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Preface

It was stated in the preface to the first edition of this book that image pro-
cessing by electronic means has been a very active field for decades. This
is certainly still true and the goal has been, and still is, to have a machine
perform the same image functions which humans do quite easily. In reaching
this goal we have learnt about the human mechanisms and how to apply this
knowledge to image processing problems. Although there is still a long way to
go, we have learnt a lot during the last five or six years. This new information
and some ideas based upon it has been added to the second edition of our book

The present edition includes the theory and application of two cortical
models: the PCNN (pulse coupled neural network) and the ICM (intersecting
cortical model). These models are based upon biological models of the visual
cortex and it is prudent to review the algorithms that strongly influenced the
development of the PCNN and ICM. The outline of the book is otherwise
very much the same as in the first edition although several new application
examples have been added.

In Chap. 7 a few of these applications will be reviewed including original
ideas by co-workers and colleagues. Special thanks are due to Soonil D.D.V.
Rughooputh, the dean of the Faculty of Science at the University of Mauritius
Guisong, and Harry C.S. Rughooputh, the dean of the Faculty of Engineering
at the University of Mauritius.

We should also like to acknowledge that Guisong Wang, a doctoral can-
didate in the School of Computational Sciences at GMU, made a significant
contribution to Chap. 5.

We would also like to acknowledge the work of several diploma and Ph.D.
students at KTH, in particular Jenny Atmer, Nils Zetterlund and Ulf Ekblad.

Stockholm and Manassas, Thomas Lindblad
April 2005 Jason M. Kinser



Preface to the First Edition

Image processing by electronic means has been a very active field for decades.
The goal has been, and still is, to have a machine perform the same im-
age functions which humans do quite easily. This goal is still far from being
reached. So we must learn more about the human mechanisms and how to ap-
ply this knowledge to image processing problems. Traditionally, the activities
in the brain are assumed to take place through the aggregate action of billions
of simple processing elements referred to as neurons and connected by com-
plex systems of synapses. Within the concepts of artificial neural networks,
the neurons are generally simple devices performing summing, thresholding,
etc. However, we show now that the biological neurons are fairly complex
and perform much more sophisticated calculations than their artificial coun-
terparts. The neurons are also fairly specialised and it is thought that there
are several hundred types in the brain and messages travel from one neuron
to another as pulses.

Recently, scientists have begun to understand the visual cortex of small
mammals. This understanding has led to the creation of new algorithms that
are achieving new levels of sophistication in electronic image processing. With
the advent of such biologically inspired approaches, in particular with respect
to neural networks, we have taken another step towards the aforementioned
goals.

In our presentation of the visual cortical models we will use the term
Pulse-Coupled Neural Network (PCNN). The PCNN is a neural network
algorithm that produces a series of binary pulse images when stimulated with
a grey scale or colour image. This network is different from what we generally
mean by artificial neural networks in the sense that it does not train.

The goad for image processing is to eventually reach a decision on the
content of that image. These decisions are generally easier to accomplish by
examining the pulse output of the PCNN rather than the original image. Thus
the PCNN becomes a very useful pre-processing tool. There exists, however,
an argument that the PCNN is more than a pre-processor. It is possible that
the PCNN also has self-organising abilities which make it possible to use the
PCNN as an associative memory. This is unusual for an algorithm that does
not train.

Finally, it should be noted that the PCNN is quite feasible to implement
in hardware. Traditional neural networks have had a large fan-in and fan-
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out. In other words, each neuron was connected to several other neurons. In
electronics a different “wire” is needed to make each connection and large
networks are quite difficult to build. The PCNN, on the other hand, has only
local connections and in most cases these are always positive. This is quite
plausible for electronic implementation.

The PCNN is quite powerful and we are just in the beginning to explore
the possibilities. This text will review the theory and then explore its known
image processing applications: segmentation, edge extraction, texture ex-
traction, object identification, object isolation, motion processing, foveation,
noise suppression and image fusion. This text will also introduce arguments to
its ability to process logical arguments and its use as a synergetic computer.
Hardware realisation of the PCNN will also be presented.

This text is intended for the individual who is familiar with image pro-
cessing terms and has a basic understanding of previous image processing
techniques. It does not require the reader to have an extensive background in
these areas. Furthermore, the PCNN is not extremely complicated mathemat-
ically so it does not require extensive mathematical skills. However, the text
will use Fourier image processing techniques and a working understanding of
this field will be helpful in some areas.

The PCNN is fundamentally unique from many of the standard tech-
niques being used today. Many techniques have the same basic mathematical
foundation and the PCNN deviates from this path. It is an exciting field that
shows tremendous promise.
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1 Introduction and Theory

1.1 General Aspects

Humans have an outstanding ability to recognise, classify and discriminate
objects with extreme ease. For example, if a person was in a large classroom
and was asked to find the light switch it would not take more than a second or
two. Even if the light switch was located in a different place than the human
expected or it was shaped differently than the human expected it would
not be difficult to find the switch. Humans also don’t need to see hundreds of
exemplars in order to identify similar objects. For example, a human needs to
see only a few dogs and then he is able to recognise dogs even from species that
he has not seen before. This recognition ability also holds true for animals, to
a greater or lesser extent. A spider has no problem recognising a fly. Even a
baby spider can do that. At this level we are talking about a few hundred to a
thousand processing elements or neurons. Nevertheless the biological systems
seem to do their job very well.

Computers, on the other hand, have a very difficult time with these tasks.
Machines need a large amount of memory and significant speed to even come
close to the processing time of a human. Furthermore, the software for such
simple general tasks does not exist. There are special problems where the
machine can perform specific functions well, but the machines do not perform
general image processing and recognition tasks.

In the early days of electronic image processing, many thought that a
single algorithm could be found to perform recognition. The most popular of
these is Fourier processing. It, as well as many of its successors, has fallen
short of emulating human vision. It has become obvious that the human uses
many elegantly structured processes to achieve its image processing goals,
and we are beginning to understand only a few of these.

One of the processes occurs in the visual cortex, which is the part of the
brain that receives information from the eye. At this point in the system the
eye has already processed and significantly changed the image. The visual
cortex converts the resultant eye image into a stream of pulses. A synthetic
model of this portion of the brain for small mammals has been developed
and successfully applied to many image processing applications.

So then many questions are raised. How does it work? What does it do?
How can it be applied? Does it gain us any advantage over current systems?
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Can we implement it with today’s hardware knowledge? This is what many
scientists are working with today [2].

1.2 The State of Traditional Image Processing

Image processing has been a science for decades. Early excitement was created
with the invention of the laser, which opened the door for optical Fourier im-
age processing. Excitement was heightened further as the electronic computer
became powerful enough and cheap enough to process images of significant
dimension. Even though many scientists are working in this field, progress
towards achieving recognition capabilities similar to humans has been very
slow in coming.

Emulation of the visual cortex takes new steps forward for a couple of
reasons. First, it directly emulates a portion of the brain, which we believe
to be the most efficient image processor available. Second, is that mathe-
matically it is fundamentally different than many such traditional algorithms
being used today.

1.2.1 Generalisation versus Discrimination

There are many terms used in image processing which need to be clarified
immediately. Image processing is a general term that covers many areas.
Image processing includes morphology (changing the image into another im-
age), filtering (removing or extracting portions of the image), recognition,
and classification.

Filtering an image concerns the extraction of a certain portion of the im-
age. These techniques may be used to find all of the edges, or find a particular
object within the image, or to locate particular object. There are many ways
of filtering an image of which a few will be discussed.

Recognition is concerned with the identification of a particular target
within the image. Traditionally, a target is an object such as a dog, but
targets can also be signal signatures such as a certain set of frequencies or a
pattern. The example of recognising dogs is applicable here. Once a human
has seen a few dogs he can then recognise most dogs.

Classification is slightly different that recognition. Classification also re-
quires that a label be applied to the portion of the input. It is possible to
recognise that a target exists but not be able to attach a specific label to it.

It should also be noted that there are two types of recognition and clas-
sification. These types are generalisation and discrimination. Generalisation
is finding the similarities amongst the classes. For example, we can see an
animal with four legs, a tail, fur, and the shape and style similar to those
of the dogs we have seen, and can therefore recognise the animal as a dog.
Discrimination requires knowledge of the differences. For example, this dog
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may have a short snout and a curly tail, which is quite different than most
other dogs, and we therefore classify this dog as a pug.

1.2.2 “The World of Inner Products”

There are many methods that are used today in image processing. Some of
the more popular techniques are frequency-based filters, neural networks, and
wavelets. The fundamental computational engine in each of these is the inner
product. For example, a Fourier filter produces the same result as a set of
inner products for each of the possible positions that the target filter can be
overlaid on the input image.

A neural network may consist of many neurons in several layers. However,
the computation for each neuron is an inner product of the weights with the
data. After the inner product computation the result is passed through a non-
linear operation. Wavelets are a set of filters, which have unique properties
when the results are considered collectively. Again the computation can be
traced back to the inner product.

The inner product is a first order operation which is limited in the services
it can provide. That is why algorithms such as filters and networks must use
many inner products to provide meaningful results for higher order problems.
The difficulty in solving a higher order problem with a set of inner products
is that the number of inner products necessary is neither known nor easy to
determine, and the role of each inner product is not easily identified. Some
work towards solving these problems for binary systems have been proposed
[8]. However, for the general case of analogue data the user must resort to
using training algorithms (many of which require the user to predetermine the
number of inner products and their relationship to each other). This training
optimises the inner products towards a correct solution. This training may
be very involved, tedious, computationally costly and provides no guarantee
of a solution.

Most importantly is that the inner product is extremely limited in what
it can do. This is a first order computation and can only extract one order of
information from a data set. One well known problem is the XOR (exclusive
OR) gate, which contains four, 2D inputs paired with 1D outputs, namely
(00:0, 01:1, 10:1, 11:0). This system can not be mapped fully by a single
inner product since it is a second order problem. Feedforward artificial neural
networks, for example, require two layers of neurons to solve the XOR task.

Although inner products are extremely limited in what they can do, most
of the image recognition engines rely heavily upon them. The mammalian
system, however, uses a higher order system that is considerably more com-
plicated and powerful.



4 1 Introduction and Theory

1.2.3 The Mammalian Visual System

The mammalian visual system is considerably more elaborate than simply
processing an input image with a set of inner products. Many operations
are performed before decisions are reached as to the content of the image.
Furthermore, neuro-science is not at all close to understanding all of the
operations. This section will mention a few of the important operations to
provide a glimpse of the complexity of the processes. It soon becomes clear
that the mammalian system is far more complicated than the usual computer
algorithms used in image recognition. It is almost silly to assume that such
simple operations can match the performance of the biological system.

Of course, image input is performed through the eyes. Receptors within
the retina at the back of the eye are not evenly distributed nor are they all
sensitive to the same optical information. Some receptors are more sensitive to
motion, colour, or intensity. Furthermore, the receptors are interconnected.
When one receptor receives optical information it alters the behaviour of
other surrounding receptors. A mathematical operation is thus performed on
the image before it even leaves the eye.

The eye also receives feedback information. We humans do not stare at
images, we foveate. Our centre of attention moves about portions of the image
as we gather clues as to the content. Furthermore, feedback information also
alters the output of the receptors.

After the image information leaves the eye it is received by the visual
cortex. Here the information is further analysed by the brain. The investi-
gations of the visual cortex of the cat [1] and the guinea pig [12] have been
the foundation of the digital models used in this text. Although these models
are a big step in emulating the mammalian visual system, they are still very
simplified models of a very complicated system. Intensive research continues
to understand fully the processing. However, much can still be implemented
or applied already today.

1.2.4 Where Do We Go From Here?

The main point of this chapter is that current computer algorithms fail miser-
ably in attempting to perform image recognition at the level of a human. The
reason is obvious. The computer algorithms are incredibly simple compared
to what we know of the biological systems. In order to advance the computer
systems it is necessary to begin to emulate some of the biological systems.

One important step in this process is to emulate the processes of the
visual cortex. These processes are becoming understood although there still
exists significant debate on them. These processes are very powerful and can
instantly lead to new tools to the image recognition field.
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1.3 Visual Cortex Theory

In this text we will explore the theory and application of two cortical models:
the PCNN (pulse coupled neural network) and the ICM (intersecting cortical
model) [3, 4]. However, these models are based upon biological models of
the visual cortex. Thus, it is prudent to review the algorithms that strongly
influenced the development of the PCNN and ICM.

1.3.1 A Brief Overview of the Visual Cortex

While there are discussions as to the actual cortex mechanisms, the prod-
ucts of these discussions are quite useful and applicable to many fields. In
other words, the algorithms being presented as cortical models are quite use-
ful regardless of their accuracy in modelling the cortex. Following this brief
introduction to the primate cortical system, the rest of this book will be con-
cerned with applying cortical models and not with the actual mechanisms of
the visual cortex.

In spite of its enormous complexity, two basic hierarchical pathways can
model the visual cortex system: the pavocellular one and the mangnocellular
one, processing (mainly) colour information and form/motion, respectively.
Figure 1.1 shows a model of these two pathways. The retina has luminance
and colour detectors which interpret images and pre-process them before
conveying the information to visual cortex. The Lateral Geniculate Nucleus,
LGN, separates the image into components that include luminance, contrast,
frequency, etc. before information is sent to the visual cortex (labelled V, in
Fig. 1.1).

The cortical visual areas are labelled V1 to V5 in Fig. 1.1. V1 represents
the striate visual cortex and is believed to contain the most detailed and
least processed image. Area V2 contains a visual map that is less detailed
and pre-processed than area V1. Areas V3 to V5 can be viewed as speciality
areas and process only selective information such as, colour/form, static form
and motion, respectively.

Information between the areas flows in both directions, although only the
feedforward signals are shown in Fig. 1.1. The processing area spanned by
each neuron increases as you move to the right in Fig. 1.1, i.e. a single neuron
in V3 processes a larger part of the input image than a single neuron in V1.

The re-entrant connections from the visual areas are not restricted to
the areas that supply its input. It is suggested that this may resolve conflict
between areas that have the same input but different capabilities.

Much is to be learnt from how the visual cortex processes information,
adapts to both the actual and feedback information for intelligent processing.
However, a ‘smart sensor’ will probably never look like the visual cortex
system, but only use a few of its basic features.
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Fig. 1.1. A model of the visual system. The abbreviations are explained in the
text. Only feedforward signals are shown

1.3.2 The Hodgkin–Huxley Model

Research into mammalian cortical models received its first major thrust about
a half century ago with the work of Hodgkin and Huxley [6]. Their system
described membrane potentials as

I = m3hGNa(E − ENa) + n4GK(E − EK) + GL(E − EL) , (1.1)

where I is the ionic current across the membrane, m is the probability that an
open channel has been produced, G is conductance (for sodium, potassium,
and leakage), E is the total potential and a subscripted E is the potential for
the different constituents. The probability term was described by,

dm

dt
= am(1 − m) − bmm , (1.2)

where am is the rate for a particle not opening a gate and bm is the rate for
activating a gate. Both am and bm are dependent upon E and have different
forms for sodium and potassium.

The importance to cortical modelling is that the neurons are now de-
scribed as a differential equation. The current is dependent upon the rate
changes of the different chemical elements. The dynamics of a neuron are
now described as an oscillatory process.
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1.3.3 The Fitzhugh–Nagumo Model

A mathematical advance published a few years later has become known as the
Fitzhugh–Nagumo model [5,10] in which the neuron’s behaviour is described
as a van der Pol oscillator. This model is described in many forms but each
form is essentially the same as it describes a coupled oscillator for each neuron.
One example [9] describes the interaction of an excitation x and a recovery y,

ε
dx

dt
= −y − g(x) + I , (1.3)

and
dy

dt
= x − by , (1.4)

where g(x) = x(x − a)(x − 1), 0 < a < 1, I is the input current, and ε � 1.
This coupled oscillator model will be the foundation of the many models that
would follow.

These equations describe a simple coupled system and very simple simu-
lations can present different characteristics of the system. By using (ε = 0.3,
a = 0.3, b = 0.3, and I = 1) it is possible to get an oscillatory behaviour as
shown in Fig. 1.2. By changing a parameter such as b it is possible to generate
different types of behaviour such as steady state (Fig. 1.3 with b = 0.6).

The importance of the Fitzhugh–Nagumo system is that it describes the
neurons in a manner that will be repeated in many different biological models.
Each neuron is two coupled oscillators that are connected to other neurons.

Fig. 1.2. An oscillatory system described through the Fitzhugh–Nagumo equations
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Fig. 1.3. A steady state system described through the Fitzhugh–Nagumo equations

1.3.4 The Eckhorn Model

Eckhorn [1] introduced a model of the cat visual cortex, and this is shown
schematically in Fig. 1.4, and inter-neuron communication is shown in Fig. 1.5.
The neuron contains two input compartments: the feeding and the linking.
The feeding receives an external stimulus as well as local stimulus. The link-
ing receives local stimulus. The feeding and the linking are combined in a
second-order fashion to create the membrane voltage, Um that is then com-
pared to a local threshold, Θ.

The Eckhorn model is expressed by the following equations,

Um,k(t) = Fk(t)[1 + Lk(t)] (1.5)

Fk(t) =
N∑

i=1

[
wf

kiYi(t) + Sk(t) + Nk(t)
]

⊗ I (V a, τa, t) (1.6)

Lk(t) =
N∑

i=1

[
wl

kiYi(t) + Nk(t)
] ⊗ I

(
V l, τ l, t

)
(1.7)

Yk(t) =

{
1 if Um,k(t) ≥ Θk(t)

0 Otherwise
(1.8)

where, in general

X(t) = Z(t) ⊗ I(v, τ, t) (1.9)

is

X[n] = X[n − 1]e−t/τ + V Z[n] (1.10)


