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Preface

It was May 2015 when I was invited to join the editorial team of the “Translational
Medicine Publication Project.” I proposed to edit a book entitled Translational
Bioinformatics (TBI). I was happy to have invited a few colleagues from China and
the USA who are experts in the field to join me as coeditors, Profs. Yilong Ma,
William C.S. Cho, and Fengfeng Zhou. Prof. Qin Xu from my research team and
my PhD student Huiyuan Zhang spent much time in managing the project. It has
been many years since I started to collaborate with Springer. Our proposal was
approved quickly as a collaboration project with the Shanghai Jiao Tong University
Press.

TBI is an emerging field in the study of health informatics, focused on the
convergence of molecular bioinformatics, biostatistics, statistical genetics, medical
imaging, and clinical or medical informatics. Its focus is on applying sound
informatics methodology to the increasing amount of biomedical and genomic
data to formulate knowledge, disease models, and medical tools, which can be
utilized by scientists, clinicians, and patients. TBI employs data mining and ana-
lytical biomedical informatics in order to generate clinical knowledge for a wide
array of applications. Furthermore, it involves cross-disciplinary biomedical
research to improve human health through the use of computer-based information
systems. This new field has achieved great success in the recent decade by synergic
integration of the molecular and genetic footprints in tissue cultures, animal
models, and patients with various diseases.

Our book tries to cover, but not limited to, the following topics:

Biomedical knowledge integration

Data-driven view of disease biology

Biological knowledge assembly and interpretation
Human microbiome analysis

Pharmacogenomics

Mining electronic health records in the genomics era
Small molecules and disease
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Protein interactions and disease

Network biology approach to complex diseases

Structural variation and medical genomics

Analyses using disease ontologies

Mining genome-wide genetic markers

Genome-wide association studies

Cancer genome analysis

Medical bioinformatics: biomarkers and medical imaging
Neuroinformatics of neurological and psychiatric disorders
Neuroimaging genetics

It is a challenging task that these topics are quite diversified and involved
scientists with various expertise. Finally, we tried our best to summarize these
diverse topics into five Parts, as in the Contents, with the chapters 2, 6, 10, 14, 16
and 17 edited by Yilong Ma, the chapters 3, 8, 11 and 13 edited by William C.S.
Cho, the chapters 5, 6 and 7 edited by Qin Xu, as well as the chapters 1,4, 9, 11, 12,
14, 15 and 16 edited by Fengfeng Zhou. My assistants Mrs. Ruili Zhao and
Ms. Qiuyuan Hu made great efforts in soliciting manuscripts. Mrs. Becky Jinan
Zhao from Springer and Mrs. Min Xu and Zhufeng Zhou from the Shanghai Jiao
Tong University Press give us a lot of help in formulating this book and applying for
funding.

In 2015, we enter the era of “precision medicine,” which integrates two major
contemporary developments including various omics (e.g., genomics, proteomics
and metabolomics) and Big Data. I believe the TBI would play an important role in
the endeavor for precision and personalized medicine.

Shanghai, China Dong-Qing Wei
2016-11-13
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Part 1
Computer-Aided Drug Discovery



Chapter 1
Drug Discovery

Geetha Ramakrishnan

Abstract An understanding of the process of drug discovery is necessary for the
development of new drugs and put into clinical practice, to alleviate the diseases
prevalent in modern era. This chapter covers the basic principles of how new drugs
can be discovered with emphasis on target identification, lead optimization based
on computer-aided drug design methods and clinical trials. The drug design prin-
ciples in the pharmaceutical industry are explained based on the target and chosen
ligand using molecular docking, pharmacophore modelling and virtual screening
methods. The drug design is illustrated with specific examples. The clinical trials
are necessary to introduce the drugs into market after due validation.

Keywords Lead compound « Computer-aided drug design « Molecular docking ¢
Scoring functions ¢ Virtual screening ¢ Pharmacophore modelling ¢ Quantitative
structure-activity relationship (QSAR) ¢ Clinical trials

1.1 Introduction

Drug discovery process deals with the root cause of the disease finding relevant
genetic/biological components (i.e. drug targets) to discover lead compounds.
Currently specialists in various fields, such as medicine, biochemistry, chemistry,
computerized molecular modelling, pharmacology, microbiology, toxicology,
physiology and pathology, contribute their research capability to achieve this
goal. The drug discovery process (Fig. 1.1) in general is divided into three parts,
namely, target identification, lead discovery and clinical trials.

The target identification will normally require a detailed assessment of the
pathology of the disease and in some cases basic biochemical research such as
study of the basic processes of life, body biochemistry and the use of metabolic
analogues; study and exploitation of differences in molecular biology, differential

G. Ramakrishnan (D<)
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Fig. 1.1 Drug discovery process

cytology, biochemistry and endocrinology; and study of the biochemistry of dis-
eases which will be necessary before initiating a drug design investigation.

The lead compound design is the most decisive step in the process of drug
discovery. Methods used in lead compound design include folk/ethno-pharmacy
and therapeutics, massive pharmacological screening, modification of bioactive
natural products, exploitation of secondary or side effects of drugs, an approach
through the molecular mechanism of drug action, drug metabolism and chemical
delivery systems (Drews 1999, Bodor 1982, 1987). Numerous methods have been
invented for the quantification of electronic, hydrophobic and steric effects of
functional groups (Franke 1984). Statistical methods, pattern recognition/principal
components analysis and cluster analysis can lead to the prediction and optimiza-
tion of activity and ultimately to the design of newer drugs.

The structure of the proposed lead compound allows the medicinal/organic
chemist to prepare the sample by synthetic route, and the lead compound undergoes
initial pharmacological and toxicological testing. The selected lead compounds are
given to animals for preclinical trials. When the lead compound has been found to
be effective and safe in animal testing, it is used for human clinical trials. The lead
compound is required to pass three phase clinical trials in human beings. In phase I,
studies on healthy subjects are conducted to confirm safety. In phase II, studies are
conducted on patients to confirm efficacy. Finally in phase III, large studies on
patients are conducted to gather information about safety and efficacy at the
population level.

The results of these tests enable the team to decide whether it is profitable to
continue development by preparing a series of analogues, measure their activity and
correlate the results to determine the drug with optimum activity.

Because of the strict prerequisites of drug authorities, which are becoming ever
more demanding, the cost of drug discovery is steadily increasing. Thus, rational
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drug design becomes the main objective of medicinal chemistry today. Based on
rational design, new structures can be developed with a high probability of
possessing the required properties and biological activity.

1.1.1 Need for Drug Design

Drug discovery is a time-consuming and costly process. The process takes
12—15 years to release a new drug into market, and average cost for the develop-
ment of a new drug is about 600—800 million dollars (Adams and Brantner 2006).
Among 10,000 drugs that are applied on animals, only ten of them are tested for
human clinical trials, in which one or two of the drugs only are put into the market
(Hughes 2009). In order to reduce the research timeline and cost, various compu-
tational methods were used. The computer-aided drug design process is fast,
automatic and less expensive with high success rate and fruitful with respect to
intellectual property rights. The problems encountered for this procedure with
possible solutions (Kubinyi 1999) are given in Table 1.1.

The strategies to be followed in the drug design include structure-based design
of ligands with affinity and selectivity using molecular docking, virtual screening of
favourable drug properties and bioavailability and pharmacophore modelling.

1.2 Target Identification

This process involves identification of relevant molecular target based on the
known pathology of the disease due to an enzyme, receptor, ion channel or
transporter. The next step is to determine the responsible DNA and protein
sequence with their function and its mechanism of action (Ryan et al. 2000;
Silverman 2004). The mechanism of action can be obtained by the earlier study
done on animals as proof and a suitable choice for the target from earlier investi-
gations. Based on the mechanism of drug action, the associated disease and status of
the drug are given in Table 1.2.

1.3 Computer-Aided Drug Design

Computer-aided drug design (CADD) is a specialized discipline that uses compu-
tational knowledge-based methods to aid the drug discovery process. It is estimated
that the computational methods could save up to 2-3 years and $300 million (Price
waterhouse coopers 2005). There are several areas where CADD plays an important
role in the traditional drug discovery. Genomics and bioinformatics support genetic
methods of target identification and validation. Cheminformatics enables
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Table 1.1 Problems faced by drug industry with its possible solutions

S1.No. Problems Possible solutions

1. Target search Genome information

2. Target validation Knockouts, RNA silencing

3. Lead search In vitro test models, high-throughput screening
4. Lead optimization Parallel syntheses, chemogenomics

5. Absorption, permeability Lipinski rules, Caco cells, prodrugs

6. Metabolism Liver microsomes

7. Toxicity Ames test, hERG models

8. Drug-drug interactions CYP inhibition/induction

Table 1.2 Targets with their mechanism, associated disease and status of the drug

SL
No. |Drug targets | Mechanisms of drug action Disease Status of the drug
1. Enzymes Reversible and irreversible
inhibitors
Angiotensin- | Renin-Ang system Hypertension | Launched
converting
enzyme
Tryptase Phagocytosis Inflammation, | Clinical phase III
asthma
Cathepsin K | Bone resorption Osteoporosis Clinical phase I
2. Receptors Agonists and antagonists Chronic pain Dopamine, epi-
nephrine,
morphine-known
drugs
3. Ton channels | Blocker and opener Ca*?, Na* Renal Cyclosporine —
and K* channel blockers, K* Problems launched
channel openers
4. Transporters | Uptake inhibitors HY/K*- Omeprazole — as
ATPase (pro- | known drug
ton pump)
5. DNA Alkylating agents, minor groove | DNA duplica- | Distamycin A,
binders, intercalating agents tion, tumours netropsin as known
drugs

researchers to process virtual screening for selection of lead compounds for syn-
thesis and screening. This allows researchers to make fast decision on lead com-
pound identification and optimization. In silico ADMET (absorption, distribution,
metabolism, excretion and toxicology) modelling aids researchers to identify a
bioavailable drug with suitable drug metabolism properties.

CADD methods offer significant benefits for drug discovery. One of them is time
and cost savings for lead identification, optimization and ADMET predictions for
implementing experimental research. Only the most promising drug candidates will
be tested based on the results of CADD. CADD provides deep insight to drug-
receptor interactions. Molecular models of drug compounds can reveal intrinsic,
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atomic scale binding properties that are difficult to envisage. It is classified as
structure-based drug design and ligand-based drug design.

1.3.1 Structure-Based Drug Design (SBDD)

The preliminary step in structure-based drug design is to determine the three-
dimensional structure of a target molecule (usually protein). This can be achieved
by X-ray crystallography or NMR spectroscopy experiments or by approximated
computational methods such as comparative modelling (homology modelling uses
previously solvated structure as starting point to determine the three-dimensional
structure of protein) and ab initio modelling (this method seeks to build three-
dimensional protein models based on physical principles rather than previously
solved model). The next step in this process is to identify the location of the binding
site of a target molecule (receptor). The actual binding site can be located by
comparing with known protein-ligand complexes or homology comparisons to
related complexes. With well-defined binding site, a ligand (lead) can be deter-
mined. Usually, leads can be determined either through de novo design or through
large database search for a molecule that matches the binding site. Docking
methods are then used to evaluate the quality of ligand.
The molecular docking process mainly involves three steps:

Characterizing the binding site
Positioning the ligand into the binding site
Evaluating the strength of interaction for a specific ligand-receptor complex

Structure-based drug design includes molecular docking methods as a main tool,
and certain researchers employ molecular dynamics also, if drug action is known.

1.3.1.1 Molecular Docking

When the structure of protein and its binding site are available, molecular docking
techniques are used to identify lead compound. This technique is also used in lead
optimization, when modification to known active molecule structure can quickly be
tested by CADD before compound synthesis.

Molecular docking is useful in the identification of low-energy binding mode of
a molecule or ligand in the active binding site of protein or receptor. A molecule or
ligand which binds strongly through hydrogen bonds, van der Waal bonds or any
possible electrostatic attractions with receptor or protein associated with disease
may inhibit the function and thus acts as a drug. Hydrogen bonds are local
electrostatic interaction between the atoms which plays a significant role in recog-
nition of ligand binding with the target. Calculating the accurate protein-ligand
interactions is the key principle behind structure-based drug discovery (Cramer
et al. 1988).
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1.3.1.2 Types of Docking

Three options for docking are available.

Rigid docking — where a suitable position for the ligand in receptor environment is
obtained while maintaining its rigidity

Flexible docking — where a favoured geometry for receptor-ligand interaction is
obtained by changing internal torsions of ligand into the active site while
receptor remains fixed

Full flexible docking — where the ligand is freely rotated via its torsion angles and
the side chain of active site residues (selected active site residues within a user-
specified radius around the ligand) is freely rotatable.

Most of the docking methods used at the present moment in academic and
industrial research employ a rigid target/protein. The algorithms used in docking
are given in Appendix 1.

The two components of molecular docking are:

(i) Prediction of binding conformation of the ligand in the binding site
(i) Binding free energy prediction of the ligand (Leach A.R. and Gillet V.J., 2003)

1.3.1.3 Scoring Functions

There are mathematical methods used to predict the strength of the non-covalent
interaction called binding affinity between two molecules after docking. The
scoring functions have also been developed to predict the intermolecular interaction
between two proteins, protein-DNA and protein-drug. The objective of any scoring
function is to estimate the free energy change of binding for a ligand in a given
binding pose. This can be expressed by the fundamental thermodynamic Eq. (1.1):

AG = AH — TAS (1.1)

where AG is the free energy change of binding, AH is the enthalpy change, T is the
temperature of the system in Kelvin and AS is the entropy change.

Scoring functions are categorized into (i) force field and (ii) empirical (Stahl and
Rarey 2001; Perola et al. 2004) (Table 1.3).

Force field scoring functions rely on the molecular mechanics methods. In this
method it calculates both the protein-ligand interaction energy and ligand internal
energy by van der Waals energy and electrostatic interactions. Advantages of force
field-based scoring functions include accounting of solvent, and disadvantages
include overestimation of binding affinity and arbitrarily choosing of non-bonded
cutoff terms (Kitchen et al. 2004; Moitessier et al. 2008).

Empirical scoring functions — Empirical scoring functions weigh contributions
from the different energetic terms in order to make a binding affinity prediction.
These terms may include hydrogen bonding using geometric measures as well as
force field-based physical potentials. However, the linear weighing of the terms is
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Table 1.3 Major docking tools utilized in industrial and academic research institutes

Docking tool | Algorithm/method (Appendix I) Scoring function

FlexX Incremental construction Boehm empirical scoring function
FlexX-Pharm | Incremental construction Boehm empirical scoring function
Auto Dock Genetic algorithm Force filed-based empirical scoring
Dock Incremental construction Force filed-based scoring

ICM Simulated annealing Force filed-based scoring

GOLD Genetic algorithm Empirical knowledge-based scoring
Surflex-Dock | Incremental construction Empirical Hammerhead scoring
Glide Simulated annealing/incremental search | Empirical knowledge-based scoring
LigandFit Shape matching Empirical knowledge-based scoring

derived from regression methods that fit binding affinity terms to experimental
affinities using experimental data and structural information (Teramoto and
Fukunishi 2007).

1.3.1.4 Limitations and Challenges

Some key challenges in molecular docking and scoring are discussed based on
protein flexibility and role of solvent and scoring function.

Protein flexibility: Docking programmes usually use protein as rigid and ligand
as flexible; in this case receptor has one conformation, while the ligands have
different conformations. The fundamental goal of virtual screening is to identify
molecules with the proper complement of shape, hydrogen bonding and electro-
static and hydrophobic interactions for the target receptor; the complexity of the
problem is far greater in reality. For example, the ligand and receptor may exist in
different conformations when in free solution, which is different from the confor-
mation when ligand is bound to protein (Koh 2003).

Role of solvent and scoring function: Protein and ligands are surrounded by
solvent molecules, usually water. If the water mediation is ignored during docking,
then the calculated interaction energy may be low, and favourable interactions with
water may be lost (Moitessier et al. 2008). Several methods are now available to
predict the binding energy accurately by accounting entropic and solvation effects
(Reynolds et al. 1992; Zhang et al. 2001). These methods need greater amount of
computational time and inappropriate to use in screening large databases. The
molecular docking process is shown in Fig. 1.2.

1.3.2 Ligand-Based Drug Design (LBDD)

The ligand-based drug design starts with a database containing set of ligands with
known activity interaction with the same receptor. The first step in this process is to
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Ligand Protein/Receptor

Docked complex (protein-ligand)

Fig. 1.2 Molecular docking flow chart using a benzamide derivative (MS-275) with HDAC2
protein (Naresh Kandakatla and Geetha Ramakrishnan 2014a, b)

divide the set of ligands into training and test set, and the second step in this process
is molecular modelling. Ligand-based approach commonly considers descriptors
based on chemistry, shape and electrostatic and interaction points
(e.g. pharmacophore points) to assess similarity. A pharmacophore is an explicit
geometric hypothesis of the critical features of a ligand (Leach and Gillet 2003).
Features usually include hydrogen-bond donors and acceptors, charged groups and
hydrophobic patterns. The hypothesis can be used to screen databases for candidate
compounds and also can be used to refine existing leads. Another method in ligand-
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based drug design is quantitative structure-activity relationship (QSAR) modelling
method and used for identifying a lead molecule and optimization. The concept of
QSAR is based on the fact that the biological properties of a compound can be
expressed as functions of its physicochemical parameters. The goal of the QSAR
model is to predict the activity of the new molecules (optimized leads). The third
step in ligand-based design involves identification of the most promising molecule
as lead compound for further experimental investigation.

1.3.2.1 Pharmacophore Modelling

A pharmacophore describes a set of interactions required to bind given receptor.
The pharmacophore is usually derived from three-dimensional computed confor-
mations of a molecule and is an abstract representation of the molecule.

Common pharmacophore feature types are hydrophobic, hydrogen-bond accep-
tor, hydrogen-bond donor, aromatic rings and positively ionizable and negatively
ionizable groups. The pharmacophore features describe the target binding site,
e.g. a hydrophobic feature corresponds to hydrophobic region in the protein and
hydrogen-bond acceptor feature as hydrogen bond donating counterpart in the
protein. Hydrogen-bond acceptor and donor features usually have direction as
parameter. The spatial relationship between the pharmacophore features is defined
by interpoint distances between the features.

Pharmacophore modelling is widely used in drug design for identifying novel
scaffolds or leads for various targets. Pharmacophore model is classified into two
categories as (i) structure-based pharmacophore modelling and (ii) ligand-based
pharmacophore modelling.

Structure-Based Pharmacophore Modelling

Structure-based pharmacophore modelling uses a 3D structure of protein
co-crystallized with ligand or 3D structure of protein. The structure-based
pharmacophore model is further subdivided into two types as protein-ligand com-
plex and protein/receptor without ligand contribution. The protein-ligand-based
approach locates the ligand binding sites of the protein target and determines the
key interaction points between the protein and ligand. Automated tools for the jobs
are LigandScot, Pocket v.2 and GBPM (Wolber and Langer 2005; Chen and Lai
2006; Ortuso et al. 2006). For protein-based approach, Discovery Studio (LUDI)
was employed, where LUDI converts the interaction points in the binding site into
catalyst pharmacophore features such as H-bond acceptors, H-bond donors and
hydrophobe (Bohm 1992). In general structure-based pharmacophore, the gener-
ated interaction points consist of a large number of unprioritized pharmacophore
features, which complicate further virtual screening process. To overcome this
problem, a fast knowledge-based approach, hotspot-guided receptor-based
pharmacophores (HS-Pharm) and Apo protein-based approach were used. Hotspot



12 G. Ramakrishnan

analysis is employed to identify the binding sites, where the ligand forms strong
interactions (Barillari et al. 2008). In the second approach, the binding cavity
embedded in a GRID and molecular interaction fields of GRID node and protein
is calculated using a set of probes; the minimum energy found can be converted into
pharmacophore feature (Tintori 2008; Goodford 1985).

Ligand-Based Pharmacophore Modelling

Ligand-based pharmacophore modelling is a key computational strategy in drug
discovery in the absence of 3D structure of protein. Pharmacophore model gener-
ation extracts common chemical feature from a set of known molecules (usually
training set) as a representative of essential interaction between the ligand and
target protein of interest. This method involves two steps: the first step involves
conformational analysis of training set molecules that allows conformational flex-
ibility of each molecule, and the second step is alignment — aligning of training set
molecules to determine the essential common chemical feature to construct
pharmacophore models. Currently various commercial and academic computa-
tional softwares are available for pharmacophore model development — such as
Hip Hop (Barnum et al. 1996), HypoGen (Li et al. 2000) (Accelrys Inc., http://
www.accelrys.com), PHASE (Dixon et al. 2006) (Schordinger Inc., http://www.
schrodinger.com), MOE (Chemical Computing Group, http://www.chemcomp.
com), DISCO (Martin 2000), GASP (Jones and Willet 2000) and GALAHAD
(Tripos Inc., http://www.tripos.com). Challenges to overcome are conformational
ligand flexibility and molecular alignment. Conformational ligand flexibility prob-
lem is solved by computing multiple conformers for each molecule and creating a
database. The second method is on-the-fly method, in which the conformational
analysis is carried out in the pharmacophore modelling process; it does not need
mass storage but requires higher CPU time (Poptodorov et al. 2006). A good
conformer should satisfy low-energy configuration which interacts with the recep-
tor. Molecular alignment is another challenging issue in ligand-based
pharmacophore modelling. Alignment method can be classified into two categories
as point-based and property-based approaches (Wolber et al. 2008). In point-based
approach, pair of atoms or fragments or chemical feature points is superimposed
using least square fitting. The biggest problem in this approach is to identify anchor
points in dissimilar ligands. Property-based approach makes use of molecular
descriptors to generate alignment.

Once pharmacophore model is generated, it can be used for virtual screening of
small or large databases. Many tools such as ligand-based pharmacophore mapping,
search 3D database (Accelrys Inc., http://www.accelrys.com), PHASE
(Schordinger Inc., http://www.schrodinger.com), ChemDBS (VLife MDS., http://
www.vlifesciences.com/), etc. are available for virtual screening. The full frame-
work of pharmacophore modelling is illustrated in Fig. 1.3.
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Fig. 1.3 The full framework of pharmacophore modelling

1.3.2.2 Virtual Screening

In silico screening of chemical compound database for identification of novel
chemotype is termed as virtual screening. Virtual screening is generally performed
on the commercial, public or privately available 2D/3D chemical structural data-
bases. Virtual screening is employed to reduce the number of compounds to be
tested in experimental laboratories, thereby focussing on more reliable entities for
lead discovery and lead optimization (Rester 2008). The costs and time associated
with virtual screening of chemical compounds are significantly lower when
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compared to screening of compounds in experimental laboratories. Thus virtual
screening reduces the size of the haystack by selecting compounds or libraries that
are either lead-like or drug-like properties with the potential of oral bioavailability.
Virtual screening is divided into two types as (a) ligand-based virtual screening
(LBVS) and (b) structure-based virtual screening (SBVS) (refer to Appendix II).

Lipinski Rule

The selection criteria of lead compounds using the rule are referred to as Lipinski
analysis (Lipinski et al. 1997).The use of upper and/or lower bounds on quantities
such as molecular weight (MW) or logP helps to vary the in vivo properties of
drugs. The rule of 5 developed by Lipinski predicts that good cell permeation or
intestinal absorption is more probable when there are less than 5 H-bond donors,
10 H-bond acceptors, MW is less than 500 and the calculated logP is lower than 5.
Property ranges for lead-like compounds can be defined: 1-5 rings, 2—15 rotatable
bonds, MW less than 400, up to 8 acceptors, up to 2 donors and a logP range of 0.0
to 3.0. The average differences in comparisons between drugs and leads include
2 less rotatable bonds, MW 100 lower and a reduction in logP of 0.5 to 1.0 log units.
Thus, one of the key objectives in the identification of lead-like compounds for
screening, either by deriving subsets of corporate, or commercial, compound banks
or through the design of libraries, is the need for smaller, less lipophilic compounds
that, upon optimization, will yield compounds that still have drug-like properties.
Figure 1.4 gives the different approaches used in virtual screening process. Further
using Lipinski bioavailability rules, neural nets (e.g. drug-like character),
pharmacophore analyses, similarity analyses, scaffold hopping and docking and
scoring functions, lead compounds can be selected. The example given for selecting
the compounds based on the virtual screening method of data bases is illustrated in
Sect. 1.3.3.

1.3.2.3 Quantitative Structure-Activity Relationship (QSAR)

In ligand-based drug design, a computational model is needed for further identifi-
cation of promising molecule as a lead molecule for further experimental investi-
gation. QSAR modelling techniques are used for further lead optimization. It is a
mathematical relationship between a biological activity of a molecular system and
its geometric and chemical characteristics. QSAR attempts to find consistent
relationship between biological activity and molecular properties, so that these
“rules” can be used to evaluate the activity of new compounds.

The concept of QSAR was first introduced in 1968 (Selassie et al. 2003), and the
model of QSAR is related by the following equation (Crum-Brown and Fraser
1968):
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Fig. 1.4 Different approaches to virtual screening process

5=£(C) (1.2)

where the physiological activity § was expressed as a function of the chemical
structure.

Later quantitative approaches combine different physicochemical parameters in
a linear additive manner. Free and Wilson proposed structure-activity dependencies
by equation

AB = u + T'ax; (1.3)

where AB is the biological activity, u is the average contribution of the unsaturated
parent molecule of a particular series (training set compounds), the a; values are
contributions of various structural features and the x; values denote the presence or
absence of particular fragments (Free and Wilson 1964). Since then QSAR has
remained a thriving research area in drug design.

More recently developed QSAR modelling approaches include HQSAR (Lowis
1997), inverse QSAR (Cho et al. 1998) and binary QSAR (Gao et al. 1999). The
accuracy of QSAR modelling is greatly improved by using sophisticated statistical
and machine learning methods, for example, partial least square (PLS) (Dunn and
Rogers 1996) and support vector machines (SVM).

QSAR models are regression models used in the chemical and biological
sciences; QSAR regression relates a set of physicochemical properties or theoret-
ical molecular descriptors of chemicals to the potency of the biological activity
(most often expressed by logarithms of equipotent molar activities) of chemicals. It
is a technique that quantifies the relationship between structure and biological data
and is useful for optimizing the groups that modulate the potency of the molecule
and also predict the activity of newly designed molecules (Hansch 1990).

There are different types of computational methods in QSAR depending upon
the data complexity. They are two-dimensional (2D), three-dimensional (3D) and
higher methods (Livingstone 2004). 2D QSAR is insensitive to the conformational
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arrangement of atoms in space, while in 3D QSAR needs information on the
position of the atoms in three spatial dimensions. In 4D QSAR for each molecule,
a set of automatically docked orientations and conformations are developed by
genetic algorithms. Induced-fit scenarios of ligands upon binding to the active site
and solvation models can be thought of as the fifth (protein flexibility) and sixth
(entropy) dimensions in 5D and 6D QSAR, respectively.

The QSAR model development generally is divided into three stages: data
preparation, data analysis and model validation. The development of good quality
QSAR model depends on many factors like data set and their biological data,
selection of descriptors, statistical methods and model validation. The process of
QSAR development was given in the flow chart (Fig. 1.5).
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The developed models were useful in prediction of untested compounds. In
QSAR model development, the main challenge is the selection of data set and
group of descriptors, which describes structural physicochemical features associ-
ated with the biological activity. The developed QSAR models were validated by
(i) cross-validation, (ii) randomization, (iii) bootstrapping and (iv) external valida-
tion. The validation methods are needed to establish the predictiveness of a model
on unseen data and to help determine the complexity of an equation that the amount
of data justifies. The internal validation uses data set that creates model and a
separate data set for external validation. Internal methods for validation of models
are least square fit (Rz), cross-validation (Qz), adjusted R? (Rzadj), root mean-
squared error (RMSE), bootstrapping and scrambling (Y-randomization). The
external validation is a best method to validate the model, such as evaluating
QSAR model on a test set of compounds. These are statistical methods used to
select the best QSAR model.

1.3.3 Illustrated Examples Using CADD

HDAC proteins have been associated with basic cellular events and disease states,
including cell growth, differentiation and cancer formation because of their role in
gene expression. Several HDAC inhibitors (HDAC:I) are in clinical trials, namely,
benzamide derivatives (Fig. 1.6), hydroxamic acids, cyclic peptides and short-chain
fatty acids (Wagner et al. 2010). SAHA (suberoylanilide hydroxamic acid or
vorinostat (Zolinza®)) which is structurally similar to trichostatin A (TSA) was
the first HDACi approved for the treatment of refractory cutaneous T-cell lym-
phoma by the Food and Drug Administration (FDA) in October 2006 (Walkinshaw
and Yang 2008). SAHA compound inhibits all zinc-dependent HDACs in the low
nanomolar range, and recent studies suggested that it has weak inhibitory effect on
the class IITa HDACs (Bradley et al. 2009).

Entinostat (SNDX-275, MS-275) belongs to benzamide class HDACi and
inhibits HDACI1 and 2, 3 and 9 and has low effect against HDAC4, 6, 7 and
8 (Khan et al. 2007). Entinostat is in phase II clinical trial for treatment of
Hodgkin’s lymphoma and advanced breast cancer (in combination with aromatase
inhibitors) and metastatic lung cancer (in combination with erlotinib). Mocetinostat
(MGCDO0103) is class I selective HDAC inhibitor and is undergoing phase I and II
clinical trials for hematologic malignancies and solid tumours (Blum et al. 2009).

The crystal structure of the HDAC?2 protein (PDB ID: 3 MAX) was downloaded
from the protein data bank (http://www.rcsb.org/pdb). The crystal structure of
histone deacetylase 2 (HDAC2) protein has three chains, which are A, B and
C. The reference compounds SAHA and MS-275 (Entinostat) were docked into
active sites of all three chains using LigandFit programme in Discovery Studio; out
of three chains, chain A has given the best docking score and higher H-bond
interactions than chains B and C. The docking score of all three chains with
SAHA and Entinostat was shown in Table 1.4. Chain A was selected as active
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Fig. 1.6 Chemical structures of benzamide HDACi

chain, and the optimized benzamide compounds were docked into active site of
3MAX-A. The docking score along with binding orientations and hydrogen bonds
were considered for choosing the best pose of the docked compounds. The docking
score of the SAHA compound was 40.8 with three hydrogen-bonding interactions
with Arg39(2), Gly305 and Gly142(2), and for Entinostat the docking score was
42.6, with four hydrogen-bonding interaction with Arg39, Cys156, Gly305 and
His183 and the configurations are given in Fig. 1.7. The designed compounds that
scored docking score above than reference compounds with greater interaction with
the crucial amino acids were considered as effective HDAC?2 inhibitors.

Virtual screening studies were used to find potential lead molecules with
increased inhibitory activity against HDAC?2 inhibitors. The pharmacophore model
Hypol (Fig. 1.8) from benzamide compounds was used as 3D query in database
screening of the National Cancer Institute (NCI) database containing 265,242
molecules and Maybridge database containing 58,723 molecules. Ligand
pharmacophore mapping protocol was used with flexible search option to screen
the database. Hit compounds from the database with estimated activity less than
0.1 pM were selected, and further screening of compounds using Lipinski rule of
five compounds has (i) molecular weight less than 500, (ii) hydrogen donors less
than 5, (iii) hydrogen acceptors less than 10 and (iv) an octanol/water partition
coefficient (Log P) value less than 5.

The pharmacophore model development was performed with Discovery Studio
(DS) and Schrodinger softwares. Benzamide pharmacophore model was developed
by HypoGen algorithm in DS. Hypol of HBD, HBA, RA and HY pharmacophore
features were selected based on cost difference and correlation coefficient
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Table 1.4 The docking score of SAHA and MS-275 with HDAC2 protein

HDAC2
(BMAX) Chain A Chain B Chain C
Docking | H-bond Docking | H-bond Docking | H-bond
score interaction score interaction score interaction
SAHA 40.8 ARG39(2), 22.66 Tyr308, 39.96 Arg39,
GLY305, His146, Gly142
GLY142(2) Gly142,
Alal4l
MS-275 42.65 Arg39, 39.07 Tyr308, tyr29 |36.9 Tyr308,
(Entinostat) Cys156, tyr29
Gly305,
His183

-E;/

Fig. 1.7 Binding mode of reference compounds SAHA and MS-275

]

Fig. 1.8 The best pharmacophore model (Hypol) of HDAC2 inhibitors generated by the
HypoGen module: (a) the best pharmacophore model Hypo1 represented with distance constraints

(A), (b) Hypol mapping with one of the active compounds, and (¢) Hypol mapping with one of the
least active compound. Pharmacophoric features are coloured as follows: hydrogen-bond acceptor
(green), hydrogen-bond donor (magenta), hydrophobic (cyan) and ring aromatic (orange) (Naresh
Kandakatla and Geetha Ramakrishnan 2014a, b)

(Fig. 1.8). The pharmacophore model can be validated by three methods, such as
cost analysis, test set prediction and Fisher’s randomization test.

A total of 6130 compounds from NCI and 1379 from Maybridge were mapped
using the features of Hypol. The biological activity ICs (inhibitory concentration
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for 50% in pM) was converted to negative logarithmic dose in moles (pICs) for
analysis. The pICsq values of the molecules spanned a wide range from 5 to 8. A
total of 1198 and 440 compounds from NCI and Maybridge showed HypoGen
estimated value of less than 1 pM for their biological activity and were considered
for further studies, and these compounds were screened for Lipinski rule of 5. A
total of 625 (382 NCI, 243 Maybridge) compounds obeyed the rule and were
subjected to molecular docking studies. The flow chart in Fig. 1.9 was a schematic
representation of virtual screening process.

A total of 625 compounds with estimated activity less than 1 pM and favourable
Lipinski rule were chosen from NCI and Maybridge databases, and 571 compounds
from natural database were subjected to molecular docking studies using LigandFit
and LibDock docking programmes. Based on docking score and H-bond interac-
tions, 30 hits were selected from three databases (Naresh Kandakatla and Geetha
Ramakrishnan 2014b), and the structure of few of the lead compounds with the
respective codes (NSC108392, NSC127064, MFCD01935795, MFCDO00830779,
ZINC4089202, ZINC4000330) was selected based on structural diversity and
stability. These novel compounds can be used for experimental studies for the
inhibition of HDAC2 with suitable pharmaceutical formulation.

1.4 Clinical Trials

For a bioactive compound to succeed as a drug, it should pass many selective filters
during development like toxicity and in the body including metabolism, uptake,
excretion and distribution.
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1.4.1 Preclinical Trials

After a lead compound is identified, the medicinal chemist/organic chemist has due
interest to prepare them and put into clinical trials. The ability to predict absorption,
distribution, metabolism, excretion and toxicology (ADMET) properties from
molecular structure has a tremendous impact on the drug discovery process both
in terms of cost and the amount of time required to bring a new compound to
market. For example, different stereoisomers will exhibit differences in
physiochemical properties, such as absorption, metabolism and elimination.
Toxicologists use experimental animals to identify hazardous substances for
humans. The main disadvantage is the need for large amounts of substance, several
years for the animal studies and relatively expensive. This type of study is of limited
value in mechanistic understanding of toxicity. This type of research accounts for
60—65% of the total cost of introduction of a drug into the market. In a nut shell the
preclinical activities in the order follows six different sequences as listed below.

Synthesis and purification of the new drug

Pharmacology of the new drug

Pharmacokinetics: absorption, distribution, metabolism, excretion and half-life
Pharmacodynamics: mechanism of action and estimates of therapeutic effects
Toxicology including carcinogenicity, mutagenicity and teratogenicity
Efficacy studies on animals

1.4.2 Human Clinical Trials

To be able to estimate the hazardous risk of humans, additional studies on the
mechanism of action, species extrapolation and effects in the low and human-
relevant dose range need to be followed. Generally, dose-dependent studies are
done for production volume greater than 1000 tons per year in the chemical
industry. But drug safety evaluation of pharmaceutical agents is complex as drug
exposure to humans is intentional and mechanism of toxicity should be pursued.

An assessment of toxicity requires a broad and interdisciplinary research and
development strategy, which includes system biology and case studies on the liver,
kidney, cardiovascular, endocrine and in vitro teratogenicity. Further
haemotoxicity and peripheral blood cell studies and investigations are done to
find their consequences in the drug-induced toxicity (Jurger Borlak 2005).
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1.4.3 Types of Clinical Trials

Phase I Trial

In this procedure, how well a drug or procedure can be tolerated in humans acting as
healthy volunteers, aged between 18 and 55 years, males and females (however, no
females who could be or could become pregnant) of normal weight, no smokers and
no alcohol (ab)use will be assessed. The volunteers are given the drug taken with
150 ml water accompanied by standard food, no other therapy and no intake of fruit
juices or illegal drugs. The outcome will be to determine a reasonable dose or
technique.

Phase II Trial
The phase II trial includes estimation of biological activity or effect (efficacy) and
to assess rate of adverse events (toxicity).

Phase III Trial
The phase III trial finds out the effectiveness in comparison to standard treatment or
placebo.

Phase IV Trial
Phase IV trial includes long-term surveillance (monitoring) and assesses long-term
morbidity and mortality.
Clinical trials provide a systematic framework within which scientific research in
human subjects can be carried out efficiently and ethically.

Experimental conclusions are reached in a manner that is statistically defensible.

1.5 Conclusions

Drug discovery process involves target identification, lead compound design and
clinical trials. Target identification involves identification of the root cause of the
disease. In the case of lead compound selection, virtual screening is a powerful tool
to enrich libraries and compound collections. A proper preprocessing of the com-
pound database is of utmost importance in drug design. Further experimental data
and theoretical investigations are needed for better pKa estimations and better
scoring functions. Stepwise procedures (filters, pharmacophore searches, docking
and scoring, visual inspection) are most efficient in drug designing. Fragment-based
approaches are a promising new strategy in lead structure search and optimization.
The new opportunities in medicinal formulations include genotyping of drug
targets and metabolic enzymes which enables cost savings in drug development
through better design of clinical trials. The selection of the best drug for a certain
patient with individual dose ranges (variance in target sensitivity reduced or
increased metabolism) and fewer toxic side effects and drug-drug interactions.



