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Introduction

The second volume of the Atlantis Transactions in Geometry series is a collection
of papers presented at the Second Tbilisi-Salerno Workshop on Modeling in
Mathematics (Tbilisi, March 16–18, 2015). This workshop resulted from a close
and long standing cooperation between the Iv. Javakhishvili Tbilisi State University
and the University of Salerno. The organizing committee consisted of A. Di Nola,
R. Grigolia, R. Botschorishvili, J. Gielis, R. Koplatadze, T. Tadumadze,
I. Tavkhelidze, M. Transirico, T. Chelidze, and R. Liparteliani. The event was
cosponsored by both universities, two grants of the Shota Rustaveli National
Science Foundation and the Georgian International Society of Cardiomyopathy
(Georgia), The University of Antwerp, and The Simon Stevin Institute of Geometry
(Belgium).

In this volume the core is on geometric modeling, expressed in geometrical,
logical or analytical language, or even a combination of Boolean logic and
geometry. Various chapters have a direct connection to natural phenomena,
including the modeling of electromagnetic pulse propagation in biological tissues,
Multi Modal Epistemic Lukasiewicz logic in immune systems, fusion in flowers,
and evolution equations. Other chapters provide fundamental methods describing
natural shapes and phenomena, which are fully geometric or have a close con-
nection to geometrical or operational methods. The chapters are written in styles
and language that should be accessible for a very wide audience with a geometric
focus.

Gauss already stressed that the “Geometric method will be indispensable in the
early study of young people, to prevent one-sidedness and to give to the under-
standing a lineliness and directness, which is much less developed and—occa-
sionally—rather jeopardized by the analytical method”. During this workshop, for
his many great contributions to geometry and mathematics, the second Simon
Stevin Prize for Geometry was awarded to Prof. Paolo Emilio Ricci for his
fundamental contributions to mathematics in many fields, including mathematical
physics, orthogonal polynomials, special functions, numerical analysis, approxi-
mation theory, and geometry. His contributions in any of these fields are funda-
mental, with new concepts, new methods, and new discoveries [1]. Special mention
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is made of his open and very inspiring style of cooperation and collaboration with
colleagues worldwide, of which his coauthorship in many chapters in this volume is
proof of this.

At the end of the twentieth century André Weil [2] wrote: “Whatever the truth
of the matter, mathematics in our century would not have made such impressive
progress without the geometric sense of Elie Cartan, Heinz Hopf, Chern and a very
few more. It seems safe to predict that such men will always be needed if mathe-
matics is to go on as before”. It is safe to add Prof. Paolo Emilio Ricci to Weil’s list
of eminent geometers, to which also Prof. Bang-Yen Chen belongs as the first
recipient of the Simon Stevin Prize for Geometry [3]. Simon Stevin himself was a
major figure in such lists [4].

Antonio Di Nola
Johan Gielis

Revaz Grigolia
Ilia Tavkelidze
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Fractional–Calculus–Based FDTD Algorithm
for Ultra–Wideband Electromagnetic Pulse
Propagation in Complex Layered
Havriliak–Negami Media

Diego Caratelli, Luciano Mescia and Pietro Bia

Abstract A novel finite–difference time–domain algorithm for modeling ultra–
wideband electromagnetic pulse propagation in layered multi–relaxed
Havriliak–Negami media is presented. The proposed scheme is based on a gen-
eral, yet computationally efficient, series representation of the fractional derivative
operator associated with the permittivity function describing the frequency disper-
sion properties of the dielectric material. Dedicated uniaxial perfectly matched layer
boundary conditions are derived and implemented in combination with the basic
time–marching scheme.Moreover, a total field/scattered field formulation is adopted
in order to analyze the material response under plane–wave excitation. Compared
to alternative numerical methodologies available in the scientific literature, the pro-
posed technique features a significantly enhanced robustness and accuracy which
are essential for solving complex electromagnetic propagation problems typically
encountered in bio–engineering applications.

1 Introduction

During the last decade, pulsed electric fields (PEFs) have been playing a key role
in a number of new research activities in bioelectrics, a new interdisciplinary field
which combine knowledge of electromagnetic principles and theory, modeling and
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2 D. Caratelli et al.

simulations, physics, material science, cell biology, and medicine. The main goal of
this discipline is the study of the interaction between electromagnetic fields and bio-
logical tissues aimed at the investigation of nanopulse bioeffects for human safety as
well as for at use of ultrashort pulses in biomedical and biotechnological applications
[1–5].

Current applications of PEF are primarily based on reversible or irreversible
electroporation, that is the process by which the permeability to drugs, molecules,
and genetic material of the plasma membrane of a biological cell is affected. This
phenomenon can result either permanent permeabilization of cancer cells or the
destabilization of the cell membranes and intracellular components useful to trigger
cellular mechanism leading to cellular death [6–8]. As a result, electroporation based
therapies and treatments can be used to achieve selective killing of cancer cells, tis-
sue ablation, gene therapy and DNA based vaccination. In particular, in the cancer
therapy PEFs have been defined for the treatment of easily accessible cutaneous
and subcutaneous tumor nodules, prostate cancer, fibrosarcoma. This approach has
demonstrated remarkable potential for the treatment of solid tumors without hyper-
thermia or delivering drugs or genes [3–5, 9]. Other therapeutic applications include
coronary and peripheral vascular disease, activating platelets, plasmids transfection,
immune responses enhancement, tissue imaging [3]. Moreover, the application of
this new technology could have a great impact on molecular biology, by promoting
the understanding of molecular mechanisms of cells.

The efficiency of PEF treatment depends on the electric field distribution within
the treated tissue. In fact, the cellular death mechanism is strongly affected by pulse
parameters such as amplitude, duration, number of pulses and repetition frequency.
However, PEF exposure could result in side effects such as tissue damage, confor-
mational changes in macromolecules, alteration of the biochemical reaction rates,
membrane characteristics and temperature levels [10]. Therefore, in order to predict
the effect of exposures and assess possible outcomes it is very important to know
the local electric field distribution inside the exposed tissue. In many applicative
cases, the electromagnetic field cannot be easily measured. To this aim, theoretical
models are invaluable tools to better understand the involved mechanisms as well
as to evaluate and optimize treatment modalities and to develop disease–specific or
even patient–specific protocols.

The electric field distribution excited in biological media mainly depends on the
electric properties of tissues. But the lack of data and accurate models, over broad
frequency ranges, has been so far an obstacle for both theoretical and experimen-
tal studies. In fact, the complexity of the structure and composition of biological
matter produces anomalies in the dynamic dielectric properties resulting in a strong
dispersion of dielectric susceptibility. This dispersion, can be explained by consid-
ering that the disordered nature and microstructure of the systems yield a multiple
relaxation times. As a result, the time-domain response is generally non–symmetric
and markedly different from that of dielectric media modeled by the simple Debye
equation. Therefore, it is important to define empirical models for each organ, in a
wide frequency range, for studies regarding the interaction between electromagnetic
wave and biological bodies, especially for PEF excitation.
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The dielectric properties of biological tissues result from the interaction of elec-
tromagnetic energy with the tissue constituents at the cellular and molecular level.
This process is strongly affected by the bound water content. The frequency variation
of the dielectric properties of tissues with high water content can be easily described
by the Debye relation. This kind of response is obtained for an assembly of iden-
tical dipoles yielding a loss of energy proportional to the electric field frequency.
However, it is well known that the dielectric properties of many biological materials
display α, −β, −γ and −δ dispersion types attributed to a different polarization
mechanism [11]. As a consequence, an accurate representation of the experimental
dielectric response in frequency domain usually cannot be described by a simple
exponential expression with a single relaxation time (Debye model). To this end, a
number of empirical relationships including Cole-Cole (CC), Cole-Davidson (CD)
and Havriliak-Negami (HN) equations have been proposed in order to fit such types
of dielectric spectra. The Cole–Cole model is generally chosen to describe the rel-
ative complex permittivity of many types of biological tissues over wide frequency
ranges. However, HN representation includes both CC and CD models and pro-
vides an extended model flexibility enabling a better parametrization of the arbitrary
dispersive media properties.

The accurate modeling of electromagnetic field propagation in the mentioned
dispersive materials is essential for gaining a deeper insight into the physical mech-
anisms affecting the interaction between pulsed electric fields (PEFs) and biological
media. Finite–difference time–domain (FDTD) method has beenwidely used in elec-
tromagnetic modeling due to its straightforward implementation and ability to model
a broad range of exposure conditions [12, 13]. Since CC, CD, and HN dispersion
functions include fractional powers of the angular frequency, suitable mathematical
models adequately describing the response of such complex dispersive media have
to be embedded in the core of the FDTD algorithm [14–19].

Recently, a novel FDTD methodology for modeling Havriliak–Negami (HN)
media has been presented by the authors in [1]. Said formulation is based on the
optimal truncation of the binomial series related to the HN fractional derivative
operator, in accordance with the Riemann–Liouville theory. Typically, the aforemen-
tioned truncated series approach provides a very good approximation of both real
and imaginary parts ofHN permittivity functions, and numerous test cases discussed
in [1, 2] demonstrate that the proposed scheme is reliable and accurate over broad
frequency ranges. However, further investigations have highlighted some numeri-
cal inaccuracies wherein specific HN materials have to be modeled over ultra–wide
bands, at angular frequencies ω � 1/τ , τ denoting the characteristic relaxation time
of the medium [20, 21]. In order to overcome these limitations, the authors have
extended the previously presented FDTD scheme by implementing a more general
series representation of the HN fractional derivative operator in order to account for
multiple relaxation times and ohmic losses occurring in the considered biological
medium. The enhanced accuracy of the modified FDTD procedure has been assessed
by several test cases involving complex stratified HN media, and compared against
a fully analytical modeling approach.
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2 Mathematical Formulation

The dielectric properties of biological tissues are determined by the interaction of the
electromagnetic energy with the tissue constituents at cellular and molecular level.
As a result, the permittivity and electrical conductivity vary from tissue to tissue and
depend on the working frequency. In order to accurately model the electromagnetic
wave propagation over broad frequency ranges, suitable analytical models of the
dielectric properties are needed. In particular, the macroscopic characteristics of
general dispersive media can be modeled by using the following multi–relaxation
HN relationship:

εr (ω) = εr∞ +
N∑

l=1

εrs,l − εr∞[
1 + ( jωτl)

αl
]βl

− j
σ

ωε0
, (1)

where σ is the static ionic conductivity, εr∞ is the asymptotic relative permittivity
for ωτ → +∞, τl and εrs,l denote the l–th relaxation time and static relative per-
mittivity (for ωτ → 0+) respectively, and 0 < αl , βl < 1 are heuristically derived
model fitting parameters for l = 1, 2, . . . , N , with N being the maximum number of
relaxation processes occurring in the considered media. In (1), as usual, ω = 2π f is
the angular frequency, and ε0 denotes the permittivity of free space.

In the proposed FDTD scheme, the following approximated expansion is adopted
in place of the truncated binomial series presented in [1]:

[
1 + ( jωτl)

αl
]βl

︸ ︷︷ ︸
F( jω)

�
Kl∑

n=0

χn,l ( jωτl)
ζn,l

︸ ︷︷ ︸
Fa( jω)

, (2)

where the parameters ζn,l and χn,l are assumed to satisfy the inequalities |χn,l | < a
and 0 < ζn,l < b, with a and b denoting assigned positive real numbers.

Let Kmax be the maximum expansion order in (2), and δ be a given small positive
threshold to be used for controlling the accuracy of the approximation. In this way,
the parameters Kl , ζn,l , and χn,l (l = 1, 2, . . . , N ) can be evaluated as follows:

1. Initialize Kl = 1, and set the working frequency range ωmin < ω < ωmax;
2. Calculate χn,l and ζn,l by using the Nelder–Mead algorithm [22];
3. Evaluate the relative error function

er =
√√√√
∫ ωmax

ωmin
|F ( jω) − Fa( jω)|2dω
∫ ωmax

ωmin
|F ( jω)|2dω

. (3)

4. If er ≤ δ or Kl = Kmax, the algorithm stops, else update the expansions orders as
Kl = Kl + 1, and go to step 2.
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The evaluation of the electromagnetic field distribution excited within the multi–
layered dielectric material under analysis can be then performed by using the FDTD
scheme proposed in [1], that has been here further extended in order to take the ohmic
losses as well as the multi–relaxation response of the medium into account.

Let us consider a non-magnetic dispersive medium with complex relative per-
mittivity described by (1). Under such assumption, the differential version of the
Ampere’s law in time domain, within said material, can be written as:

∇ × H = ε0εr∞∂tE + σE +
N∑

l=1

Jl , (4)

with ∂t denoting the partial derivative operator with respect to time, and where the
auxiliary displacement current density terms Jl (l = 1, 2, . . . , N ) have been intro-
duced. It is straightforward to find out that the k–th term (1 ≤ k ≤ N ) is such to
satisfy the equation:

Dαk ,βk
t Jk = ε0�εrk∂tE, (5)

involving the fractional derivative operator Dαk ,βk
t = F−1

{[
1 + ( jωτk)

αk
]βk
}

=
(
1 + τ

αk
k Dαk

t

)βk as defined in [1]. In (5), for the sake of brevity, the scalar quanti-
ties �εrk = εrs,k − εr∞ have been used.

Upon substituting (5) in (4), and applying a second–order accurate finite–
difference scheme, one readily obtains, at the time instant t = m�t :

(∇ × H)|m − εr∞
�εrk

(
Dαk ,βk

t Jk
)∣∣∣

m =
N∑

l=1

Jl |m + σ E|m , (6)

where the vector terms appearing on the right–hand side of the equation are evaluated
by means of the semi–implicit approximation:

{
Jl
E

}∣∣∣∣
m

= 1

2

({
Jl
E

}∣∣∣∣
m− 1

2

+
{
Jl
E

}∣∣∣∣
m+ 1

2

)
. (7)

In a similar way, from Eq. (5) it follows that:

E|m+ 1
2 = E|m− 1

2 + �t

ε0�εrk

(
Dαk ,βk

t Jk
)∣∣∣

m
, (8)

where:

Dαk ,βk
t Jk �

Kk∑

n=0

χn,kτ
ζn,k

k Dζn,k
t Jk , (9)
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Let νn,k be the integer number such that νn,k − 1 � ζn,k � νn,k . So, applying
the Riemann–Liouville definition of fractional derivative, the following equation is
derived:

Dζn,k
t Jk(t) = dνn,k

dtνn,k

∫ t

0

(t − u)νn,k−ζn,k−1

�
(
νn,k − ζn,k

) Jk(u) du. (10)

By setting:

In,k(t) =
∫ t

0
(t − u)νn,k−ζn,k−1 Jk(u) du, (11)

and applying a central finite difference approximation with time step �t , one can
readily obtain, at the general time instant t = m�t :

In,k

∣∣m �
m−1∑

p=0

Jk |m−p− 1
2

∫ (p+1)�t

p�t
uνn,k−ζn,k−1du

= �tνn,k−ζn,k

νn,k − ζn,k

m−1∑

p=0

[
(p + 1)νn,k−ζn,k − pνn,k−ζn,k

]
Jk |m−p− 1

2 . (12)

By using the following expansion [23]:

(p + 1)νn,k−ζn,k − pνn,k−ζn,k �
Qn,k∑

q=1

an,k,qe
−bn,k,q p, (13)

with the order Qn,k and the coefficients an,k,q and bn,k,q being suitably chosen in
order to minimize the mean square error, and upon setting:

�n,k,q

∣∣m =
m−1∑

p=0

an,k,qe
−bn,k,q p Jk |m−p− 1

2 = an,k,q Jk |m− 1
2 + e−bn,k,q �n,k,q

∣∣m−1
,

(14)
equation (12) can be rewritten as:

In,k

∣∣m � �tνn,k−ζn,k

νn,k − ζn,k

⎛

⎝Sn,k Jk |m− 1
2 +

Qn,k∑

q=1

e−bn,k,q �n,k,q

∣∣m−1

⎞

⎠ , (15)

where:

Sn,k =
Qn,k∑

q=1

an,k,q . (16)

In (10), the time derivative of In,k calculated at the time instant t = m�t can be
approximated by means of the expression:
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dνn,k In,k

dtνn,k

∣∣∣∣
m

� 1

(�t)νn,k

νn,k∑

p=0

(−1)p
(

νn,k

p

)
In,k

∣∣m−p+1

= �t−ζn,k

νn,k − ζn,k

⎧
⎨

⎩Sn,k

⎡

⎣Jk |m+ 1
2 +

νn,k∑

p=1

(−1)p
(

νn,k

p

)
Jk |m−p+ 1

2

⎤

⎦

+
νn,k∑

p=1

(−1)p
(

νn,k

p

)⎛

⎝
Qn,k∑

q=1

e−bn,k,q �n,k,q

∣∣m−p

⎞

⎠

⎫
⎬

⎭ . (17)

In this way, after some algebra, it is not difficult to show that:

(
Dαk ,βk

t Jk
)∣∣∣

m �
Kk∑

n=0

χn,k(
νn,k − ζn,k

)!
( τk

�t

)ζn,k
νn,k∑

p=0

⎡

⎣An,k,p Jk |m−p+ 1
2

+
Qn,k∑

q=1

Bn,k,p,q �n,k,q

∣∣m−p

⎤

⎦ , (18)

with: {
An,k,p

Bn,k,p,q

}
= (−1)p

(
νn,k

p

){
Sn,k

e−bn,k,q

}
, (19)

Finally, by combining (6) with (7), (8), and (18), one can readily obtain:

[(
εr∞ + σ�t

2ε0

)
Ck

�εrk
+ 1

2

]
Jk |m+ 1

2 + 1

2

N∑

l=1,l �=k

Jl |m+ 1
2 =

= (∇ × H)|m − σE|m− 1
2 − 1

2

N∑

l=1

Jl |m− 1
2 −

(
εr∞ + σ�t

2ε0

)

· 1

�εrk

Kk∑

n=0

χn,k(
νn,k − ζn,k

)!
( τk

�t

)ζn,k

⎡

⎣
νn,k∑

p=1

An,k,p Jk |m−p+ 1
2

+
νn,k∑

p=0

Qn,k∑

q=1

Bn,k,p,q �n,k,q

∣∣m−p

⎤

⎦ = ηk

∣∣m , (20)

where:

Ck =
Kk∑

n=0

An,k,0
χn,k

νn,k − ζn,k

( τk

�t

)ζn,k

, (21)

for k = 1, 2, . . . , N . It is apparent from (20) that in the presented formulation, con-
trary to the methodology in [1], the evaluation of the displacement current density
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entails solving a symmetric system of N linear equations, this reflecting the multi–
relaxation characteristics of the dielectric material under analysis. As a matter of
fact, Eq. (19) can be recast in the more compact matrix form:

[
1

2
U +

(
εr∞ + σ�t

2ε0

)
D
]

︸ ︷︷ ︸
T

· J|m+ 1
2 = η|m , (22)

with U being the unit matrix of order N , and D = diag {D1, D2, . . . , DN } the diag-
onal matrix with nonzero entries Dk = Ck/�εrk . In (22), J|m+ 1

2 denotes the vector
of the unknown current densities at the time instant t = (m + 1

2

)
�t , namely:

J|m+ 1
2 =

⎡

⎢⎢⎢⎢⎣

J1|m+ 1
2

J2|m+ 1
2

...

JN |m+ 1
2

⎤

⎥⎥⎥⎥⎦
. (23)

Similarly, the column vector η|m is built up by arraying the auxiliary electromagnetic
field quantities ηk

∣∣m (k = 1, 2, . . . , N ) appearing on the right–hand side of (20). It
is worth noting that the inverse of the coefficient matrix T of the linear system
(22) can be conveniently computed only one time before the time–marching scheme
is initiated. In this way, in comparison to the FDTD procedure described in [1],
the algorithmic implementation of the technique proposed in this research study
actually results in a reduced additional computational cost of O

(
N 2
)
floating–point

operations useful to determine the solution of (20) as:

J|m+ 1
2 = T−1 · η|m . (24)

Once the current density terms Jl |m+ 1
2 (l = 1, 2, . . . , N ) are evaluated, the electric

field distribution within the considered dielectric medium can be derived from (6)
as:

E|m+ 1
2 = 2ε0εr∞ − σ�t

2ε0εr∞ + σ�t
E|m− 1

2 + 2�t

2ε0εr∞ + σ�t

[
(∇ × H)|m

−1

2

N∑

l=1

(
Jl |m− 1

2 + Jl |m+ 1
2

)]
, (25)

where judicious use of (7) has been made. Finally, by carrying out a second–order
accurate finite–difference approximation of the Faraday’s law in the time domain,
the following update equation for the magnetic field is readily obtained:
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H|m+1 = H|m − �t

μ0
(∇ × E)|m+ 1

2 , (26)

with μ0 denoting the magnetic permeability of free space.
In order to truncate the FDTD computational domain and solve electromagnetic

problems with open boundaries, dedicated uniaxial perfectly matched layer (UPML)
conditions [24] have to be derived and implemented numerically accounting for the
electrical conductivity and the multi–relaxation characteristics of the HN medium
under analysis. To this end, let us first introduce the auxiliary electric field vector e
as:

e =
(

κz + σz

jωε0

)
E, (27)

with κz , σz denoting the UPML material parameters in accordance with the complex
coordinate stretching approach [12]:

κz (z) =
⎧
⎨

⎩

1, z /∈ UPML

1 + (κMAX − 1)

(
z − z∗

UPML

dUPML

)m

, z ∈ UPML
(28)

σz (z) =
⎧
⎨

⎩

0, z /∈ UPML

σMAX

(
z − z∗

UPML

dUPML

)m

, z ∈ UPML
(29)

In (28)–(29), z∗
UPML anddUPML denote, respectively, the coordinate of theUPML inter-

face and the relevant thickness. In particular, σMAX is the maximum value assumed
by the conductivity at the truncation of the UPML region

(
z = z∗

UPML + dUPML
)

and κMAX is a real coefficient which is selected heuristically in order to enhance
the absorption of electromagnetic waves within the UPML region and, in this way,
minimize the spurious reflection level in the solution domain.

Multiplying both sides of (27) by jω and transforming into the time domain
immediately yields:

∂te = κz∂tE + σz

ε0
E. (30)

In this way, it is not difficult to find out that the Ampere’s law can be written, within
the UPML region, as:

∇ × H = ε0εr∞∂te + σe +
N∑

l=1

jl , (31)

where the l−th displacement current density term satisfies the fractional derivative
equation:

Dαl ,βl
t jl = ε0�εrl∂te. (32)


