x and a group index, j. It is easy to see that VµV

†
µ = 1, so DW is bounded.

HW = γ5DW is hermitian and sparse. The parameter m must be chosen in the
interval (−2, 0), and typically is around −1. For gauge fields that are small, the
link matrices are close to unity and a sizable interval around zero can be shown
to contain no eigenvalues of HW [10]. This spectral gap can close for certain gauge
configurations, but these can be excluded by a simple local condition on the link
matrices. When that condition is obeyed, and otherwise independently on the gauge
fields, all eigenvalues of H2

W are bigger than some positive number µ2. This makes it
possible to unambiguously define the sign function of HW , ε(HW ). Moreover, ε(HW )
can be infinitely well approximated by a smooth function so long as µ2 > 0. Since, in
addition, the spectrum of HW is bounded from above, Weierstrass’s approximation
theorem applies and one can approximate uniformly ε(HW ) by a polynomial in
HW . Thus, as a matrix, ε is no longer sparse, but, for µ2 > 0, it still is true that
entries associated with lattice sites separated by distances much larger than 1

µ
are

exponentially small.
The exclusion of some configurations ruins the simple connectivity of the space

of link variables just as needed to provide for a lattice definition of the integer n,
which in the continuum labels the different connected components of gauge orbit
space. The appropriate definition of n on the lattice is [11]

n =
1

2
Trε(HW )

It is obvious that it gives an integer since HW must have even dimensions as is
evident from the structure of the γ-matrices. Moreover, it becomes very clear why
configurations for which HW could have a zero eigenvalue needed to be excised.
These configurations were first found to need to be excised when constructing the
lattice version of the detW line bundle.

The overlap Dirac operator is

Do =
1

2
(1 + γ5ε(HW ))

γ5 and ε make up a so called “Kato pair” with elegant algebraic properties [12].
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1.5 What About the Ginsparg-Wilson Relation?

In practice, the inverse of Do is needed more than Do itself. Denoting γ5ε(HW ) = V ,
where V is unitary and obeys “γ5-hermiticity”, γ5V γ5 = V †, we easily prove that
D−1

o = 2
1+V

obeys

{γ5, D
−1
o − 1} = 0

Here, we introduced the anti-commutator {a, b} ≡ ab + ba. In the continuum, the
same relation is obeyed by D−1 and reflects chiral symmetry. We see that a slightly
altered propagator will be chirally symmetric. The above equation, modifying the
continuum relation {γ5, D

−1} = 0, was first written down by Ginsparg and Wilson
(GW) in 1982 [14] in a slightly different form. By a quirk of history, their paper
became famous only after the discovery of Do. The main point of the GW paper
is that shifting an explicitly chirally symmetric propagator by a matrix which is
almost diagonal in lattice sites and unity in spinor space does not destroy physical
chiral symmetry.

It turns out that the explicitly chirally symmetric propagator, 1−V
1+V

, can be used

as the propagator associated with the monomials of the fields that multiply eS , but in
other places where the propagator appears (loops), one needs to use the more subtly
chirally symmetric propagator, D−1

o = 2
1+V

. This dichotomy is well understood and
leads to no inconsistencies [15].

Any solution of the GW relation, if combined with γ5 hermiticity, is of the form
2

1+V
, producing a propagator which anti-commutes with γ5 of the form 1−V

1+V
. V is a

unitary, γ5-hermitian, matrix. Thus the overlap is the general γ5-hermitian solution
to the GW relation, up to an inconsequential generalization which adds a sparse,
positive definite, kernel matrix to the GW relation. The overlap goes beyond the
GW paper in providing a generic procedure to produce explicit acceptable matrices
V starting from explicit matrices of the same type as HW .

When the GW relation was first presented, in 1982, the condition of γ5-
hermiticity was not mentioned. The solution was not written in terms of a unitary
matrix V , and there was no explicit proposal for the dependence of the solution on
the gauge fields. For these reasons, the paper fell into oblivion, until 1997, when Do

was arrived at by a different route. With the benefit of hindsight we see now that it
was a mistake not to pursue the GW approach further.

In 1982 neither the mathematical understanding of anomalies - specifically the
need to find a natural U(1) bundle replacing the chiral determinant - nor the para-
mount importance of the index of the Weyl components were fully appreciated. Only
after these developments became widely understood did it become possible to ap-
proach the problem of lattice chirality from a different angle and be more successful
at solving it. The convergence with the original GW insight added a lot of credence
to the solution and led to a large number of papers based on the GW relation.

Already in 1982 GW showed that if a solution to their relation were to be
found, the slight violation of anti-commutativity with γ5 that it entailed, indeed was
harmless, and even allowed for the correct reproduction of the continuum triangle
diagram, the key to calculating anomalies. Thus, there was enough evidence in 1982
that should have motivated people to search harder for a solution, but this did not
happen. Rather, the prevailing opinion was that chirality could not be preserved on
the lattice. This opinion was fed by a an ongoing research project which attempted
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to solve the lattice chirality problem by involving extra scalar fields, interacting with
the fermions by trilinear (Yukawa) interactions. In this approach one ignored the
topological properties of the continuum Dirac operator with respect to the gauge
background. The Yukawa models never worked, but the people involved did not
attribute this to the failing treatment of topology, and slowly the feeling that chiral
symmetry could not be preserved on the lattice took root.

In retrospect, something went wrong in the field’s collective thought process,
but parallel developments mentioned earlier eventually provided new impetus to
deal with the problem correctly. Luckily, this second opportunity was not missed.
There was however substantial opposition and even claims that the new approach
was not different from the one based on Yukawa interactions, and therefore, was
unlikely to be correct [16].

After the discovery ofDo, fifteen years after the GW paper, a flood of new papers,
developing the GW approach further, appeared. Because the overlap development
already had produced all its new conceptual results by then, no further substantial
advance took place. For example, the importance of topology was reaffirmed in a
GW framework [17], but the overlap already had completely settled this issue several
years earlier. However, this renewed activity generated enough reverberations in the
field to finally eradicate the prevailing assumption of the intervening years, that
chiral symmetry could not be preserved on the lattice.

1.6 Basic Implementation

Numerically the problem is to evaluate ε(HW ) on a vector, without storing it, basing
oneself on the sparseness of HW . This can be done because, possibly after deflation,
the spectrum of HW has a gap around 0, the point where the sign function is discon-
tinuous. In addition, since HW is bounded we need to approximate the sign function
well only in two disjoint segments, one on the positive real line and the other its
mirror image on the negative side. A convenient form is the Higham representation,
which introduces εn(x) as an approximation to the sign function:

εn(x) =

⎧⎨⎩
tanh[2n tanh−1(x)] for |x| < 1
tanh[2n tanh−1(x−1)] for |x| > 1
x for |x| = 1

Equivalently,

εn(x) =
(1 + x)2n − (1 − x)2n

(1 + x)2n + (1 − x)2n
=
x

n

n∑
s=1

1

x2 cos2
[

π
2n

(
s− 1

2

)]
+ sin2

[
π
2n

(
s− 1

2

)]
lim

n→∞
εn(x) = sign(x)

εn(HW )ψ can be evaluated using a single Conjugate Gradient (CG) iteration
with multiple shifts for all the pole terms labeled by s above [18]. The cost in op-
erations is that of a single CG together with an overhead that is linear in n and
eventually dominates. The cost in storage is of 2n large vectors. The pole represen-
tation can be further improved using exact formulae due to Zolotarev who solved
the Chebyshev approximation problem analytically for the sign function, thus elim-
inating the need to use the general algorithm due to Remez. However, for so called
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quenched simulations, where one replaces detDo by unity in the functional integra-
tion, the best is to use a double pass [19] version introduced a few years ago but fully
understood only recently [20]. In the double pass version storage and number of op-
erations become n-independent for large n, which, for double precision calculations
means an n larger than 30 or so. Thus, the precise form of the pole approxima-
tion becomes irrelevant and storage requirements are modest. In “embarrassingly
parallel” simulations this is the method of choice because it simultaneously attains
maximal numerical accuracy and allows maximal exploitation of machine cycles.

When one goes beyond the detDo = 1 approximation, one needs to reconsider
methods that employ order n storage. A discussion of the relevant issues in this case
would take us beyond the limits of this presentation; these issues will be covered by
other speakers who are true experts.

2 Beyond Overlap/GW?

The overlap merged with GW because both ideas exploited a single real extra coor-
dinate. The starting point of the overlap construction however seems more general,
since it would allow a mass matrix in infinite flavor space even if the latter were
associated with two or more coordinates. Thus, one asks whether using two extra
coordinates might lead to a structurally new construction [21]. While this might not
be better in practice, it at least has the potential of producing something different,
unattainable if one just sticks to the well understood GW track.

The function f(s) from the overlap is replaced now by two functions f1(s1)
and f2(s2) and the single differential operator ∂s + f(s) by two such operators,
dα = ∂α + fα(sα). Clearly, d1 and d2 commute. A mass matrix with the desired
properties can be now constructed as follows:

M =

(
d1 −id†2
id2 −d†1

)
The two dimensional plane spanned by sα is split into four quadrants according to
the pair of signs of fα and, formally, the chiral determinant can be written as the
trace of four Baxter Corner Transfer Matrices,

chiral det = Tr[KIKIIKIIIKIV]

While this structure is intriguing, I have made no progress yet on understanding
whether it provides a natural definition of a U(1) bundle with the right properties.
If it does, one could go over to the Dirac case, and an amusing geometrical picture
seems to emerge. It is too early to tell whether this idea will lead anywhere or not.

3 Localization and Domain Wall Fermions

3.1 What are Domain Wall Fermions?

Before the form of Do was derived we had a circular s space with f(s) changing
sign at the opposite ends of a diameter. One of the semi-circles can be eliminated by
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taking |f(s)| to infinity there, leaving us with a half circle that can be straightened
into a segment with two approximate Weyl fields localized at its ends. This is known
as the domain wall setup, the walls extending into the physical directions of space-
time. Keeping the length of the segment finite but large one has approximate chiral
symmetry and an operator DDW which acts on many Dirac fields, exactly one of
them having a very small effective mass, and the rest having masses of order unity.

The chiral symmetry is only approximate because matrix elements of 1

D
†
DW

DDW

connecting entries associated with opposite ends of the segment, L and R, do not
vanish exactly. Using a spectral decomposition of D†

DWDDW we have:

〈L| 1

D†
DWDDW

|R〉 =
∑

n

1

Λn
〈Ψn|R〉〈Ψn|L〉∗ 〈Ψn|Ψn〉 = 1

Weyl states are localized at L and R and should not connect with each other. So
long as the distance between R and L is infinite and H2

W > µ2 this is exactly proven
to be the case. For a finite distance S, the correction goes as e−µS . Unfortunately,
µ can be very small numerically and this would require impractically large values
of S. Note that the worse situation occurs if one has simultaneously a relatively
large wave-function contribution, |〈Ψn|R〉〈Ψn|L〉|, and a small Λn. Unfortunately,
this worse case seems to come up in practice.

3.2 The Main Practical Problem

As already mentioned, for the purpose of keeping track of detDo, one may want to
keep in the simulation the dependence on the coordinate s, or, what amounts to a
logical equivalent, the n fields corresponding to the pole terms in the sign function
truncation. This is the main reason to invest resources in domain wall simulations.
In my opinion, if one works in the approximation where detDo = 1 it does not
pay to deal with domain wall fermions because it is difficult to safely assess the
magnitude of chirality violating effects in different observables.

The main problem faced by practical domain wall simulations is that in the
range of interest for strong interaction (QCD) phenomenology HW , the kernel of
the overlap, has eigenstates with very small eigenvalues in absolute value. It turns
out that these states are strongly localized in space-time. However, because of ap-
proximate translational invariance in s they hybridize into delocalized bands into
the extra dimension. As such, they provide channels by which the Weyl modes at
the two locations L and R, where the combined f(s) vanishes, communicate with
each other, spoiling the chiral symmetry. To boot, these states have small Λn. The
one way known to eliminate this phenomenon is to take the separation between the
Weyl modes to infinity. This leads to the overlap where the problem becomes only
of a numerical nature and is manageable by appropriately deflating HW to avoid
the states for which the reconstruction of the sign function by iterative means is too
expensive.

3.3 The New Idea

The new idea is to exploit the well known fact that one dimensional random systems
typically always localize. The standard approach uses a homogeneous s coordinate;


