




Matrix Algebra Useful
for Statistics



WILEY SERIES IN PROBABILITY AND STATISTICS

Established by Walter A. Shewhart and Samuel S. Wilks

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,
Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott,
Adrian F. M. Smith, Ruey S. Tsay

Editors Emeriti: J. Stuart Hunter, Iain M. Johnstone, Joseph B. Kadane,
Jozef L. Teugels

The Wiley Series in Probability and Statistics is well established and authoritative. It covers
many topics of current research interest in both pure and applied statistics and probability
theory. Written by leading statisticians and institutions, the titles span both state-of-the-art
developments in the field and classical methods.

Reflecting the wide range of current research in statistics, the series encompasses applied,
methodological and theoretical statistics, ranging from applications and new techniques
made possible by advances in computerized practice to rigorous treatment of theoreti-
cal approaches. This series provides essential and invaluable reading for all statisticians,
whether in academia, industry, government, or research.

A complete list of titles in this series can be found at http://www.wiley.com/go/wsps

http://www.wiley.com/go/wsps


Matrix Algebra Useful
for Statistics

Second Edition

Shayle R. Searle
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Preface

The primary objective of the second edition is to update the material in the first edition.
This is a significant undertaking given that the first edition appeared in 1982. It should be
first pointed out that this is more than just an update. It is in fact a major revision of the
material affecting not only its presentation, but also its applicability and use by the reader.

The second edition consists of three parts. Part I is comprised of Chapters 1–9, which
with the exception of Chapter 1, covers material based on an update of Chapters 1–12 in
the first edition. These chapters are preceded by an introductory chapter giving histori-
cal perspectives on matrix algebra. Chapter 1 is new. It discusses vector spaces and linear
transformations that represent an introduction to matrices. Part II addresses applications of
matrices in statistics. It consists of Chapters 10–14. Chapters 10–11 constitute an update of
Chapters 13–14 in the first edition. Chapter 12 is similar to Chapter 15 in the first edition.
It covers models that are less than full rank. Chapter 13 is entirely new. It discusses the
analysis of balanced linear models using direct products of matrices. Chapter 14 is also a
new addition that covers multiresponse linear models where several responses can be of
interest. Part III is new. It covers computational aspects of matrices and consists of three
chapters. Chapter 15 is on the use of SAS/IML, Chapter 16 covers the use of MATLAB,
and Chapter 17 discusses the implementation of R in matrix computations. These three
chapters are self-contained and provide the reader with the necessary tools to carry out all
the computations described in the book. The reader can choose whichever software he/she
feels comfortable with. It is also quite easy to learn new computational techniques that can
be beneficial.

The second edition displays a large number of figures to illustrate certain computational
details. This provides a visual depiction of matrix entities such as the plotting of a matrix
and the graphical representation of a determinant. In addition, many examples have been
included to provide a better understanding of the material.

A new feature in the second edition is the addition of detailed solutions to all the odd-
numbered exercises. The even-numbered solutions will be placed online by the publisher.
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xviii PREFACE

This can be helpful to the reader who desires to use the book as a source for learning matrix
algebra.

As with the first edition, the second edition emphasizes the “bringing to a broad spectrum
of readers a knowledge of matrix algebra that is useful in the statistical analysis of data
and in statistics in general.” The second edition should therefore appeal to all those who
desire to gain a better understanding of matrix algebra and its applications in linear models
and multivariate statistics. The computing capability that the reader needs is particularly
enhanced by the inclusion of Part III on matrix computations.

I am grateful to my wife Ronnie, my daughter Roxanne, and son Marcus for their sup-
port and keeping up with my progress in writing the book over the past 3 years. I am also
grateful to Steve Quigley, a former editor with John Wiley & Sons, for having given me
the opportunity to revise the first edition. Furthermore, my gratitude goes to Julie Platt,
an Editor-in-Chief with the SAS Institute, for allowing me to use the SAS software in the
second edition for two consecutive years.

André I. Khuri

Jacksonville, Florida
January 2017



Preface to the First Edition

Algebra is a mathematical shorthand for language, and matrices are a shorthand for algebra.
Consequently, a special value of matrices is that they enable many mathematical operations,
especially those arising in statistics and the quantitative sciences, to be expressed concisely
and with clarity. The algebra of matrices is, of course, in no way new, but its presentation
is often so surrounded by the trappings of mathematical generality that assimilation can
be difficult for readers who have only limited ability or training in mathematics. Yet many
such people nowadays find a knowledge of matrix algebra necessary for their work, espe-
cially where statistics and/or computers are involved. It is to these people that I address this
book, and for them, I have attempted to keep the mathematical presentation as informal as
possible.

The pursuit of knowledge frequently involves collecting data, and those responsible for
the collecting must appreciate the need for analyzing their data to recover and interpret the
information contained therein. Such people must therefore understand some of the math-
ematical tools necessary for this analysis, to an extent either that they can carry out their
own analysis, or that they can converse with statisticians and mathematicians whose help
will otherwise be needed. One of the necessary tools is matrix algebra. It is becoming as
necessary to science today as elementary calculus has been for generations. Matrices orig-
inated in mathematics more than a century ago, but their broad adaptation to science is
relatively recent, prompted by the widespread acceptance of statistical analysis of data, and
of computers to do that analysis; both statistics and computing rely heavily on matrix alge-
bra. The purpose of this book is therefore that of bringing to a broad spectrum of readers a
knowledge of matrix algebra that is useful in the statistical analysis of data and in statistics
generally.

The basic prerequisite for using the book is high school algebra. Differential calculus is
used on only a few pages, which can easily be omitted; nothing will be lost insofar as a gen-
eral understanding of matrix algebra is concerned. Proofs and demonstrations of most of the
theory are given, for without them the presentation would be lifeless. But in every chapter
the theoretical development is profusely illustrated with elementary numerical examples

xix



xx PREFACE TO THE FIRST EDITION

and with illustrations taken from a variety of applied sciences. And the last three chapters
are devoted solely to uses of matrix algebra in statistics, with Chapters 14 and 15 outlining
two of the most widely used statistical techniques: regression and linear models.

The mainstream of the book is its first 11 chapters, beginning with one on introductory
concepts that includes a discussion of subscript and summation notation. This is followed
by four chapters dealing with basic arithmetic, special matrices, determinants and inverses.
Chapters 6 and 7 are on rank and canonical forms, 8 and 9 deal with generalized inverses
and solving linear equations, 10 is a collection of results on partitioned matrices, and 11
describes eigenvalues and eigenvectors. Background theory for Chapter 11 is collected in
an appendix, Chapter 11A, some summaries and miscellaneous topics make up Chapter 12,
statistical illustrations constitute Chapter 13, and Chapters 14 and 15 describe regression
and linear models. All chapters except the last two end with exercises.

Occasional sections and paragraphs can be omitted at a first reading, especially by those
whose experience in mathematics is somewhat limited. These portions of the book are
printed in small type and, generally speaking, contain material subsidiary to the main flow
of the text—material that may be a little more advanced in mathematical presentation than
the general level otherwise maintained.

Chapters, and sections within chapters, are numbered with Arabic numerals 1, 2, 3,…
Within-chapter references to sections are by section number, but references across chapters
use the decimal system, for example, Section 1.3 is Section 3 of Chapter 1. These num-
bers are also shown in the running head of each page, for example, [1.3] is found on page
4. Numbered equations are (1), (2),…, within each chapter. Those of one chapter are sel-
dom referred to in another, but when they are, the chapter reference is explicit; otherwise
“equation (3)” or more simply “(3)” means the equation numbered (3) in the chapter con-
cerned. Exercises are in unnumbered sections and are referenced by their chapter number;
for example, Exercise 6.2 is Exercise 2 at the end of Chapter 6.

I am greatly indebted to George P. H. Styan for his exquisitely thorough readings of two
drafts of the manuscript and his extensive and very helpful array of comments. Harold V.
Henderson’s numerous suggestions for the final manuscript were equally as helpful. Read-
ers of Matrix Algebra for the Biological Sciences (Wiley, 1966), and students in 15 years
of my matrix algebra course at Cornell have also contributed many useful ideas. Particular
thanks go to Mrs. Helen Seamon for her superb accuracy on the typewriter, patience, and
fantastic attention to detail; such attributes are greatly appreciated.

Shayle R. Searle

Ithaca, New York
May 1982



Introduction
Historical Perspectives on Matrix Algebra

It is difficult to determine the origin of matrices from the historical point of view. Given
the association between matrices and simultaneous linear equations, it can be argued that
the history of matrices goes back to at least the third century BC. The Babylonians used
simultaneous linear equations to study problems that pertained to agriculture in the fer-
tile region between the Tigris and Euphrates rivers in ancient Mesopotamia (present day
Iraq). They inscribed their findings, using a wedge-shaped script, on soft clay tablets which
were later baked in ovens resulting in what is known as cuneiform tablets (see Figures 1
and 2).

This form of writing goes back to about 3000 BC (see Knuth, 1972). For example, a tablet
dating from around 300 BC was found to contain a description of a problem that could be
formulated in terms of two simultaneous linear equations in two variables. The description
referred to two fields whose total area, the rate of production of grain per field, and their
total yield were all given. It was required to determine the area of each field (see O’Connor
and Robertson, 1996). The ancient Chinese also dealt with simultaneous linear equations
between 200 BC and 100 BC in studying, for example, corn production. In fact, the text,
Nine Chapters on the Mathematical Art, which was written during the Han Dynasty, played
an important role in the development of mathematics in China. It was a practical handbook
of mathematics consisting of 246 problems that pertained to engineering, surveying, trade,
and taxation issues (see O’Connor and Robertson, 2003).

The modern development of matrices and matrix algebra did not materialize until the
nineteenth century with the work of several mathematicians, including Augustin-Louis
Cauchy, Ferdinand Georg Frobenius, Carl Friedrich Gauss, Arthur Cayley, and James
Joseph Sylvester, among others. The use of the word “matrix” was first introduced by
Sylvester in 1850. This terminology became more common after the publication of Cay-
ley’s (1858) memoir on the theory of matrices. In 1829, Cauchy gave the first valid proof
that the eigenvalues of a symmetric matrix must be real. He was also instrumental in cre-
ating the theory of determinants in his 1812 memoir. Frobenius (1877) wrote an important
monograph in which he provided a unifying theory of matrices that combined the work of

xxi
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Figure 0.1 A Cuneiform Tablet with 97 Linear Equations (YBC4695-1). Yale Babylonian Collection,
Yale University Library, New Haven, CT.

several other mathematicians. Hawkins (1974) described Frobenius’ paper as representing
“an important landmark in the history of the theory of matrices.” Hawkins (1975) discussed
Cauchy’s work and its historical significance to the consideration of algebraic eigenvalue
problems during the 18th century.

Science historians and mathematicians have regarded Cayley as the founder of the theory
of matrices. His 1858 memoir was considered “the foundation upon which other mathemati-
cians were able to erect the edifice we now call the theory of matrices” (see Hawkins, 1974,
p. 561). Cayley was interested in devising a contracted notation to represent a system of m
linear equations in n variables of the form

n∑
j=1

aijxj = yi, i = 1, 2,… , m,

where the aij’s are given as coefficients. Cayley and other contemporary algebraists pro-
posed replacing the m equations with a single matrix equation such as

⎡⎢⎢⎢⎣

a11 a12 … a1n
a21 a22 … a2n
… … … …
am1 am2 … amn

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

x1
x2
…
xn

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

y1
y2
…
ym

⎤⎥⎥⎥⎦
.
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Figure 0.2 An Old Babylonian Mathematical Text with Linear Equations (YBC4695-2).Yale Babylonian
Collection, Yale University Library, New Haven, CT.

Cayley regarded such a scheme as an operator acting upon the variables, x1, x2,… , xn to
produce the variables y1, y2,… , ym. This is a multivariable extension of the action of the
single coefficient a upon x to produce a x, except that the rules associated with such an
extension are different from the single variable case. This led to the development of the
algebra of matrices.

Even though Cayley left his mark on the history of matrices, it should be pointed that his
role in this endeavor was perhaps overrated by historians to the point of eclipsing the contri-
bution of other mathematicians in the eighteenth and nineteenth centuries. Hawkins (1974)
indicated that the ideas Cayley expressed in his 1858 memoir were not particularly original.
He cited work by Laguerre (Edmond Nicolas Laguerre), Frobenius, and other mathemati-
cians who had developed similar ideas during the same period, but without a knowledge
of Cayley’s memoir. This conclusion was endorsed by Farebrother (1997) and Grattan-
Guiness (1994). It is perhaps more accurate to conclude, as Hawkins (1975, p. 570) did,
that “the history of matrix theory involved the efforts of many mathematicians, that it was
indeed an international undertaking.” Higham (2008) provided an interesting commentary
on the work of Cayley and Sylvester. He indicated that the multi-volume collected works of
Cayley and Sylvester were both freely available online at the University of Michigan His-
torical Mathematics Collection by using the URL, http://quod.lib.umich.edu/u/umhistmath/

let &hbox {char '046}http://quod.lib.umich.edu/u/umhistmath/
http://quod.lib.umich.edu/u/umhistmath/


xxiv INTRODUCTION

(for Cayley, use http://name.umdl.umich.edu/ABS3153.0013.001, and for Sylvester, use
http://name.umdl.umich.edu/AAS8085.0002.001).

The history of determinants can be traced to methods used by the ancient Chinese and
Japanese to solve a system of linear equations. Seki Kōwa, a distinguished Japanese math-
ematician of the seventeenth century, discovered the expansion of a determinant in solving
simultaneous equations (see, e.g., Smith, 1958, p. 440). However, the methods used by the
Chinese and the Japanese did not resemble the methods used nowadays in dealing with
determinants. In the West, the theory of determinants is believed to have originated with
the German mathematician, Gottfried Leibniz, in the seventeenth century, several years
after the work of Seki Kōwa. However, the actual development of this theory did not begin
until 1750 with the publication of the book by Gabriel Cramer. In fact, the method of solv-
ing a system of n linear equations in n unknowns by means of determinants is known as
Cramer’s rule. The term “determinant” was first introduced by Gauss in 1801 in connection
with quadratic forms. In 1812, Cauchy developed the theory of determinants as is known
today. Cayley was the first to introduce the present-day notation of a determinant, namely, of
vertical bars enclosing a square matrix, in a paper he wrote in 1841. So, just as in the case of
matrices, the history of determinants was an international undertaking shaped by the efforts
of many mathematicians. For more interesting facts about the history of determinants, see
Miller (1930) and Price (1947).

THE INTRODUCTION OF MATRICES INTO STATISTICS

The entry of matrices into statistics was slow. Farebrother (1999) indicated that matrix
algebra was not to emerge until the early part of the twentieth century. Even then, determi-
nants were used in place of matrices in solving equations which were written in longhand.
Searle (2000, p. 25) indicated that the year 1930 was a good starting point for the entry
of matrices into statistics. That was the year of Volume 1 of the Annals of Mathematical
Statistics, its very first paper, Wicksell (1930), being “Remarks on Regression.” The paper
considered finding the least-squares estimates for a linear regression model with one inde-
pendent variable. The normal equations for getting the model’s parameter estimates were
expressed in terms of determinants only. No matrices were used. Today, such a subject
would have been replete with matrices. Lengthy arguments and numerous equations were
given to describe computational methods for general regression models, even in some of
the books that appeared in the early 1950s. The slowness of the use of matrices in statis-
tics was partially attributed to the difficulty in producing numerical results in situations
involving, for example, regression models with several variables. In particular, the use of a
matrix inverse posed a considerable computational difficulty before the advent of comput-
ers which came about in only the last 50 years. Today, such computational tasks are carried
out quickly and effortlessly for a matrix of a reasonable size using a computer software.
During his graduate student days at Cornell University in 1959, Searle (2000) recalled the
great excitement he and other classmates in a small computer group had felt when they
inverted a 10-by-10 matrix in 7 minutes. At that time this was considered a remarkable
feat considering that only a year or two earlier, a friend had inverted a 40-by-40 matrix
by hand using electric Marchant or Monroe calculators. That task took 6 weeks! An early
beginning to more advanced techniques to inverting a matrix was the Doolittle method, as
was described in Anderson and Bancroft (1952, Chapter 15). It is interesting to note that
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this method was introduced in the U.S. Coast and Geodetic Survey Report of 1878 (see
Doolittle, 1881).

Alexander Craig Aitken made important contributions to promoting the use of matrix
algebra in statistics in the 1930s. He was a brilliant mathematician from New Zealand with
a phenomenal mental capability. It was reported that he could recite the irrational number
𝜋 to 707 decimal places and multiply two nine-digit numbers in his head in 30 seconds. He
was therefore referred to as the Human Calculator. His research, which dealt with matrices
and statistics, gave a strong impetus for using matrix algebra as a tool in the development of
statistics. This was demonstrated in his work on the optimality properties of the generalized
least-squares estimator as in Aitken (1935) (see Farebrother, 1997). The book by Turnbull
and Aitken (1932) contained several applications of matrices to statistics, including giving
the normal equations for a linear regression model presented in a format still used today.
Aitken also did some pioneering work that provided the basis for several important theo-
rems in linear models as in Aitken (1940) with regard to the independence of linear and
quadratic forms, and Aitken (1950) concerning the independence of two quadratic forms,
both under the assumption of normally distributed variables. The following passage given
in Ledermann (1968, pp. 164–165) and referred to in Farebrother (1997, p. 6) best describes
Aitken’s drive to popularize matrix algebra:

With his flair for elegant formalism, Aitken was quick to realize the usefulness of matrix algebra
as a powerful tool in many branches of mathematics. At a time when matrix techniques were
not yet widely known he applied matrix algebra with striking success to certain statistical
problems.

The use of matrix algebra in statistics began to take hold in the 1940s with the publica-
tion of important books by prominent statisticians as in Kendall (1946) with his discussion
of the multivariate analysis, and Cramér (1946) who devoted a chapter on matrices, deter-
minants, and quadratic forms. More statistics books and articles utilizing matrix algebra
appeared in the 1950s such as Kempthorne (1952) who presented proofs of certain results
in linear models using the matrix approach, and the classic book by Anderson (1958), which
was one of the early books to heavily depend on matrices in its treatment of multivariate
analysis. There were also several statistics papers where matrix algebra played an important
role in the presentation. Among these were a number of papers dealing with the indepen-
dence of quadratic forms, independence of linear and quadratic forms, and the distribution
of a quadratic form under the assumption of normally distributed random variables as in
Cochran (1934), Craig (1938, 1943), Aitken (1940, 1950), and Ogawa (1949, 1950). The
necessary conditions for the independence of quadratic forms and for a quadratic form to
have the chi-squared distribution are topics of great interest that are still being pursued in
the more recent literature; see, for example, Driscoll and Krasnicka (1995), Olkin (1997),
Driscoll (1999), and Khuri (1999). Bartlett (1947) made considerable use of matrices and
vector algebra in his paper on multivariate analysis. Dwyer and MacPhail (1948) concen-
trated on discussing matrix derivatives. The problem of inverting a matrix with minimum
computation and high accuracy was of special interest. For example, Hotelling (1943) gave
an overview of this area, Goldstine and von Neumann (1951) covered numerical inversion
of matrices of high order, and Waugh and Dwyer (1945) discussed compact and efficient
methods for the computation of the inverse of a matrix. The distributions of the eigenvalues
of a random matrix was also of interest. Mood (1951) outlined a method for deriving the
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distributions of the eigenvalues of a second-order moment matrix based on a sample from
a multivariate normal distribution. Fisher (1939) and Hsu (1939) presented an expression
for the density function representing the joint distribution of the eigenvalues of a Wishart
distribution. By definition, If x1, x2,… , xm are independently and identically distributed as
a multivariate normal with mean 0 and a variance-covariance matrix 𝚺, then the random
matrix W defined as

W =
m∑

i=1

xix
′
i

is said to have the Wishart distribution with m degrees of freedom. This is written sym-
bolically as W ∼ Wd(0,𝚺), where d is the number of elements in xi, i = 1, 2,… , m. The
well-known largest root test statistic, 𝜆max, which plays an important role in multivariate
analysis of variance, is the maximum eigenvalue of HE−1, where H and E are matrices
with independent Wishart distributions. The distribution function of 𝜆max was investigated
by Roy (1939). Other related test statistics include Wilks’ likelihood ratio, ∣E∣

∣E+H∣ introduced

by Wilks (1932), where |.| denotes the determinant of a matrix, Lawley–Hotelling’s trace,
tr(HE−1) introduced by Lawley (1938) and whose distribution was obtained by Hotelling
(1951) (the trace of a square matrix is the sum of its diagonal elements), and Pillai’s trace,
tr[H(E + H)−1] proposed by Pillai (1955). These multivariate test statistics are covered in
detail in, for example, Seber (1984).

The singular-value decomposition (SVD) and the generalized inverse (GI) of a matrix (to
be defined later in Sections 7.4 and 8.2, respectively) are two important areas in regression
and analysis of variance. They were, however, slow to be incorporated into the statisti-
cal literature. Rao (1962) used the term “pseudo inverse” to refer to a GI of a rectangular
matrix or a square matrix whose determinant is zero (singular matrix). He indicated that
such an inverse provided a solution to the normal equations of a less-than-full-rank linear
model. This process made it possible to have a unified approach to least-squares estima-
tion, including the case when the matrix of the normal equations was singular. Rao’s work
was very helpful in this regard. The term pseudoinverse was also used in Greville (1957).
Good (1969) emphasized the usefulness of the SVD and described several of its applica-
tions in statistics. He indicated that its significant role had been much underrated since it
was mentioned in very few statistics books. Mandel (1982) presented a discussion of the use
of the SVD in multiple linear regression. Eubank and Webster (1985) pointed out a certain
characterization of the GI that could be derived from the SVD. They used this characteri-
zation to explain many properties of least-squares estimation. The SVD was also applied to
least squares principal component analysis by Whittle (1952). Both the SVD and GI pro-
vide helpful tools to the area of least-squares estimation, particulary in situations where the
fitted model is of less than full rank, or when the values of the predictor variables of the
fitted model fall within a narrow range resulting in the so-called ill-conditioning or mul-
ticollinearity in the columns of the matrix, X, associated with the model. A generalized
inverse can yield a solution to the normal equations of a less-than-full-rank model which
can be used to obtain a unique estimate of an estimable linear function of the model’s param-
eters (to be defined in Section 12.10). Statisticians have long recognized that the presence
of multicollinearity in the fitted linear model can cause the least-squares estimates of the
model’s parameters to become unstable. This means that small changes in the response
data can result in least-squares estimates with large variances, which is undesirable. To
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reduce this instability, Hoerl (1962) proposed adding a positive quantity, k, to the diagonal
elements of the matrix X′X and using the resulting matrix in place of X′X in the normal
equations, where X′ is the transpose of X. This process led to what became known as ridge
regression which was discussed in detail in Hoerl and Kennard (1970). Its introduction gen-
erated a large number of articles on this subject in the 1970s and 1980s (see, e.g.„ Smith
and Campbell, 1980). Piegorsch and Casella (1989) discussed the early motivation for and
development of diagonal increments to lessen the effect of ill conditioning on least-squares
estimation. They indicated that one of the basic problems that had led to the use of matrix
diagonal increments was “the improvement of a nonlinear least-squares solution when the
usual methods fail to provide acceptable estimates.” This was first discussed by Levenberg
(1944) and later by Marquardt (1963).

An expository article describing some details about the history of the “infusion of matri-
ces into statistics” was given by Searle (2000). See also David’s (2006) brief note on
a related history. Lowerre (1982) provided an introduction to the SVD and the Moore–
Penrose inverse (a particular type of GI to be defined in Section 8.1). Searle (1956) showed
how to apply matrix algebra to deriving the sampling variances of the least-squares esti-
mates and the large-sample variances of the maximum likelihood estimates of the variance
components in an unbalanced one-way classification model with random effects. This was
one of the early papers on using matrices in the analysis of variance components. In “A
Conversation with Shayle R. Searle” in Wells’ (2009), the author recounted his interview
with Searle in which the latter reminisced about his early days as a statistician and his advo-
cacy of using matrices in statistics. See also Searle’s interesting “Comments from Thirty
Years of Teaching Matrix Algebra to Applied Statisticians” in Searle (1999).

It is important to point out here that an International Workshop on Matrices and Statis-
tics (IWMS) has been organized on an almost annual basis since 1990 (with the exception
of 1991 and 1993) to foster the interaction of researchers in the interface between statis-
tics and matrix theory. Puntanen and Styan (2011) gave a short history of the IWMS from
its inception in 1990 through 2013 (except for 1991 and 1993). In addition, the authors
established an open-access website for the IWMS at the University of Tampere, Finland,
which is available at http://www.sis.uta.fi/tilasto/iwms. The PDF file of the authors’ article
can be downloaded from http://www.sis.uta.fi/tilasto/iwms/IWMS-history.pdf. The twenty-
third IWMS was scheduled to be held in Ljubljana, Slovenia, in June 2014.

There are several linear algebra journals with interesting matrix results that can be used
in statistics as in Linear Algebra and Its Applications, Linear and Multilinear Algebra,
Numerical Linear Algebra with Applications, in addition to Mathematics Magazine. The
first journal has special issues on linear algebra and statistics. Many papers in these issues
were presented at previous meetings of the IWMS. An extensive bibliography on matrices
and inequalities with statistical applications was given by Styan and Puntanen (1993).
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