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Foreword

I am very pleased and proud to announce the publication of the second volume in
the Green Asia Lecture Book Series, following the first one, entitled Mathematical
Analysis of Environmental System, published in 2014.

Green Asia (Global Strategy for Green Asia) is one of the Programs for Leading
Graduate Schools promoted by the Ministry of Education, Culture, Sports and
Technology in Japan, in which we aim to establish a science and engineering
leadership training program that promotes environmental and energy innovation to
reach out from Asia to the rest of the world. One of the outstanding features of
Green Asia as an advanced educational program is that all lectures are offered in
English. Hence, the publication of cutting-edge books is one of the most important,
visible, and tangible outputs of the Green Asia Program. Each of the volumes in the
series deals with essential theories, fundamentals, practical applications, or
upcoming topics, all of which are actually used in the program lectures.

This volume was originally published in Japanese and established an excellent
reputation from many students for many years. It is because our excellent professors
working for the Department of Earth System Science and Technology,
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University,
were responsible for intelligibly describing key points of fluid dynamics and its
application. The book has been carefully translated into English by the professors
so as to maintain the flavor of the original. I am confident that this book can serve as
a lighthouse for beginning students as well as for engineers and scientists.
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It will be wonderful if our publication project can disseminate all of the brilliant
content and approaches produced in the Green Asia Program to a worldwide
audience.

Prof. Jun Tanimoto, Dr. Eng.
Director of Green Asia Education Center

and Head Coordinator of Advanced
Graduate Program in Global Strategy for Green Asia

Kyushu University
Professor

Interdisciplinary Graduate School of Engineering Sciences
Kyushu University
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Preface to the English Edition

This book is an English edition of a Japanese book with the same title. A new
chapter, “Space Plasma Environment,” written by Prof. Tohru Hada, has been
added in this edition to cover the plasma flow influenced by the Lorentz force that
was not included in the Japanese edition.

This English edition is supported by the advanced graduate program in Global
Strategy for Green Asia at Kyushu University. We would like to express our sincere
gratitude to all those people who have supported this publication.

April 2015 Yoshinobu Wakata
Department of Earth System Science and Technology

Kyushu University Fukuoka Japan
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Preface to the Original Japanese Edition

This book introduces the fundamental concepts of environmental fluid dynamics. It
is intended for use by students, researchers, and specialists working in the research
fields of geophysical fluids (such as atmosphere or ocean) and general fluid envi-
ronment. Because the Earth is covered by atmosphere and oceans and is exposed to
solar wind, the knowledge of fluid motion is essential for tackling its environmental
issues. Although fundamental fluid mechanics is found in many existing textbooks,
few of them clearly describe all the essential ideas, from the fundamentals of fluid
dynamics to environmental science, with a careful explanation of the governing
mathematics. This book has been developed to bridge that gap.

In recent years, with an improvement in the educational setting for environ-
mental science, many students graduating from various university departments
choose a career in environment-related fields and undertake specialized researches.
Under these circumstances, many students have probably never acquired a funda-
mental knowledge of fluid mechanics before engaging in such research. The present
book will be an invaluable resource for such students. Meanwhile, students who
have previously studied fluid dynamics will come to realize that certain aspects of
environmental fluid dynamics, such as stratification or rotation effects, are not truly
covered by general fluid mechanics. Furthermore, general fluid dynamics treats
flows around objects, whereas in environmental fluid dynamics, flows inside
boundaries are also important. To accommodate these needs, fluid dynamics
“repackaged for environmental sciences” should be learned again. Considering
these issues, this book takes the reader from the derivation of the fundamental fluid
dynamics equations through to environmental science in eight chapters.
Intermediate calculations are carefully demonstrated, and fundamental concepts are
explained as comprehensively as possible. Using this book, readers will acquire
plentiful knowledge about the dynamics of fluid motion, which will assist them in
their more advanced research of environmental science and technology. A home
page related to this book will be established at http://www.esst.kyushu-u.ac.jp/
textbook/, which allows the interaction of the authors and the readers of this book.

This book is based on a series of actual lectures, which are compulsory for
obtaining a master’s degree in the Department of Earth System Science and
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Technology, Kyushu University. This fact is reflected in the selection of contents.
Gravitational and Coriolis forces are given as early examples of external forces,
although advanced electromagnetic flow under the Lorentz force is excluded in the
present edition. Each chapter was written by the corresponding course instructor in
FY2000. During the editing process, predicates and symbols, which may vary
across disciplines, have been unified wherever possible. References are provided as
footnotes within the text, while more general materials accessed while writing the
text are compiled as a bibliography at the end of the book.

In addition to sincerely thanking the authors of the book, we offer sincere thanks
to many staff who participated in the planning and operating of these lectures. We
also express the heartfelt thanks to Seizando-Shoten Publishing Co., Ltd., for their
valuable support in publishing this book.

February 2001 Jong-Hwan Yoon
Head, Department of Earth System Science and Technology
Interdisciplinary Graduate School of Engineering Sciences

Kyushu University
Fukuoka, Japan
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The original version of the book was revised:
Belated corrections in Copyright page of
Frontmatter and Chapter 9 have been
updated. The erratum to the book is available
at 10.1007/978-4-431-56499-7_10
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Chapter 1
Fundamental Equations in Fluid Dynamics

Fluid dynamics is a study of themovement of gases and liquids. It has an unbelievable
range of applications. The Earth’s atmosphere and oceanic movements are within the
scope of fluid dynamics. This book mainly aims to describe dynamics of rotating and
stratified fluids, as well as environmental fluid dynamics. This chapter is allocated
for the explanation of fundamental equations in fluid dynamics. First, stress and
stress tensors will be discussed, and then fluids will be characterized on their basis.
Next, the mass conservation law, equation of motion (momentum conservation law),
and energy equations as well as the specifications of fluid motion will be discussed.
To complete the equation of motion for a viscous fluid, it is necessary to relate
the deformation of fluid elements due to fluid motion with stress. Furthermore, the
concept of vorticity and its governing equations will be discussed. In this book,
incompressible flowwill be considered in most cases; however, this chapter has been
made as general as possible. In this book, appropriate vector notation and tensor
notation will be used where necessary.

1.1 Fluid and Fluid Dynamics

Liquids and gases are generally called fluids. Compared with solids, which resist
operations that try to deform them, fluids cannot resist such operations and become
deformed without limit, although they do resist compression. This nature is a char-
acteristic of fluids, and it also links them to the phenomenon of “flowing.” In the next
section we will adopt this as the mechanical definition of fluids. Whether something
can be treated as a fluid depends on the time and space scales under consideration.
For example, although the Earth’s mantle is usually classified as a solid, when con-
sidering mantle convection in which deformation occurs over extremely long time
and space scales, it can be thought of as a fluid.

Fluid dynamics is a study that assumes fluid as a continuum and discusses
its macroscopic motion. Microscopically, substances have discontinuous structures
composed of molecules. Substances generally comprise a vast number, for example
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2 1 Fundamental Equations in Fluid Dynamics

1023, of molecules; hence, it is not realistic to explain the macroscopic motion of
substances on the basis of the motion of individual molecules. In fluid dynamics,
the microscopic structure of fluid substances is ignored and treated as a continuum,
and its macroscopic movement is discussed. Phenomena are described using a small
number of macroscopic variables such as velocity, density, pressure, and temper-
ature. Considering fluid substances as a continuum in this way, there is also the
benefit that air and water, whose microscopic structures are very different, can be
treated in a unified manner. Fluid dynamics has a vast range of applications such as
in applied engineering, biology, atmosphere, ocean, and space partly because fluids
have a unified framework, which is not dependent on individual fluid molecules.

Let us consider the conditions for regarding an actual fluid as a continuum. Under
the continuum hypothesis, we consider, for example, a fluid’s density ρ(r, t) as
a continuous function of position vector r1 and time t (usually including partial
derivatives of an appropriate order). Let us look at gas density on a molecular basis.
At time t , if the number of molecules within volume δV of length scale δ�with point
r as the center is N and the molecular mass ism, the average density is Nm/δV . The
limiting value of this average density when δ� → 0 is the density in the continuum
approximation. However, it is clear that such a limiting value does not physically
exist. This is because if δ� is decreased and becomes comparable with the size of a
molecule, then the discontinuity of the substance structure is directly reflected, and
the average density becomes discontinuous. In contrast, if δ� is increased and δV
starts to contain plenty of gas molecules, the average density will begin to maintain
a fixed value. This value is the actual local value of density. If δ� is increased further
and becomes a size similar to the length of the scale of the macroscopic phenomenon
under consideration Lmacro (assuming that the density changes macroscopically),
then the average density is influenced by the macroscopic change. Furthermore, if
there is a sufficiently large range of δ� for which the average density takes a fixed
value such as that mentioned above, then it can be said that an actual continuum
approximation is valid.

Moreover, we usually assume that fluids are in a locally thermal equilibrium or a
state close to it and for a volume δV , which is negligibly small relative to (Lmacro)

3 but
still contains a large number of molecules, relations in equilibrium thermodynamics
can be applied to thermodynamic quantities such as temperature.2 For this purpose,
molecules need to make sufficiently frequent collisions within a time period much
shorter than the time scale Tmacro of macroscopic phenomenon under consideration.

The following two conditions must be satisfied for these conditions to be true.

1. When the mean free path of the substance molecules, i.e., the average distance a
molecule moves until a molecule collides with another molecule, is λ,

λ � Lmacro .

1It will be stated simply as point r hereinafter.
2This will be explained with a little more detail in Sect. 1.9.
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2. When the mean free time of the substance molecules, i.e., the average time until
a molecule collides with another molecule, is τ ,

τ � Tmacro .

In air at 0 ◦C and 1 atmospheric pressure, λ ∼ 6 × 10−6 cm and τ ∼ 10−10 s;
hence, everyday phenomena satisfy these conditions easily. Moreover, whether it
can be deemed as a continuum depends on what type of phenomenon is considered.
Thus, even for a collection of stars such as the Galaxy, if a phenomenon of a scale
much greater than the average distance between stars is considered, then it can be
treated as a continuum.

As mentioned above, physically, there is a lower limit of δ� for which the average
density maintains as a fixed value; however, a continuum is a hypothetical medium
supposing that δ� satisfying this quality can be considered to be as small as desired.
Hereafter, fluids are assumed to be a continuum, and macroscopic variables that
describe fluids, such as density, velocity, pressure, and temperature, are assumed to
be continuous functions of a point in the flow region r and time t .

1.2 Stress and Stress Tensors

1.2.1 Body Force and Surface Force

Generally, two types of forces work on fluids. One is body force such as gravity,
electromagnetic forces, and inertial forces. If the force per unit mass is K (r, t), and
the fluid density is ρ(r, t), then the force working on a body element δV at point r is

K (r, t)ρδV . (1.1)

The other is surface force that is acted by fluids on either side of a surface toward
one another through the surface, and the force per unit surface area is called stress.
In contrast to body force, which is generally a long-range force, surface force is a
short-range force originating from amolecular basis. Themechanics of themolecular
basis of surface force differ between air and water; however, as a continuum, such
differences can be ignored and both the surface forces can be expressed in the same
form.

1.2.2 Stress and Stress Tensors

Let us consider stress. Generally, stress is dependent on the direction of the surface
through which it is acting on. As shown in Fig. 1.1, consider a small surface with
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Fig. 1.1 Direction of
surface and stress
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tangential stress

area δS and unit normal vector n at point r in the fluid at time t . The force acting on
the fluid on the reverse by the fluid on the obverse side (define the obverse side of
the surface as the side to which n points) through this surface is written as

T (n, r, t)δS, (1.2)

and the force per unit area T (n, r, t) is called stress acting on that surface at time t
and point r . The component of T (n, r, t) in the direction n is called normal stress,
and the component parallel to the surface (more precisely, a tangential plane) is called
tangential stress. T (n, r, t) is the stress exerted on the fluid on the reverse side by
the fluid on the obverse side, and the stress exerted on the fluid on the obverse side
by the fluid on the reverse side is expressed as T (−n, r, t) by replacing n with −n.
Therefore, by Newton’s third law of motion, the following relation is established:

T (−n, r, t) = −T (n, r, t) . (1.3)

Hence, if normal stress is positive, the fluids will be pulling against one another
across the surface, and if it is negative, they will be pushing against one another.
Hereafter, r and t in T (n, r, t) will be omitted.

Now let us consider the balance of the forces acting on a small tetrahedron as
shown in Fig. 1.2. The forces acting on the tetrahedron are inertial forces, external
forces, and surface forces exerted through the four surfaces. Inertia and external
forces are body forces, and are of order (δ�)3, where the representative length of
the tetrahedron is δ�. In contrast, surface forces are of order of (δ�)2; hence, as
δ� → 0, the contribution of body forces can be ignored, and the balance equation of
the surface forces acting on the four surfaces is obtained:

T (n)δS +
3∑

j=1

T (−e j )δSj = 0 . (1.4)
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Fig. 1.2 Small tetrahedron
with three surfaces
perpendicular to the
coordinate axes

The inertia force has been taken into account in the balance equation of the force;
hence, note that this relationship also holds for moving fluids. Here δS is the area of
�P1P2P3, and δSj is the area of the surface perpendicular to the x j -axis.Moreover, e j

is a unit vector in the x j -axis direction.3 The xi -component of vector T is expressed
as Ti , and this can be written as4

T = (T1, T2, T3) .

This means that

T = T1e1 + T2e2 + T3e3 =
3∑

j=1

Tj e j . (1.5)

Furthermore, by omitting the summation sign in (1.5), it is simplified as

T = Tj e j . (1.6)

In other words, unless otherwise specified, if the same Latin subscript appears two
times, then agree to take a sum from 1 to 3 (Einstein’s convention).

If this convention is used, (1.4) can be written as

T (n)δS + T (−e j )δSj = 0 . (1.7)

If δSj = (n · e j )δS and (1.3) are used, from (1.7), the following is obtained:

T (n) = T (e j )(n · e j ) . (1.8)

3x1, x2, x3 indicates x, y, z, respectively, and e1, e2, e3 refers to the basic vector i, j , k of the
xyz axes, respectively. Hereafter, both will be used as appropriate. Moreover, even if not stated
specifically, it will be assumed that an appropriate xyz Cartesian coordinate system is in place.
4Under normal circumstances, it should probably be expressed as a column vector because of
considerations relating to the amount of paper a row vector will be used. Instead of referring to it
as vector with components Ti , it can be referred to simply as vector Ti .
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Therefore, if the stresses T (e1), T (e2), T (e3) acting on the surfaces perpendicular
to the three coordinate axes are known, then the stress T (n) acting on any surface
will be known. If the following relation

τi j = Ti (e j ) (1.9)

is defined, then because of n · e j = n j ; (1.8) can be written as

Ti (n) = τi j n j . (1.10)

The quantity with these nine quantities τi j as components is known as a stress
tensor.5 By definition, τi j is the xi -axis component of the force per unit area T (e j )

that acts on the surface perpendicular to the x j -axis in the direction from the side
whose x j is greater to that whose x j is smaller. τ11, τ22, τ33 are normal stresses,
and τi j (i �= j) are tangential stresses. The stress tensor is independent of n and
is determined by r and t alone. (1.10) shows that the (second-order) tensor serves
as a linear operator to make the vector n correspond to the vector T (n) (or make
the vector nδS correspond to the vector T (n)δS by multiplying both sides of (1.10)
by δS). Moreover, the above mentioned definition of τi j shows that τi j is the very
component of the representation matrix6 in the Cartesian coordinate system of the
linear operator. In reality, the right-hand side of (1.10) is a product of the matrix τi j
and vector ni . Both vector and tensor are physical quantities and are independent
of the coordinate system. Therefore, their components are transformed according to
a specific transformation rule for the rotation of the coordinate system. Vector and
tensor can also be defined from this point of view (see Appendix A.1).

Note 1.1 Let us provide a little supplement regarding (1.4). T (n) in (1.4) is strictly
a value at some point in �P1P2P3. The same is true for T (−e j ). This can be seen
by applying the mean value theorem to the surface integrals: originally each term of
(1.4) is a surface integral. If the representative point of the tetrahedron is O, T (n)

and T (−e j ) are expanded around O, and δSj = n jδS is used, the left-hand side of
(1.4) can be written as

(T (n, r, t) − T (e j , r, t) n j ) δS + O((δ�)3) . (1.11)

r is the position vector of the point O. If the tetrahedron is contracted to the point
O while maintaining a similar shape, then the first term of (1.11) is O((δ�)2). This
is because the coefficient of δS is constant. The second term represents a difference
from the first term and is O((δ�)3). On the other hand, inertia and external forces
are O((δ�)3); hence, the coefficient of δS in (1.11) has to be 0, and (1.8) is obtained.

5More precisely, this is a second-order tensor. Moreover, a tensor with τi j as components may
instead be referred to simply as tensor τi j .
6Matrix vertically lining up vectors T (e1), T (e2), T (e3), which are mappings of the basic vectors
e1, e2, e3, respectively.
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Fig. 1.3 Surface force due
to tangential stress acting on
a small parallelepiped
parallel to the coordinate
axes (cross section
perpendicular to the x3-axis) x1

x2

δx1

δx2

-τ21δx2δx3

-τ12δx1δx3

τ21δx2δx3

τ12δx1δx3

The balance of the remaining O((δ�)3) term becomes the fluid equation of motion,
which will be discussed later.

A stress tensor is a symmetric tensor; in other words, τi j = τ j i . This can be shown
from the moment balance of the surface forces around the central axis of the small
parallelepiped such as the one in Fig. 1.3, δx2(τ12δx1δx3) = δx1(τ21δx2δx3). This is
because even in this case, if the size of the parallelepiped is infinitesimally reduced,
the angular momentum term and moment term due to external forces can be ignored
relative to the moments of the surface forces. In this case, normal stress does not
contribute to the moment, thus was omitted in Fig. 1.3.

Now, suppose that the stress acting on the surface with normal vector n satisfies
the following relation:

T (n) = λ n . (1.12)

In this case, only a normal stress of magnitude |λ| acts on its surface. If (1.12) is
rewritten using (1.10), it becomes

τi j n j = λ δi j n j . (1.13)

δi j is the Kronecker delta and defined as δ11 = δ22 = δ33 = 1, δi j = 0 (i �= j).
(1.13) is an eigenvalue problem for the symmetric matrix τi j , and these are three real
eigenvalues τ ′

1, τ
′
2, τ

′
3, if multiplicities are counted. The corresponding eigenvectors

e′
1, e

′
2, e

′
3 can be selected to be mutually orthogonal to form a right-handed system.

If these eigenvectors are selected as the basis of the new Cartesian coordinate system
x ′
1x

′
2x

′
3, only normal stress acts on each of the surfaces perpendicular to the coordinate

axes. Hence, the representationmatrix of the stress tensor in the new system becomes

diag (τ ′
1, τ ′

2, τ ′
3) . (1.14)

Here diag(a, b, c) is the diagonal matrix with diagonal components a, b, c, and
τ ′
1, τ

′
2, τ

′
3 are called the principal stresses. Moreover, these new coordinate axes

are called the principal axes of the stress tensor.
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As is commonly known, the sum of the diagonal components of the matrix τi j
remains unchanged with respect to the rotation of the Cartesian coordinate system.7

In other words,
τi i ≡ τ11 + τ22 + τ33 = τ ′

1 + τ ′
2 + τ ′

3 (1.15)

holds true. Furthermore, in the principal axes system, the stress acting through the
surface element with normal vectors (n′

1, n
′
2, n

′
3) is

(τ ′
1n

′
1, τ ′

2n
′
2, τ ′

3n
′
3) . (1.16)

Exercise 1.1 Show that δSj = (n · e j )δS holds true for the tetrahedron in Fig. 1.2.

1.2.3 Stress Tensors in Stationary Fluids

Now, let us characterize fluids using stress. The characteristic of fluids is that they
easily deform relative to solids; however, they resist compression. Hence, a fluid is
defined as a substance that cannot resist any type of action trying to deform it without
change in volume. The stress tensor (1.14) expressed in the principal axes system
will be decomposed into the following two terms (see Appendix A.1):

diag
(1
3

τi i ,
1

3
τi i ,

1

3
τi i

)
(1.17)

and

diag
(
τ ′
1 − 1

3
τi i , τ ′

2 − 1

3
τi i , τ ′

3 − 1

3
τi i

)
. (1.18)

The contribution of the tensor (1.17) to the stress acting through the surface
element with normal vector n′ is (τi i/3)n′. That is, regardless of which way the
surface faces, only the normal stress of the same magnitude operates. This type of
tensor is called an isotropic tensor. The components of (1.17) can be expressed,
using the Kronecker delta, as (τi i/3) δi j ; actually, any second-order isotropic tensor
can be written in the form of a scalar multiple of δi j (see Appendix A.1). Tensor
(1.17) corresponds to states such as that shown in Fig. 1.4. Fluids resist this type of
compression (usually τi i/3 < 0 in fluids) and can maintain a stationary state. On the
other hand, (1.18) represents a difference from the isotropic stress tensor, and the
sum of the diagonal elements turns out to be 0 from (1.15). Therefore, at least one of
the diagonal elements is positive, and one is negative, and is a stress state that tries
to purely deform the fluid element without changing volume, as shown in Fig. 1.5.
Fluids are unable to resist this stress state. Since body forces are infinitesimal of
higher order relative to the surface forces, body force cannot resist this stress state.

7Can be obtained from the invariance against the coordinate system rotation of the characteristic
polynomial obtained from (1.13).
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Fig. 1.4 Isotropic
compression

Fig. 1.5 Stress state that
tries to deform without
changing volume

Therefore, if this sort of stress state exists, fluids cannot maintain the stationary state.
Hence, when fluids are stationary,

τ ′
1 = τ ′

2 = τ ′
3 = 1

3
τi i (1.19)

must hold. As a result, in a stationary fluid, the stress tensor can be expressed as

τi j = − p δi j , (1.20)

where p (= −τi i/3) is a function of r only and is called pressure.
It is customary, as (1.20), to insert a negative sign on the right-hand side. This is

because fluids are usually under a pressured state, and hence, p is positive under the
pressured state. (1.20) implies that the force per unit surface area through the surface
element with a normal vector n is −pn. Moreover, this pressure p in the stationary
fluid is thermodynamic pressure (represent this as pe) itself.

Now, suppose that tangential stress is always zero regardless of whether it is in a
stationary state or inmotion. Then normal stress is constant regardless of the selection
of the surface. In other words, even in this situation, the stress tensor is in the form
(1.20). This is because if (1.16) is to be parallel to an arbitrary normal vector n′,
(1.19) needs to be true.
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Generally, a fluid in motion generates tangential stress through viscosity (internal
friction). For example, a fluid flowing along a fixed plate exerts tangential stress in
the direction of the flow on the plate, and the plate exerts tangential stress on the fluid
in the direction opposite the flow. This type of fluid that generates tangential stress
through viscosity is called a viscous fluid. In contrast, a hypothetical fluid that does
not generate tangential stress even in a state of motion is considered and is called
an inviscid or perfect fluid. In a perfect fluid, the stress tensor is in the same form
(1.20) as a stationary fluid even when in motion. In other words, in perfect fluids,
only isotropic pressure acts as stress. However, generally, the value of pressure p
when fluids are in motion is different from that when they are stationary. Usually, in
perfect fluids, it is assumed that a locally thermal equilibrium is set up, and hence, the
pressure p(r, t) in (1.20) is equivalent to the local thermodynamic pressure pe(r, t).

Generally, the reason for considering such a hypothetical fluid despite viscosity
acting on fluids is because the mathematical treatment of this fluid is far easier than
that of viscous fluids; furthermore, flows in the hypothetical fluid frequently express
real flows with good approximation.

Note 1.2 When the stress tensor is in the form (1.20), p can be referred to as hydro-
static pressure. However, if so, even the pressure of the perfect fluid in relative
motion expressed in exactly the same form has to also be referred to as hydrostatic
pressure and is inconvenient. Hence, in this book, out of the pressure in (1.20), the
words hydrostatic pressure will only be used to refer to the pressure of fluids that are
stationary under the influence of external forces (usually gravity).

The (mechanical) pressure on viscous fluids in relative motion is defined by a
form that is an extension of (1.20), as shown in Sect. 1.7. This pressure is generally
not equal to thermodynamic pressure; however, the difference can be ignored in the
phenomenon discussed in this book. Therefore, beyond Chap. 2, all pressure may be
considered to be equal to locally thermodynamic pressure.

Exercise 1.2 Water is stationary in a uniform gravitational field. Suppose that
atmospheric pressure p0 is acting on the water surface, obtain the pressure at depth
h from the water surface. Here, water density ρ is assumed to be fixed.

1.3 Specifications of Fluid Motions

1.3.1 Lagrangian and Eulerian Specifications

There are two ways of describing fluid motion: the Lagrangian specification and
the Eulerian specification.

In the Lagrangian specification, the movement over time of each point (we will
refer to these as fluid particles)8 constructing the fluid as a continuum, as fluid is in

8The word fluid particle is often used to indicate an infinitesimal fluid element. Here it is considered
to be a “point” that makes up the fluid substance as a continuum.
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motion, are investigated. To perform this, it is convenient to mark the fluid particles.
The mark can be anything as long as they can be individually identified; however,
it is usually the position vector of each fluid particle r0 = (x0, y0, z0) at initial
time t = 0.9 If the fluid particle position vector (position coordinate) at time t is
r = (x, y, z), then

r = r(r0, t) (1.21)

where r0 = r(r0, 0). (1.21) shows that, in this specification, fluid motion can be
observed as one of the point transformations with time t as a parameter.

In this specification, the fluid particle’s initial position vector r0 and time t are
independent variables, and its position vector r is one of the dependent variables.
Fixing r0 and partially differentiating r with respect to t means focusing on the
fluid particle initially present at r0 and obtaining the rate of change over time of that
position vector, thereby calculating the velocity of the fluid particle u = (u, v, w).
If this is partially differentiated with respect to t once more, then acceleration is
obtained. In other words,

u = ∂r
∂t

, or (u, v, w) =
(∂x

∂t
,
∂y

∂t
,
∂z

∂t

)
, (1.22)

a = ∂u
∂t

= ∂2r
∂t2

. (1.23)

Generally, to know the flow, not only the change over time of the fluid particle
position but also the density ρ(r0, t), pressure p(r0, t), and temperature T (r0, t) that
accompany each particle are required.

In the Eulerian specification, the spatial coordinates r = (x, y, z) and time t are
independent variables, and velocity u = (u, v, w) and density ρ, etc. are dependent
variables; they can be expressed as

u = u(r, t) . (1.24)

Moreover, if t is fixed, the state of the instantaneous whole flow field becomes
apparent, and if r is fixed, the time development of the flow at that point becomes
apparent. Generally, one fluid particle after another passes through this one point
over time. u(r, t) is called the velocity field, and ρ(r, t) can be called the density
field.

Even in the Eulerian specification, there are often situations when, focusing on
one fluid particle, time change of the physical quantities of that particle becomes
necessary. Time derivative showing the change over time focusing on fluid particles
in thisway is called theLagrangianderivativeormaterial derivative and is denoted
as D/Dt .10 In the Lagrangian specification, this is denoted as ∂/∂t .

9Sometimes, r0 = (x0, y0, z0) can be referred to as a material coordinate.
10Can also be called a substantial derivative.
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Fig. 1.6 Velocity of fluid
particle at time t and t + δt

path line of fluid particle

Now, let us consider the physical quantity F . In the Eulerian specification, it is a
function of r = (x, y, z) and t . If the fluid particle presently under consideration is
at position r = (x, y, z) at time t , then after an infinitesimal time δt at time t + δt ,
that fluid particle will be at position r+uδt = (x+uδt, y+vδt, z+wδt) (Fig. 1.6).
Therefore, the increment δF of F in that time is

δF = F(x + uδt, y + vδt, z + wδt, t + δt) − F(x, y, z, t)

= ∂F

∂t
δt + ∂F

∂x
uδt + ∂F

∂y
vδt + ∂F

∂z
wδt + O( (δt)2 ) .

Hence, the rate of F’s change when focusing on specific fluid particle is

DF

Dt
= lim

δt→0

δF

δt
= ∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
. (1.25)

The physical quantity F can be arbitrary; hence, if it is expressed as a differential
operator, it becomes

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
= ∂

∂t
+ u j

∂

∂x j
= ∂

∂t
+ u · ∇ , (1.26)

where ∇ expresses the differential operator:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1.27)

and is called the nabla.
In particular, if x, y, z are taken as F, then the following relation holds

Dx

Dt
= ∂x

∂t
+ u

∂x

∂x
+ v

∂x

∂y
+ w

∂x

∂z
= u,

Dy

Dt
= v,

Dz

Dt
= w .

Hence, the result can clearly be expressed as expected by

Dr
Dt

= u . (1.28)


