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Preface

The boundary-layer flow past bodies of finite lengths has a long history as old as the
concept of boundary-layer itself. Such kind of flows had completely been explored
till the completion of first fifty years of the boundary-layer theory. In contrast, the
boundary-layer flow due to moving continuous surfaces was first introduced in
1961, almost six decades later to the idea of boundary-layer. Besides the interesting
nature of this flow, it has so far not been explored in complete. Even the
two-dimensional self-similar case of this flow cannot be claimed to be fully
explored and understood, despite the presence of hundreds of published research
papers on this flow. The biggest misfortune with this flow is that it had never been
studied completely; rather, the developments on this flow had been contributed in
bits. The situation is far worse in the cases of axisymmetric and three-dimensional
flows of this class. Only the self-similar laminar flows of this type have so far been
investigated in literature, and no attention has been given to the non-similar and
turbulent flows at all.

A critical review of the published literature on this topic reveals the presence of
huge number of those published research papers which do involve incorrect and
misleading analyses. Unfortunately, after getting published, such researches
become an authentic reference regarding the further propagation and justification of
such misleading erroneous analyses. In this way, the research on this topic has, by a
lot, went rotten because of the publication of huge number of erroneous research
papers. Unfortunately, the published wrong results are immediately adopted by the
others instead of correcting them. In such a messy situation, it is really quite hard to
correct all such erroneous literature by making all the audience aware of such
mistakes.

A thorough review of the available literature on this topic concludes that the
majority of the errors have arose due to the incorrect self-similar formulation of the
governing systems; examples can be given of the problems concerning shrinking
surfaces or those involving local parameters in the governing equations. Therefore,
it seems that if the concept of self-similarity could be explained in detail and the
construction of self-similar variables of these flows could be made available, then
the errors are expected to be minimized to an appreciable extent. Such an
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elaboration can further be expected to be helpful to the researchers in the explo-
ration of further self-similar flows of this class.

After having a realization of the above facts, the author had continuously been
worried, since last few years, regarding the correction of aforementioned incorrect
analyses. Writing a correction or comment to every such paper was, however, quite
inconvenient in this regard. Finally, it was decided to identify the root causes of
such incorrect analyses and the way out toward their correction and to report this all
in the form of a book at once. In this regard, the incomplete understanding of the
self-similarity was identified to be the major root cause behind all such incorrect
analyses, at the most, as pointed out in the above paragraph. In view of these facts,
the primary objective of this book is threefold: first, to elaborate the general cri-
terion of self-similarity by reporting the general self-similarity criterion for the
planar and the axisymmetric cases; second, the presentation of correct shrinking
surface flow analysis which could negate most of the “mysterious” facts associated
with this flow; and third, to introduce the non-similar flows of this class in the said
two cases, namely the planar and the axisymmetric ones. In this regard, the
self-similarity criterion for this class of flows has completely been determined and
the associated self-similar governing systems have been developed. Correct
self-similar formulation of the shrinking sheet flow has been reported, and the
self-similar shrinking sheet flow has been discussed in detail. A comparison
between the current and the already existing formulations has been made in order to
clarify the situation. The non-similar flows of this class have been formulated in
general; some particularly chosen non-similar flows in the planar and axisymmetric
cases have also been discussed. The identification of temporal self-similarity and
the criterion of semi-similarity have been included. Finally, the turbulent flow due
to stretching surfaces has also been considered.

Fundamental knowledge of fluid mechanics and the boundary-layer theory is
essential for the understanding of the presented material. This book particularly
focuses the students and the initial researchers in this field. Therefore, the pre-
sentation of the material is quite straightforward with a bit detail and sufficient
explanation. However, the presented material is also expected to be of equal
importance for the specialized and established researchers in this field.

This book has mainly been distributed into four major parts. The first part
includes some fundamental essential knowledge and the explanation of the concept
of self-similarity. Part II contains the self-similar flows due to moving continuous
surfaces including the planar and axisymmetric flows. Spatial and temporal
non-similarity has been modeled in Part III, whereas the turbulent flows due to
moving continuous surfaces have been considered in Part IV.

First four chapters constitute the Part I of this book. Boundary-layer character
of the flows due to moving continuous surfaces has been explained in Chap. 1. The
governing boundary-layer equations and the momentum integral equations corre-
sponding to the planar and axisymmetric flows have been developed in Chap. 2.
The concept and restrictions of self-similarity have been explained in detail in
Chap. 3, whereas an introduction to the suitable solution techniques has been given
in Chap. 4. The criterion of self-similarity for the wall velocities has been
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determined in detail for both the planar and axisymmetric flows in Chap. 5. Flows
due to stretching and shrinking surfaces have been discussed in Chaps. 6 and 7,
respectively. The restriction on the wall suction/injection velocities and on the
variable thickness of the continuous surfaces, in view of self-similarity criterion
determined in Chap. 5, has also been determined in these chapters. Similarity
criterion of the unsteady flows due to moving continuous surfaces has been derived
in Chap. 8. The aforementioned Chaps. 5–8 have been included in Part II.
Non-similar flows due to moving continuous surfaces have been introduced in
Part III consisting of Chaps. 9–11. The planar and axisymmetric non-similar flows
have been considered in Chaps. 9 and 10, respectively, whereas the temporal
non-similarity has been considered in Chap. 11. The Part IV includes only one
chapter (Chap. 12) concerning the turbulent flow due to moving and stretching
continuous surfaces.

Islamabad, Pakistan Ahmer Mehmood
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Introduction

The history of fluid mechanics is as old as the history of human beings. Every
human in his life solves so many fluid mechanics problems whether consciously or
unconsciously. But the manner he solves his daily life problems, such as dissolving
sugar in the cup of tea by stirring a spoon in it or blowing the lump of hot food
before taking it to mouth, is exactly in accordance with the scientific laws of fluid
mechanics in convective phenomena. Similar examples can also be found in the
Stone Age era when man had been using long, slim, and even fin-stabilized arrows
for hunting the animals and birds. His understanding about the water flow from high
level to low, in the process of irrigation, is also an example of utilizing the potential
energy of water to make it to flow. Numerous similar examples can further be found
from the practices of present and the history of ancient man where the above
constitute only a few glimpses from it. Thus, the unconscious understanding of the
human about the fluid flow and heat and mass transfer phenomena continuously
turned into his conscious efforts toward the scientific exploration of the flow
phenomena because of his day by day increasing problems of fluid mechanics.

The first, on the record, scientific theory in fluid mechanics is due to the
Archimedes in which he presented his research as postulates of buoyancy. The
viscous resistance in fluids was scientifically interpreted by Sir Isaac Newton in
1687 when he stated his famous law of viscosity. The law of fluid motion was first
proposed by Daniel Bernoulli in 1730 and was further improved by Leonhard Euler
in 1755. It is important to note that although the Newton’s law of viscosity was
discovered in 1687 and the Bernoulli’s equation, after Euler’s modification, in
1755, but they intentionally ignored the fluid friction. The fluid friction was taken
into account by Navier and Stokes independently where they introduced the viscous
terms to the equation of motion in 1827 and 1845, respectively. Consequently, the
resulting equations were named as Navier–Stokes equations and are still recognized
by this name. These equations are equally applicable to gasses and liquids fol-
lowing the Newton’s law of viscosity. Later, the Osborn Reynolds distinguished the
viscous flows into two categories on the basis of velocity magnitude. However, he
also explored that this differentiation does not depend strictly upon the fluid
velocity only but obviously upon the viscosity of fluid and the pipe radius also.
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On the basis of this argument, he developed the famous Reynolds number which
has great practical importance in laminar and turbulent flows having velocities less
than the speed of sound.

In 1749, a French mathematician Jean le Rond D’Alembert, while working on
the flow drag on a solid surface, concluded that “it seems to me that the theory
(potential flow), developed in all possible rigor, gives, at least in several cases,
a strictly vanishing resistance, a singular paradox which I leave to future Geometers
(i.e., mathematicians—the two terms were used interchangeably at that time) to
elucidate.” On the other hand, the experimental results reflected significant viscous
drag for the flows in water and air at that time. Based on the failure of the theory
regarding the prediction of viscous drag, D’Alembert stated his results in the form
of a famous paradox in 1752 which stayed unresolved till the year 1904. The
D’Alembert’s paradox states that “for incompressible and inviscid potential flow—
the drag force is zero on a body moving with constant velocity relative to the fluid.”
At this stage, the reader is asked to realize that the D’ Alembert’s paradox stayed
unresolved even after the development of the Navier–Stokes equations which
completely incorporate the contribution of viscous forces to the momentum trans-
port equation. The misfortune with the D’Alembert and the other scientists of that
time was that they used to ignore the “little” air friction in the theoretical calcu-
lations causing them to reach the wrong conclusion of zero drag. On the other hand,
such “little” air friction was impossible to be ignored in the experiments where it
kept on resulting in significant viscous drag. This fact was actually realized by
Ludwigs Prandtl, in his series of experiments, that in such flows, with less friction,
the viscous effects are negligible in most of the flow domain but are in-ignorable in
a very thin region near the solid surface. This observation made him able to split the
entire flow domain into two major parts: a potential flow region where there is no
flow resistance at all and the near wall region where the effects of viscous resistance
are prominent. He called this thin region as the thin shear layer or the
boundary-layer. This thin, near wall, region was actually being ignored by the
previous scientists, thus preventing them to reach the correct results. The devel-
opment of a concrete theory for the accommodation of this fact was another difficult
step for which Prandtl himself introduced the order of magnitude analysis. He
calculated the magnitude of every term in the Navier–Stokes equations and iden-
tified the contributing/surviving and vanishing/ignorable terms. The process is
strictly based on his clear understanding of exact nature of the flow within the
boundary-layer. This theory revealed that most of the terms in viscous part
of the Navier–Stokes equation are ignorable, as did by the previous scientists, but
not the all. Thus, the identification of surviving and non-surviving terms does
mainly based on the order of magnitude analysis which is actually due to the
Ludwigs Prandtl.

Before Prandtl, there were two divergent branches of fluid dynamics, namely the
theoretical hydrodynamics and the hydraulics. In the era of D’Alembert, it was
misbelieved that the theoretical hydrodynamics does not apply to many practical
situations, such as air or water flows, where the viscous drag does play important
role in actual. On this basis, the engineers of that time started developing their own
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