
 50

Automatic Differentiation:
Applications, Theory,
and Implementations

Martin Bücker
George Corliss
Paul Hovland
Uwe Naumann
Boyana Norris
Editors

Editorial

Board:

T. J. Barth

M. Griebel

D. E. Keyes

R. M. Nieminen

D. Roose

T. Schlick

Lecture Notes in Computational
Science and Engineering

 1 23

Lecture Notes
in Computational Science
and Engineering 50
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Martin Bücker George Corliss Paul Hovland
Uwe Naumann Boyana Norris (Eds.)

ABC

With 108 Figures and 33 Tables

Automatic Differentiation:
Applications, Theory,
and Implementations

Editors

Martin Bücker
Institute for Scientific Computing
RWTH Aachen University
D-52056 Aachen, Germany
email: buecker@sc.rwth-aachen.de

George Corliss
Department of Electrical
and Computer Engineering
Marquette University
1515 W. Wisconsin Avenue
P.O. Box 1881
Milwaukee, WI 53201-1881, USA
email: george.corliss@marquette.edu

Uwe Naumann
Software and Tools
for Computational Engineering
RWTH Aachen University
D-52056 Aachen, Germany
email: naumann@stce.rwth-aachen.de

Paul Hovland
Boyana Norris
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S Cass Ave
Argonne, IL 60439, USA
email: hovland@mcs.anl.gov

norris@mcs.anl.gov

Library of Congress Control Number: 2005934452

Mathematics Subject Classification: 65Y99, 90C31, 68N19

ISBN-10 3-540-28403-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28403-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

c© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11360537 46/TechBooks 5 4 3 2 1 0

springer.com

Preface

The Fourth International Conference on Automatic Differentiation was held
July 20-23 in Chicago, Illinois. The conference included a one day short course,
42 presentations, and a workshop for tool developers. This gathering of auto-
matic differentiation researchers extended a sequence that began in Brecken-
ridge, Colorado, in 1991 and continued in Santa Fe, New Mexico, in 1996 and
Nice, France, in 2000. We invited conference participants and the general au-
tomatic differentiation community to submit papers to this special collection.
The 28 accepted papers reflect the state of the art in automatic differentiation.

The number of automatic differentiation tools based on compiler technol-
ogy continues to expand. The papers in this volume discuss the implemen-
tation and application of several compiler-based tools for Fortran, including
the venerable ADIFOR, an extended NAGWare compiler, TAF, and TAPE-
NADE. While great progress has been made toward robust, compiler-based
tools for C/C++, most notably in the form of the ADIC and TAC++ tools,
for now operator-overloading tools such as ADOL-C remain the undisputed
champions for reverse-mode automatic differentiation of C++. Tools for au-
tomatic differentiation of high level languages, including COSY and ADiMat,
continue to grow in importance as the productivity gains offered by high-level
programming are recognized.

The breadth of automatic differentiation applications also continues to
expand. This volume includes papers on accelerator design, chemical engi-
neering, weather and climate modeling, dynamical systems, circuit device
modeling, structural dynamics, and radiation treatment planning. The last
application is representative of a general trend toward more applications in
the biological sciences. This is an important trend for the continued growth
of automatic differentiation, as new applications identify novel uses for au-
tomatic differentiation and present new challenges to tool developers. The
papers in this collection demonstrate both the power of automatic differenti-
ation to facilitate new scientific discoveries and the ways in which application
requirements can drive new developments in automatic differentiation.

VI Preface

Advances in automatic differentiation theory take many forms. Progress
in mathematical theory expands the scope of automatic differentiation and
its variants or identifies new uses for automatic differentiation capabilities.
Advances in combinatorial theory reduce the cost of computing or storing
derivatives. New compiler theory identifies analyses that reduce the time or
storage requirements for automatic differentiation, especially for the reverse
mode. This collection includes several papers on mathemetical and combina-
torial theory. Furthermore, several of the tools papers document the compiler
analyses that are required to construct an effective automatic differentiation
tool.

This collection is organized as follows. The first two papers, by Rall and
Werbos, provide an overview of automatic differentiation and place it in a his-
torical context. The first section, comprising seven papers, covers advances in
automatic differentiation theory. The second section, containing eight papers,
describes the implementation of automatic differentiation tools. The final sec-
tion, devoted to applications, includes eleven papers discussing new uses for
automatic differentiation. Many papers include elements of two or more of the
general themes of theory, tools, and applications. For example, in many cases
successful application of an automatic differentiation tool in a new domain
requires advances in theory or tools. A collected bibliography includes all of
the references cited by one of the papers in this volume, as well as all of the
papers from the proceeedings of the first three conferences. The bibliography
was assembled from the BibTeX database at autodiff.org, an emerging portal
for the automatic differentiation community. We thank Heiner Bach for his
hard work on the autodiff.org bibliographic database.

While the last four years have seen many advances in automatic differenti-
ation theory and implementation, many challenges remain. We hope that the
next International Conference on Automatic Differentiation includes reports of
reverse mode source transformation tools for templated C++, proofs that min-
imizing the number of operations in a Jacobian computation is NP-complete,
advances in the efficient computation of Hessians, and many examples of new
applications that identify research challenges and drive tool development for-
ward. Together, researchers in automatic differentiation applications, theory,
and implementation can advance the field in new and unexpected ways.

Martin Bücker
George Corliss
Paul Hovland

Uwe Naumann
Boyana Norris

Contents

Perspectives on Automatic Differentiation: Past, Present,
and Future?
Louis B. Rall . 1

Backwards Differentiation in AD and Neural Nets: Past Links
and New Opportunities
Paul J. Werbos . 15

Solutions of ODEs with Removable Singularities
Harley Flanders . 35

Automatic Propagation of Uncertainties
Bruce Christianson, Maurice Cox . 47

High-Order Representation of Poincaré Maps
Johannes Grote, Martin Berz, Kyoko Makino . 59

Computation of Matrix Permanent
with Automatic Differentiation
Koichi Kubota . 67

Computing Sparse Jacobian Matrices Optimally
Shahadat Hossain, Trond Steihaug . 77

Application of AD-based Quasi-Newton Methods
to Stiff ODEs
Sebastian Schlenkrich, Andrea Walther, Andreas Griewank 89

Reduction of Storage Requirement by Checkpointing
for Time-Dependent Optimal Control Problems in ODEs
Julia Sternberg, Andreas Griewank . 99

VIII Contents

Improving the Performance of the Vertex Elimination
Algorithm for Derivative Calculation
M. Tadjouddine, F. Bodman, J. D. Pryce, S. A. Forth 111

Flattening Basic Blocks
Jean Utke . 121

The Adjoint Data-Flow Analyses:
Formalization, Properties, and Applications
Laurent Hascoët, Mauricio Araya-Polo . 135

Semiautomatic Differentiation
for Efficient Gradient Computations
David M. Gay . 147

Computing Adjoints with the NAGWare Fortran 95 Compiler
Uwe Naumann, Jan Riehme . 159

Extension of TAPENADE toward Fortran 95
Valérie Pascual, Laurent Hascoët . 171

A Macro Language for Derivative Definition in ADiMat
Christian H. Bischof, H. Martin Bücker, Andre Vehreschild 181

Transforming Equation-Based Models in Process Engineering
Christian H. Bischof, H. Martin Bücker, Wolfgang Marquardt, Monika
Petera, Jutta Wyes . 189

Simulation and Optimization of the Tevatron Accelerator
Pavel Snopok, Carol Johnstone, Martin Berz . 199

Periodic Orbits of Hybrid Systems
and Parameter Estimation via AD
Eric Phipps, Richard Casey, John Guckenheimer . 211

Implementation of Automatic Differentiation Tools
for Multicriteria IMRT Optimization
Kyung-Wook Jee, Daniel L. McShan, Benedick A. Fraass 225

Application of Targeted Automatic
Differentiation to Large-Scale Dynamic Optimization
Derya B. Özyurt, Paul I. Barton . 235

Automatic Differentiation: A Tool for Variational
Data Assimilation and Adjoint Sensitivity Analysis
for Flood Modeling
W. Castaings, D. Dartus, M. Honnorat, F.-X. Le Dimet, Y. Loukili,
J. Monnier . 249

Contents IX

Development of an Adjoint for a Complex Atmospheric
Model, the ARPS, using TAF
Ying Xiao, Ming Xue, William Martin, Jidong Gao 263

Tangent Linear and Adjoint Versions of NASA/GMAO’s
Fortran 90 Global Weather Forecast Model
Ralf Giering, Thomas Kaminski, Ricardo Todling, Ronald Errico,
Ronald Gelaro, Nathan Winslow . 275

Efficient Sensitivities for the Spin-Up Phase
Thomas Kaminski, Ralf Giering, Michael Voßbeck 285

Streamlined Circuit Device Model Development
with fREEDAR©ãnd ADOL-C
Frank P. Hart, Nikhil Kriplani, Sonali R. Luniya,
Carlos E. Christoffersen, Michael B. Steer . 295

Adjoint Differentiation of a Structural Dynamics Solver
Mohamed Tadjouddine, Shaun A. Forth, Andy J. Keane 309

A Bibliography of Automatic Differentiation
H. Martin Bücker, George F. Corliss . 321

References . 323

Index . 355

List of Contributors

Mauricio Araya-Polo
INRIA Sophia-Antipolis, projet
TROPICS
2004 route des Lucioles
BP 93
06902 Sophia-Antipolis
France
Mauricio.Araya@sophia.inria.fr

Paul I. Barton
Massachusetts Institute of
Technology
Department of Chemical Engineering
77 Massachusetts Ave.
Cambridge, MA 02139
USA
pib@mit.edu

Martin Berz
Michigan State University
Department of Physics and
Astronomy
East Lansing, MI 48824
USA
berz@msu.edu

Christian H. Bischof
Institute for Scientific Computing
RWTH Aachen University
D–52056 Aachen
Germany
bischof@sc.rwth-aachen.de

Frances Bodman
Cranfield University, RMCS
Shrivenham
Computer Information Systems
Engineering Dept.
Swindon
SN6 8LA
United Kingdom

H. Martin Bücker
Institute for Scientific Computing
RWTH Aachen University
D–52056 Aachen
Germany
buecker@sc.rwth-aachen.de

Richard Casey
Center for Applied Mathematics
Cornell University
Ithaca, NY 14853–2401
USA
rjc20@cornell.edu

William Castaings
Laboratoire de Modélisation et
Calcul
Institut d’Informatique et
Mathématiques Appliquées de
Grenoble
BP 53
38041 Grenoble Cedex 9
France
william.castaings@imag.fr

XII List of Contributors

Bruce Christianson
University of Hertfordshire, Hatfield
Computer Science
College Lane
Hatfield
Hatfield, Herts.
AL10 9AB
United Kingdom
B.Christianson@herts.ac.uk

Carlos E. Christoffersen
Department of Electrical Engineering
Lakehead University
955 Oliver Road
Thunder Bay, Ontario P7B 5E1
Canada
c.christoffersen@ieee.org

George F. Corliss
Electrical and Computer Engineering
Marquette University
P.O. Box 1881
Milwaukee WI 53201–1881
USA
George.Corliss@Marquette.edu

Maurice Cox
National Physical Laboratories
Teddington
TW11 0LW
United Kingdom
Maurice.Cox@npl.co.uk

Denis Dartus
Institut de Mécanique des Fluides de
Toulouse
Hydrodynamique et Environnement
1 Allée du Professeur Camille Soula
31400 Toulouse
France
dartus@imft.fr

Ronald Errico
Global Modeling and Assimilation
Office, Code 610.1

Goddard Space Flight Center
Greenbelt, MD 20771
USA
rerrico@gmao.gsfc.nasa.gov

Harley Flanders
University of Michigan
1867 East Hall
Ann Arbor, MI 48109–1043
USA
harley@umich.edu

Shaun Forth
Applied Mathematics and
Operational Research
Engineering Systems Department
Cranfield University, Shrivenham
Campus
Swindon
SN6 8LA
United Kingdom
S.A.Forth@cranfield.ac.uk

Benedick A. Fraass
The University of Michigan Medical
School
Department of Radiation Oncology
1500 E. Medical Center Dr.
Ann Arbor, MI 48109–0010
USA

Jidong Gao
Center for Analysis and Prediction
of Storms
University of Oklahoma
Sarkeys Energy Center, Suite 1110
100 East Boyd Street
Norman, OK 73019–1011
USA
jdgao@ou.edu

David M. Gay
Sandia National Labs
P.O. Box 5800, MS 0370
Albuquerque, NM 87185–0370
USA
dmgay@sandia.gov

List of Contributors XIII

Ronald Gelaro
Global Modeling and Assimilation
Office, Code 610.1
Goddard Space Flight Center
Greenbelt, MD 20771
USA
gelaro@gmao.gsfc.nasa.gov

Ralf Giering
FastOpt
Schanzenstr. 36
D–20357 Hamburg
Germany
Rald@FastOpt.com

Andreas Griewank
Humboldt-Universität zu Berlin
Institut für Mathematik
Unter den Linden 6
D–10099 Berlin
Germany
griewank@mathematik.hu-berlin.
de

Johannes Grote
Michigan State University
Department of Physics and
Astronomy
East Lansing, MI 48824
USA
grotejoh@msu.edu

John Guckenheimer
Mathematics Department
Cornell University
Ithaca, NY 14853–2401
USA
gucken@cam.cornell.edu

Frank P. Hart
Department of Electrical and
Computer Engineering
North Carolina State University
P.O. Box 7914
Raleigh, NC 27695–7914
USA
fphart@eos.ncsu.edu

Laurent Hascoët
INRIA Sophia-Antipolis, projet
TROPICS
2004 route des Lucioles
BP 93
06902 Sophia-Antipolis
France
Laurent.Hascoet@sophia.inria.
fr

Marc Honnorat
Laboratoire de Modélisation et
Calcul
Institut d’Informatique et
Mathématiques Appliquées de
Grenoble
BP 53
38041 Grenoble Cedex 9
France
marc.honnorat@imag.fr

Shahadat Hossain
University of Lethbridge
4401 University Drive
T1K 3M4 Lethbridge, AB
Canada
shahadat.hossain@uleth.ca

Paul D. Hovland
University of Chicago / Argonne
National Laboratory
9700 S. Cass Ave
Argonne, IL 60439
USA
hovland@mcs.anl.gov

Kyung-Wook Jee
The University of Michigan Medical
School
Department of Radiation Oncology
1500 E. Medical Center Dr.
Ann Arbor, MI 48109–0010
USA
wook@umich.edu

XIV List of Contributors

Carol Johnstone
MS 221 Fermilab
Kirk Rd. & Wilson St.
Batavia, IL 60510
USA
cjj@fnal.gov

Thomas Kaminski
FastOpt
Schanzenstr. 36
D–20357 Hamburg
Germany
Thomas@FastOpt.com

Andy J. Keane
University of Southampton
School of Engineering Sciences
Mechanical Engineering
Highfield, Southampton
SO17 1BJ
United Kingdom
ajk@soton.ac.uk

Nikhil Kriplani
Department of Electrical and
Computer Engineering
North Carolina State University
P.O. Box 7914
Raleigh, NC 27695–7914
USA
nmkripla@unity.ncsu.edu

Koichi Kubota
Dept. Information and System
Engineering
Chuo University
1-13-27 Kasuga, Bunkyo-ku
112-8551 Tokyo
Japan
kubota@ise.chuo-u.ac.jp

François-Xavier Le Dimet
Laboratoire de Modélisation et
Calcul

Institut d’Informatique et
Mathématiques Appliquées de
Grenoble
BP 53
38041 Grenoble Cedex 9
France
francois-xavier.le-dimet@imag.
fr

Youssef Loukili
Laboratoire de Modélisation et
Calcul
Institut d’Informatique et
Mathématiques Appliquées de
Grenoble
BP 53
38041 Grenoble Cedex 9
France
youssef.loukili@imag.fr

Sonali R. Luniya
Department of Electrical and
Computer Engineering
North Carolina State University
P.O. Box 7914
Raleigh, NC 27695–7914
USA
srluniya@unity.ncsu.edu

Kyoko Makino
Michigan State University
Department of Physics and
Astronomy
East Lansing, MI 48824
USA
makino@msu.edu

Shashikant L. Manikonda
Michigan State University
Department of Physics and
Astronomy
East Lansing, MI 48823
USA
manikond@msu.edu

List of Contributors XV

Wolfgang Marquardt
Process Systems Engineering
RWTH Aachen University
D–52056 Aachen
Germany
marquardt@lpt.rwth-aachen.de

William Martin
Center for Analysis and Prediction
of Storms
University of Oklahoma
Sarkeys Energy Center, Suite 1110
100 East Boyd Street
Norman, OK 73019–1011
USA
wjmartin@ou.edu

Daniel L. McShan
The University of Michigan Medical
School
Department of Radiation Oncology
1500 E. Medical Center Dr.
Ann Arbor, MI 48109–0010
USA

Jérôme Monnier
Laboratoire de Modélisation et
Calcul
Institut d’Informatique et
Mathématiques Appliquées de
Grenoble
BP 53
38041 Grenoble Cedex 9
France
jerome.monnier@imag.fr

Uwe Naumann
RWTH Aachen University
LuFG Software and Tools for
Computational Engineering
D–52056 Aachen
Germany
naumann@stce.rwth-aachen.de

Boyana Norris
University of Chicago / Argonne
National Laboratory
9700 S. Cass Ave
Argonne, IL 60439
USA
norris@mcs.anl.gov

Derya B. Özyurt
Massachusetts Institute of Technol-
ogy
Department of Chemical Engineering
77 Massachusetts Ave.
Cambridge, MA 02139
USA
derya@mit.edu

Valérie Pascual
INRIA Sophia-Antipolis, projet
TROPICS
2004 route des Lucioles
BP 93
06902 Sophia-Antipolis
France
valerie.pascual@sophia.inria.
fr

Monika Petera
Institute for Scientific Computing
RWTH Aachen University
D–52056 Aachen
Germany
petera@sc.rwth-aachen.de

Eric T. Phipps
Sandia National Laboratories
P.O. Box 5800 MS-0316
Albuquerque, NM 87185–0370
USA
etphipp@sandia.gov

John D. Pryce
Cranfield University, RMCS
Shrivenham
Computer Information Systems
Engineering Dept.

XVI List of Contributors

Swindon
SN6 8LA
United Kingdom
J.D.Pryce@cranfield.ac.uk

Louis Rall
University of Wisconsin-Madison
5101 Odana Road
Madison, WI 53711
USA
rall@math.wisc.edu

Jan Riehme
Humboldt-Universität zu Berlin
Institut für Mathematik
Unter den Linden 6
D–10099 Berlin
Germany
riehme@mathematik.hu-berlin.de

Sebastian Schlenkrich
Institute for Scientific Computing
Technical University Dresden
D–01062 Dresden
Germany
schlenk@math.tu-dresden.de

Pavel Snopok
MS 221 Fermilab
Kirk Rd. & Wilson St.
Batavia, IL 60510
USA
snopok@fnal.gov

Michael B. Steer
Department of Electrical and
Computer Engineering
North Carolina State University
P.O. Box 7914
Raleigh, NC 27695–7914
USA
m.b.steer@ieee.org

Trond Steihaug
Department of Informatics
University of Bergen
N-5020 Bergen
Norway
trond.steihaug@ii.uib.no

Julia Sternberg
Technical University Dresden
Department of Mathematics
Institute of Scientific Computing
D–01062 Dresden
Germany
jstern@math.tu-dresdent.de

Mohamed Tadjouddine
Applied Mathematics and
Operational Research
Engineering Systems Department
Cranfield University, Shrivenham
Campus
Swindon
SN6 8LA
United Kingdom
M.Tadjouddine@cranfield.ac.uk

Ricardo Todling
Global Modeling and Assimilation
Office, Code 610.1
Goddard Space Flight Center
Greenbelt, MD 20771
USA
rtodling@gmao.gsfc.nasa.gov

Jean Utke
University of Chicago / Argonne
National Laboratory
9700 S. Cass Ave
Argonne, IL 60439
USA
utke@mcs.anl.gov

Andre Vehreschild
Institute for Scientific Computing
RWTH Aachen University
D–52056 Aachen
Germany
vehreschild@sc.rwth-aachen.de

List of Contributors XVII

Michael Voßbeck
FastOpt
Schanzenstr. 36
D–20357 Hamburg
Germany
Michael@FastOpt.com

Andrea Walther
Technische Universität Dresden
Fachrichtung Mathematik
Institut für Wissenschaftliches
Rechnen
D–01062 Dresden
Germany
awalther@math.tu-dresden.de

Paul J. Werbos
National Science Foundation
4201 Wilson Boulevard
ECS Division, Room 675
Arlington, VA 22203
USA
pwerbos@nsf.gov

Nathan Winslow
Global Modeling and Assimilation
Office, Code 610.1
Goddard Space Flight Center

Greenbelt, MD 20771
USA

Jutta Wyes
Process Systems Engineering
RWTH Aachen University
D–52056 Aachen
Germany
wyes@lpt.rwth-aachen.de

Ying Xiao
School of Computer Science
University of Oklahoma
200 Felgar Street
Norman, OK 73019–6151
USA
ying_xiao@ou.edu

Ming Xue
Center for Analysis and Prediction
of Storms
University of Oklahoma
Sarkeys Energy Center, Suite 1110
100 East Boyd Street
Norman, OK 73019–1011
USA
mxue@ou.edu

Perspectives on Automatic Differentiation:
Past, Present, and Future?

Louis B. Rall

University of Wisconsin – Madison, Madison, WI, USA
rall@math.wisc.edu

Summary. Automatic (or algorithmic) differentiation (AD) is discussed from the
standpoint of transformation of algorithms for evaluation of functions into algo-
rithms for evaluation of their derivatives. Such finite numerical algorithms are com-
monly formulated as computer programs or subroutines, hence the use of the term
“automatic.” Transformations to evaluate derivatives are thus based on the well-
known formulas for derivatives of arithmetic operations and various differentiable
intrinsic functions which constitute the basic steps of the algorithm. The chain rule
of elementary calculus then guarantees the validity of the process. The chain rule
can be applied in various ways to obtain what are called the “forward” and “reverse”
modes of automatic differentiation. These modes are described in the context of the
early stages of the development of AD, and a brief comparison is given. Following
this brief survey, a view of present tasks and future prospects focuses on the need for
further education, communication of results, and expansion of areas of application
of AD. In addition, some final remarks are made concerning extension of the method
of algorithm transformation to problems other than derivative evaluation.

Key words: Numerical algorithms, algorithm transformation, history

The perspectives on automatic differentiation (AD) presented here are
from a personal point of view, based on four decades of familiarity with the
subject. No claim is made of comprehensive or complete coverage of this now
large subject, such a treatment would require a much more extensive work;
hence, the question mark in the title. In the time frame considered, AD has
gone through the stages listed by Bell [30] in the acceptance of a useful tech-
nique: “It is utter nonsense; it is right and can be readily justified; every-
one has always known it and it is in fact a trivial commonplace of classical
analysis.”

It is convenient to adopt as viewpoints on work in AD the classification
given by Corliss in the preface to [42]: Methods, Applications, and Tools.
Methods relate to the underlying theories and techniques, applications are

2 Louis B. Rall

what motivate the work, and the final results in terms of computer software
are the tools which actually produce solutions to problems.

1 The Algorithmic Approach

Before the middle of the 17th century, algebraic mathematics was based on
algorithms, that is, step-by-step recipes for the solution of problems. A famous
example is Euclid’s algorithm for the g.c.d. of two integers, which goes back
to the middle of the 3rd century B.C. The term “algorithm” comes from the
name of the Islamic mathematician Mohammed ibn Mûsâ al-Khowârizmı̂, who
around 825 A.D. published his book Hisâb al-jabr w’al-muqâ-balah, the title
of which also gave us the word “algebra.”

For centuries, geometers had the advantage of using intuitively evident vi-
sual symbols for lines, circles, triangles, etc., and could thus exploit the power
of the human brain to process visual information. By contrast, human beings
perform sequential processing, such as adding up long columns of numbers,
rather slowly and poorly. This made what today are considered rather trivial
algebraic operations opaque and difficult to understand when only algorithms
were available. This changed in the 17th century with the development and
general use of formulas to make algebra visible, and led to the rapid devel-
opment of mathematics. In particular, I. Newton and G. Leibniz introduced
calculus early in this age of formalism. Although their concept of derivative
has been put on a sounder logical basis and generalized to broader situations,
their basic formulas still underlie AD as practiced today.

The power of the choice of suitable notation and the manipulation of the
resulting formulas to obtain answers in terms of formulas was certainly central
to modern mathematics over the last 350 years, and will continue to be one of
the driving forces of future progress. However, the introduction of the digital
computer in the middle of the 20th century has brought the return of the
importance of algorithms, now in the form of computer programs. This points
to the problem of finding methods for manipulation of algorithms which are
as effective as those for formulas.

In modern notation, a finite algorithm generates a sequence

s = (s1, s2, s3 . . . , sn) , (1)

where s1 is its input, the result si of the ith step of the algorithm is given by

si = φi(s1, . . . , si−1), i = 2, . . . , n , (2)

where φi is a function with computable result, and the output sn of the al-
gorithm defines the function f such that sn = f(s1). The number n of steps
of the algorithm may depend on the input s1, but this dependence will be
ignored. For a finite numerical algorithm (FNA), the functions φi belong to a
given set Ω of arithmetic operations and certain other computable (intrinsic)

Perspectives on Automatic Differentiation 3

functions. Arithmetic operations are addition, subtraction, multiplication, and
division, including the cases of constant (literal) operands. With this in mind,
it is sufficient to consider linear combinations, multiplication, and division.
For brevity, elements of Ω will be called simply “operations.”

This definition of an FNA is easily generalized slightly to the case that the
input is a p-vector and the output is a q-vector, or, alternatively, the algorithm
s has p inputs s1, . . . , sp and q outputs sn−q+1, . . . , sn. Such algorithms model
computer programs for numerical computations.

In general, it is much easier to grasp the significance of a formula such as

f(x, y) = (xy + sin x + 4)(3y2 + 6) , (3)

for a function than a corresponding FNA for its evaluation:

s1 = x, s6 = s5 + 4,
s2 = y, s7 = sqr(s2),
s3 = s1 × s2, s8 = 3 × s7,
s4 = sin(s1), s9 = s8 + 6,
s5 = s3 + s4, s10 = s6 × s9 ,

(4)

sometimes called a code list for f(x, y). In (4), sqr(y) = y2 has been included as
an intrinsic function. However, it is important to note that some functions are
defined by computer programs which implement algorithms with thousands
or millions of steps and do not correspond to formulas such as (3) in any
meaningful way. It follows that algorithms provide a more general definition
of functions than formulas.

2 Transformation of Algorithms

In general terms, the transformation of an FNA s into an FNA

S = (S1, S2, . . . , SN)

defines a corresponding function F such that SN = F (S1). Such a transforma-
tion is direct if the functions φi in (1) are replaced by appropriate functions
Φi on a one-to-one basis. For example, when an algorithm is executed on a
computer, it is automatically transformed into the corresponding algorithm
for finite precision (f.p.) numbers, which can lead to unexpected results. Other
direct transformations from the early days of computing are from single to
double or multiple precision f.p. numbers, real to complex, and so on. Another
direct transformation is from real to interval, called the united extension of
the function f by Moore (see [378, Sect. 11.2, pp. 108–113] and [379]): Here,
S1 = [a, b] and SN = F (S1) = [c, d], where a, b, c, d are computed f.p. num-
bers and f(s1) ∈ SN for each s1 ∈ S1. The point here is that f.p. numbers
can actually be computed which bound the results of exact real algorithms.

4 Louis B. Rall

The bounds provided by the united extension are guaranteed, but not al-
ways useful. Considerable effort has gone into finding interval algorithms S
which provide tighter bounds for the results of real algorithms s, but details
are far beyond the scope of this paper. These and other more elaborate algo-
rithm transformations make use of replacement of operations by corresponding
FNAs if necessary.

From this perspective, AD consists of transformation of algorithms for
functions into algorithms for their derivatives. An immediate consequence of
the definition of FNAs and the chain rule (which goes back to Newton and
Leibniz) is the following

Theorem 1. If the derivatives s′i of the steps si of the FNA s can be evaluated
by FNAs with operations in Ω′, then the derivative

s′n = f ′(s1)s′1

can be evaluated by an FNA with operations in Ω′.

Note: Substitute “formula” for FNA to get symbolic differentiation as taught
in school.

As far as terminology is concerned, obtaining an FNA for the derivative
is essentially algorithmic differentiation [225]. The intent to have a computer
do the work of evaluation led to calling this automatic differentiation [136,
227, 450], and computational differentiation [42] is also perfectly acceptable.
In the following, AD refers to whichever designation one prefers.

3 Development of AD

The basic mathematical ideas behind AD have been around for a long time.
The methodologies of AD have been discovered independently a number of
times by different people at various times and places, so no claim is made here
for completeness. Other information can be found in the paper by M. Iri [281]
on the history of AD. Although the methodology of AD could well have been
used for evaluation of derivatives by hand or with tables and desk calculators,
the circuitous method of first deriving formulas for derivatives and then eval-
uating those seems to have been almost universally employed. Consequently,
the discussion here will be confined to the age of the digital computer.

Starting about 1962, the development of AD to the present day can be di-
vided approximately into four decades. In the first, the simple-minded direct
approach known as the forward mode was applied to a number of problems,
principally at the Mathematics Research Center (MRC) of the University of
Wisconsin-Madison as described later in [450]. There followed a slack period
marked by lack of acceptance of AD for reasons still not entirely clear. How-
ever, interest in AD had definitely revived by 1982 due to improvements in
programming techniques and the introduction of the efficient reverse mode.

Perspectives on Automatic Differentiation 5

Much of the progress in this era is due to the work of Andreas Griewank
and his colleagues at Argonne National Laboratory (ANL). This was followed
by explosive growth of work in techniques, tools, and applications of AD,
as recorded in the conference proceedings [42, 136, 227], the book [225] by
Griewank, and the present volume. A useful tool in the development of AD
following 1980 is the computational graph, which is a way of visualizing an
algorithm or computer program different from formulas. For example, Fig. 1
shows a computational graph for the algorithm (4). This type of graph is tech-
nically known as a directed acyclic graph (DAG), see [225]. Transformations
of the algorithm such as differentiation in forward or reverse mode can be
expressed as modifications of the computational graph, see for example, [280].
As indicated above, the forward and reverse modes reflect early and later
stages in the development of AD, and will be considered below in more detail.

f(x, y)

��

��
×

�

��

��
+

�
��

��

��
+

�
��

4

�
�

��

��

��
+

�
���

��

��
×
�
��	

6

�
�

��

��

��
sin

�
�

���

��

��
×

�

3

�

��

��
sqr

�
�

���

x
�

�
�

�� �

y
�

�
�

���

�
�

�
��

Fig. 1. A Computational Graph for f(x, y).

3.1 The Forward Mode

This mode of AD consists essentially of step-by-step replacement of the op-
erations in the FNA s for the function f by operations or FNAs for their
corresponding derivatives. The result will thus be an FNA for derivatives of
the result sn = f(s1). This follows the order in which the computer program
for evaluation of the function f is executed. In fact, before the introduction of

6 Louis B. Rall

compilers with formula translation, programmers using machine or assembly
language had to program evaluation of functions such as (3) in the form of a
code list (4). The forward mode of AD reflects this early method of computer
programming.

Early workers in AD were R. E. Moore at Lockheed Missiles and Space
Company and, later and independently, R. E. Wengert and R. D. Wilkins of
the Radio Guidance Operation of the General Electric Company. The work
at these two locations had different motivations, but both were carried out
in forward mode based on direct conversion of a code list into a sequence of
subroutine calls. In reverse historical order, the method of Wengert [530] and
the results of Wilkins [555] will be discussed first.

The group at General Electric was interested in perturbations of satel-
lite motion due to nonuniformities in the gravitational field of the earth and
checking computer programs which used derivatives obtained by hand. For a
function f(x1, . . . , xd), it is often useful to approximate the difference

∆f = f(x1 + ∆x1, . . . , xd + ∆xd) − f(x1, . . . , xd) , (5)

by the differential

df =
∂f

∂x1
∆x1 + · · · + ∂f

∂xd
∆xd , (6)

a linearization of (5) which is accurate for sufficiently small values of the
increments ∆x1, . . . ,∆xd. (It is customary to write dxj instead of ∆xj in (6)
to make the formula look pretty.) Leaving aside the situation that one or more
of the increments may not be sufficiently small enough to make (6) as accurate
as desired, the values of the partial derivatives ∂f/∂xj give an idea of how
much a change in the jth variable will perturb the value of the function f ,
and in which direction. Consequently, the values of these partial derivatives
are known as “sensitivities.”

Wengert’s method used ordered pairs and does not calculate partial deriv-
atives directly. Rather, after initialization of the values (xj , x

′
j) of the inde-

pendent variables and their derivatives, the result obtained is the pair (f, f ′),
where f is the function value and f ′ the total (or directional) derivative

f ′ =
∂f

∂x1
x′

1 + · · · + ∂f

∂xd
x′

d . (7)

Values of individual partial derivatives ∂f/∂xk are thus obtained by the ini-
tialization (xj , δjk), δjk being the Kronecker delta. Wengert notes that higher
partial derivatives can be obtained by applying the product rule to (7) and
repeated evaluations with suitable initializations of (xj , x

′
j), (x′

j , x
′′
j), and so

on to obtain systems of linear equations which can be solved for the required
derivatives.

As an example of the line-by-line programming required (called the “key
to the method” by Wengert), starting with S1(1) = x, S1(2) = 1, S2(1) =

Perspectives on Automatic Differentiation 7

y, S2(2) = 0, the computation of (f,∂f/∂x) of the function (3) would be
programmed as

CALL PROD(S1, S2, S3)
CALL SINE(S1, S4)
· · · · · · · · · · · ·
CALL ADD(S8, 6, S9)
CALL PROD(S6, S9, S10)

(8)

following the code list (4), and then repeated switching the initializations to
x′ = 0 and y′ = 1 to obtain (f, ∂f/∂y). The example given by Wilkins [555]
is a function for which 21 partial derivatives are desired. The computation,
after modification to avoid overflow, is repeated 21 times, and Wilkins notes
the function value is evaluated 20 more times than necessary. The overflow
was due to the use of the textbook formula for the derivative of the quotient
by Wengert [530]. Wilkins notes an improvement suggested by his coworker
K. O. Johnson to differentiate u/v = uv−1 as a product was helpful with
the overflow problem, and finally Wengert suggested the efficient expression
(u/v)′ = (u′ − (u/v)v′)/v which uses the previously evaluated quotient. Also,
since the function considered also depends on the time t and contains deriva-
tives w.r.t. t, it is not clear which derivative was calculated, the ordinary total
derivative (7) or the ordered derivative

∂+f

∂t
=

∂f

∂t
+

∂f

∂x1

∂x1

∂t
+ · · · + ∂f

∂xd

∂xd

∂t
,

denoted by Df/∂t in [483].
Although inefficient, the program using Wengert’s method, once corrected,

showed there were errors in the program using derivatives obtained by hand.
When the latter was corrected, both took about the same computer time to ob-
tains answers which agreed. That Wilkins had to battle f.p. arithmetic shows
that “automatic” in the sense of “plug-and-play” does not always hold for
AD, as is also well-known in the case of interval arithmetic. Wilkins predicted
a bright future for AD as a debugging tool and a stand-alone computational
technique. However, AD seems to have hit a dead end at General Electric;
nothing more appeared from this group as far as is known. As a matter of
fact, the efforts of Wengert and Wilkins had no influence on the subsequent
work using AD done at MRC off and on over the next ten years.

Prior to Wengert and Wilkins, R. E. Moore worked on the initial-value
problem

ẋ = f(x, t), x(t0) = x0 , (9)

the goal being to compute f.p. vectors a(t) and b(t) such that the bounds
a(t) <= x(t) <= b(t) are guaranteed. Moore used recurrence relations for the
Taylor series expansion of f(x, t) to obtain the Taylor expansion

x(t0 + τ) =
m∑

k=0

xk + Rm , (10)

8 Louis B. Rall

of the solution, where

xk =
1
k!

dkx(t0)
dtk

τk (11)

is the kth normalized Taylor coefficient of the function x(t), and the remainder
term Rm is given by

Rm =
1

(m + 1)!
dm+1x(ϑ)

dtm+1
τm+1, t0 <= ϑ <= t0 + τ . (12)

Moore used interval arithmetic to bound the round-off error in the compu-
tation of the Taylor coefficients (11) and the truncation error (12) on the
interval [t0, t0 + τ]. In this way, valid assertions could be made about the re-
sults of an algorithm carried out in f.p. interval arithmetic. As in the later
work of Wengert, the expansion (10) was based on representation of the func-
tion f(x, t) by a code list and was programmed as a sequence of subroutine
calls such as (8).

Moore presented his results to conferences on error in digital computation
held at MRC in 1964 and 1965, see [376,377]. It was recognized immediately
that Moore’s method also applied to the direct evaluation of partial deriv-
atives of functions of several variables, rather than via total derivatives as
done by Wengert. The motivation was automation of Newton’s method in d
dimensions for approximate solution of F (x) = 0 by solving the sequence of
linear equations

F ′(x)(xm+1 − xm) = −F (xm), m = 0, 1, . . . , (13)

where the coefficient matrix is the Jacobian F ′(x) = (∂Fi/∂xj) of the system
of functions Fi(x), i = 1, . . . , d. The rows of the matrix F ′(x) are the gradi-
ents ∇Fi(x) of the corresponding functions Fi(x). Furthermore, in order to
apply the theorem of Kantorovich (see [449]) on the convergence of Newton’s
method, a Lipschitz constant for F ′(x) is required. This can be obtained from
an upper bound for the ∞-norm of the Hessian operator

K >= ‖F ′′(x)‖ =
∥∥∥∥

∂2Fi

∂xj∂xk

∥∥∥∥ .

The necessary bounds were computed using interval arithmetic, so that valid
assertions regarding the existence of a solution and a region containing it
were obtained as well as the convergence of the Newton sequence (13) when
successful.

This program and others written at MRC by an outstanding programming
staff supervised by L. Rall incorporated a number of advances over previous
efforts in several respects. First of all, the programs accepted expressions
(functions) as input and produced the corresponding sequences of subroutine
calls internally, thus relieving the user of this unnecessary task. Secondly,
gradients and Hessians were vectorized, so only one pass was required to obtain

Perspectives on Automatic Differentiation 9

the value of a function, its gradient vector, and Hessian matrix. First and
second derivatives of operations and intrinsic functions were coded explicitly,
rather than using Taylor coefficients or the product rule and linear equations
as indicated by Wengert. Moore’s program for initial-value problems was also
modified to accept expressions as inputs. Finally, a program for numerical
integration with guaranteed error bounds was written to accept subroutines
(which could be single expressions) as input. For more details on the programs
written at MRC, see [450].

Also at the University of Wisconsin, G. Kedem wrote his 1974 Ph.D. thesis
on automatic differentiation of programs in forward mode, supervised by C. de
Boor. It was published in 1980 [302]. For various reasons, work on AD at
MRC came to a pause in 1974, and was not taken up again until 1981. This
followed lectures given at the University of Copenhagen [450] and a visit to
the University of Karlsruhe to learn about the computer language Pascal-SC,
developed by U. Kulisch and his group (see [66] for a complete description).
This extension of the computer language Pascal permits operator overloading
and functions with arbitrary result types, and thus presents a natural way to
program AD in forward mode, see [451] for example. Much of this work was
done in collaboration with G. Corliss of Marquette University [133]. Another
result was an adaptive version of the self-validating numerical integration
program written earlier at MRC in nonadaptive form [137]. Funding of MRC
was discontinued in 1985, which brought an end to this era of AD.

Another result of the technique of operator overloading was the concept
of differentiation arithmetic, introduced in an elementary paper by Rall [452].
This formulation was based on operations on ordered pairs (a, a′) (as in [530]).
In algebraic terms, this showed that AD could be considered to be a derivation
of a commutative ring, the rule for multiplication being the product rule
for derivatives. Furthermore, M. Berz noticed that in the definition (a, a′) =
a(1, 0)+a′(0, 1), the quantity (1, 0) is a basis for the real numbers and, in the
lexicographical ordering, (0, 1) is a nonzero quantity less than any positive
number and hence satisfies the classical definition of an infinitesimal. Starting
from this observation, Berz was able to frame AD in terms of operations in a
Levi-Civita field [37].

3.2 The Reverse Mode

Along with the revival of the forward mode of AD after 1980, the reverse
mode came into prominence. As in the case of the forward mode, the history
of the reverse mode is somewhat murky, featured by anticipations, publica-
tion in obscure sources [420], Ph.D. theses which were unpublished [487] or
not published until much later. For example, the thesis of P. Werbos [532]
was not published until twenty years later [543]. Fortunately, the thesis of
B. Speelpenning [487] attracted the attention of A. Griewank at ANL, and
further notice was brought to the reverse mode by the paper of M. Iri [280].

10 Louis B. Rall

The basic idea of the reverse mode for the case the algorithm (1) has d
inputs and one output is to apply the chain rule to calculate the “adjoints,”

∂sn

∂sn
,

∂sn

∂sn−1
, . . . ,

∂sn

∂sd
, . . . ,

∂sn

∂s1
,

which provide in reverse order the components of the gradient vector

∇f = ∇sn =
(

∂sn

∂s1
, . . . ,

∂sn

∂sd

)
.

The reverse mode resembles symbolic differentiation in the sense that one
starts with the final result in the form of a formula for the function and then
applies the rules for differentiation until the independent variables are reached.
For example, (3) is a product, so the factors

∂s10

∂s9
= s6 = xy + sin x + 4,

∂s10

∂s6
= s9 = 3y2 + 6 ,

are taken as new differentiation problems, with the final results of each com-
posed by the product rule to obtain

∂f

∂x
=

∂s10

∂s1
= (y + cos x)(3y2 + 6),

∂f

∂y
=

∂s10

∂s2
= x(3y2 + 6) + 6y(xy + sinx + 4) ,

(14)

which can be “simplified” further if desired. Applied to the example code
list (4), the reverse form yields

∂s10

∂s10
= 1,

∂s10

∂s6
= s9,

∂s10

∂s9
= s6,

∂s10

∂s5
=

∂s10

∂s6

∂s6

∂s5
= s9 × 1,

∂s10

∂s8
=

∂s10

∂s9

∂s9

∂s8
= s6 × 1,

∂s10

∂s4
=

∂s10

∂s5

∂s5

∂s4
= s9 × 1,

∂s10

∂s7
=

∂s10

∂s8

∂s8

∂s7
= s6 × 3,

∂s10

∂s3
=

∂s10

∂s5

∂s5

∂s3
= s9 × 1 ,

with the final results
∂s10

∂s2
=

∂s10

∂s7

∂s7

∂s2
+

∂s10

∂s3

∂s3

∂s2
= (3s6)(2s2) + s9s1,

∂s10

∂s1
=

∂s10

∂s4

∂s4

∂s1
+

∂s10

∂s3

∂s3

∂s1
= s9s1 + s9s2 ,

the same values as given by (14). Even in this simple case, fewer operations
are required by this computation than forward evaluation of the algorithm (4)
using the pairs Si = (si,∇si). Programming of the reverse mode is more
elaborate than the forward mode, however, operator overloading can be done
in reverse mode as in ADOL-C [288].

Perspectives on Automatic Differentiation 11

3.3 A Comparison

Both forward and reverse modes have their places in the repertoire of compu-
tational differentiation, and are sometimes used in combination. The efficiency
of the reverse mode is sometimes offset by the necessity to store results of a
long algorithm, see [429,550], for example. A theoretical comparison has been
given by Rall [174, pp. 233–240] based on the matrix equivalent of the compu-
tational graph. If the algorithm (1) is differentiable, then its Jacobian matrix
J = (∂si/∂sj) is of the form J = I − K, where K is lower-triangular and
sparse. The eigenvalues of J are all equal to 1, and Kν+1 = 0 for some index
ν. The row vector

R = [0 · · · 0 ∇sn]

is a left eigenvector of J , and the columns of the n × d matrix C with
rows ∇s1,∇s2, . . . ,∇sn are right eigenvectors of J . The reverse and forward
modes consist of calculating these eigenvectors by the power method. The
reverse mode starts with R0 = [0 · · · 0 1] and proceeds by Rk = Rk−1J
and terminates with Rµ = R. Similarly, the forward mode starts with
C0 = [∇sT

1 · · · ∇sT
d 0 · · · 0]T , proceeds by Ck = JCk−1, and terminates

with Cµ = C. The difference in computational effort is immediately evident.

4 Present Tasks and Future Prospects

The future of AD depends on what is done now as well as what transpired
in the past. Current tasks can be divided into four general categories: Tech-
niques, education, communication, and applications. Some brief remarks will
be devoted to each of these topics.

4.1 Techniques

The basic techniques of AD are well understood, but little attention has been
devoted to accuracy, the assumption being that derivatives are obtained about
as accurately as function values. The emphasis has been on speed and con-
servation of storage. Increasing speed by reducing the number of operations
required is of course helpful, since the number of roundings is also decreased.
Advantage can also be taken of the fact that ab + c is often computed with
a single rounding. Even more significant would be the provision of a long
accumulator to evaluate the dot product

u · v =
d∑

i=1

uivi

of d-vectors u and v with a single rounding as implemented originally in
Pascal-SC [66]. This enables many algebraic operations including solution of

12 Louis B. Rall

linear systems to be carried out with high accuracy. For example, the com-
ponents of the gradient ∇(u · v) of a dot product can be expressed as dot
products and thus computed with a single rounding. Also, if x = L−1y is the
solution of a nonsingular system of equations Lx = y, then its gradient ∇x is
given by the generalization of the division formula

∇x = L−1∇y − L−1(∇L)L−1y = L−1(∇y − (∇L)x) ,

(see [449]), where ∇L is a d × d matrix of gradients and ∇y is a d-vector of
gradients. Of course, it is unnecessary to invert L, the system of equations
L∇x = ∇y − (∇L)x can be solved by the same method as for Lx = y.

4.2 Education

It was discouraging throughout the 1970’s that the work done on AD by
Moore, Wengert, and the then state of the art programs written by the MRC
programming staff were ignored and even disparaged. Presentations at confer-
ences were met with disinterest or disbelief. One reason advanced for this was
the wide-spread conviction that if a function was represented by a formula,
then a formula for its derivative was necessary before its derivative could be
evaluated. Furthermore, the differentiation of a function defined only by an al-
gorithm and not by a formula seemed beyond comprehension. A few simple ex-
amples could be incorporated into elementary calculus courses to combat these
fallacies. As mentioned above, the standard method taught for differentiation
of functions defined by formulas essentially proceeds in reverse mode. The for-
ward mode uses the way the final result f(x) is computed from the given value
of x and shows that f ′(x) can be evaluated in the same step-by-step fashion.
Furthermore, given the definitions (2), the values x = s1, s2, . . . , sn = f(x) of
the steps in the evaluation of f(x) can be used in the reverse mode to obtain
the same value of f ′(x). Then, for example, Newton’s method can be intro-
duced as an application of use of derivative values without the necessity to
obtain formulas for derivatives. All of this can be done once the basic formu-
las for differentiation of arithmetic operations and some elementary functions
have been taught.

It is easy to prepare a teaching “module” for AD on an elementary level.
The problem is to have it adopted as part of an increasingly crowded curricu-
lum in beginning calculus. This means that teachers and writers of textbooks
on calculus have to first grasp the idea and then realize it is significant. Thus,
practitioners of AD will have to reach out to educators in a meaningful way.
Otherwise, there will continue to be a refractory “formulas only” community
in the computational sciences who could well benefit from AD.

Opportunities to introduce AD occur in other courses, such as differential
equations, optimization, and numerical analysis. Reverse mode differentiation
is a suitable topic for programming courses, perhaps on the intermediate level.
An informal survey of numerical analysis and other textbooks reveals that

Perspectives on Automatic Differentiation 13

most recommend against the use of derivatives, in particular regarding New-
ton’s method and Taylor series solution of differential equations. The reason
advanced is the complexity of obtaining the “required” formulas for deriv-
atives and Taylor coefficients by hand. An exception is the recent textbook
on numerical analysis by A. Neumaier [411], which begins with a discussion
of function evaluation and automatic differentiation. A definite opportunity
exists to introduce AD at various levels in the curricula of various fields,
including business, social and biological sciences as well as the traditional
physical sciences and engineering fields. This is particularly true now that
most instruction is backed up by software pertinent to the subject.

4.3 Communication and Applications

An additional reason for the slow acceptance of AD in its early years was the
lack of publication of results after the papers of Wengert and Wilkins [530,555].
For example, the more advanced programs written at MRC were described
only in technical reports and presented at a few conferences sponsored by
the U. S. Army, but not widely disseminated. The attitude of journal edi-
tors at the time seemed to be that AD was either “a trivial commonplace of
classical analysis,” or the subject was completely subsumed in the paper by
Wengert [530]. In addition, the emphasis on interval arithmetic and assertions
of validity in the MRC approach had little impact on the general computing
community, which was more interested in speed than guarantees of accuracy.
Furthermore, the MRC programs were tied rather closely to the computer
available at the time, standards for computer and interval arithmetic had
not yet been developed. The uses of AD for Taylor series in Moore’s 1966
book [378] and Newton’s method in Rall’s 1969 book [449] were widely ig-
nored.

A striking example of lack of communication was shown in the survey
paper by Barton, Willers, and Zahar, published in 1971 [461, pp. 369–390].
This valuable and interesting work on Taylor series methods traced the use of
recurrence relations as employed by Moore back to at least 1932 and included
the statement, “... adequate software in the form of automatic programs for
the method has been nonexistent.” The authors and the editor of [461] were
obviously unaware that Moore had such software running about ten years
earlier [375], and his program was modified by Judy Braun at MRC in 1968
to accept expressions as input, which made it even more automatic.

Another impediment to the ready acceptance of Moore’s interval method
for differential equations was the “wrapping effect” [377]. This refers to un-
reasonably rapid increase in the width of the interval [a(t), b(t)] to make these
bounds for the solution useless. Later work by Lohner [343] and in particular
the Taylor model concept of Berz and Makino [266,346,347] have ameliorated
this situation to a great extent.

Fortunately, publication of the books [225, 450], and the conference pro-
ceedings [42, 136, 227], and the present volume have brought AD to a much

14 Louis B. Rall

wider audience and increased its use worldwide. The field received an impor-
tant boost when the precompiler ADIFOR 2.0 by C. Bischof and A. Carle
was awarded the J. H. Wilkinson prize for mathematical software in 1995 (see
SIAM News, Vol. 28, No. 7, August/September 1995). The increasing num-
ber of publications in the literature of various fields of applications is likewise
very important, since these bring AD to the attention of potential users in-
stead of only practitioners. These books and articles as cited in their extensive
bibliographies show a large and increasing sphere of applications of AD.

5 Beyond AD

Perhaps the bright future for AD predicted 40 years ago by Wilkins has arrived
or is on the near horizon. There is general acceptance of AD by the optimiza-
tion and interval computation communities. With more effort directed toward
education, the use of AD will probably become routine. Perhaps future gener-
ations of compilers will offer differentiation as an option, see [400]. Directions
for further study are to use the lessons learned from AD to develop other al-
gorithm transformations. A step in this direction by T. Reps and L. Rall [459]
is the algorithmic evaluation of divided differences

[x, h]f =
f(x + h) − f(x)

h
. (15)

Direct evaluation of (15) in f.p. arithmetic is problematical, whereas algo-
rithmic evaluation is stable over a wide range of values, and approaches the
value of the AD derivative f ′(x) as h → 0. In fact, for h = 0, the divided
difference formulas reduce to the corresponding formulas for derivatives. In
the use of divided differences to approximate derivatives, (15) is inaccurate
due to truncation error for h large, and due to roundoff error for h small. On
the other hand, the use of differentials (6) obtained by AD to approximate
differences (5) has the same problems. Thus, it is useful to have a method to
compute differences which does not suffer loss of significant digits by cance-
lation to the extent encountered in direct evaluation.

Other goals for algorithm transformation are suggested by the “ultra-
arithmetic” proposed by W. Miranker and others [295]. Algorithms for func-
tions represented by Fourier-type series can be used to obtain the coefficients
of the series expansions, much like what has already been done for Taylor
series. In other words, the transformation of an FNA can be accomplished
once the appropriate transformations of arithmetic operations and intrinsic
functions involved are known. As initially realized by Wengert [530], this is
indeed the key to the method.

