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Preface

“Obscurity knows Nature will light the lamps”

Dahomean Proverb

The editors of Phytoremediation: Management of Environmental Contaminants 
originally planned a two-volume book to provide a broad global perspective on the 
development and use of phytoremediation to repair and restore contaminated ter-
restrial and aquatic habitats. The success and acceptance of Volumes 1 and 2 led to 
the production of three additional volumes that provide a wide diversity of phytore-
mediation laboratory studies and case histories completed in many parts of the 
world. Volume 5 contains the final chapter contributions in the series and adds new 
information on the application of soil microorganisms as inoculants or enhancement 
agents in contaminated terrestrial habitats including petroleum-contaminated sites. 
Other chapters describe the use of both woody and herbaceous plants for the bio-
monitoring and treatment of contaminants and provide new information on the trace 
element and toxic metals present in medicinal plants.

In the area of aquatic ecosystems, Volume 5 offers chapters that describe impor-
tant new approaches to applying phytoremediation to increase the efficiency of 
aquaculture systems and the management of pharmaceutical and personal care 
products using constructed wetlands. Other chapters describe the general use of 
aquatic plants and floating wetlands to treat polluted water.

Several chapters in Volume 5 offer special applications of phytoremediation in 
terrestrial and aquatic habitats and include information on the genetic control of 
metal sequestration in hyperaccumulating plants, the use of engineered nanomateri-
als to remove metals/metalloids and their implications on plant physiology, apply-
ing plant biosorbents to extract metals from soils and water, and the phytomining of 
rare and valuable metals. Nutrient management strategies for coping with climate 
change in irrigated smallholder cropping systems and the phytoremediation of land-
fill leachates are covered in two chapters, and a chapter on the modeling of phytore-
mediation and another on the phytoremediation of contaminated air complete 
Volume 5.
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The complete five-volume series of Phytoremediation: Management of 
Environmental Contaminants is designed to share a diversified sample of the current 
laboratory research and field applications of phytoremediation in a global context. 
As editors, we hope that the series will be both useful and informative to academics, 
government officials, and private sector managers and consultants interested in the 
potential for cost-effective and sustainable approaches to improving the environ-
mental quality of terrestrial and aquatic ecosystems.

Tabuk, Saudi Arabia� Abid A. Ansari 
Rohtak, Haryana, India� Sarvajeet Singh Gill 
Rohtak, Haryana, India� Ritu Gill 
Syracuse, NY, USA� Guy R. Lanza 
Syracuse, NY, USA� Lee Newman 
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Chapter 1
Microbial Inoculants-Assisted 
Phytoremediation for Sustainable Soil 
Management

Elizabeth Temitope Alori and Oluyemisi Bolajoko Fawole

Abstract  Agricultural soil pollution refers to its accumulation of heavy metals  
and related compounds which could be from natural or anthropogenic sources. This 
threatens food quality, food security, and environmental health. The traditional 
physico-chemical technologies soil washing used for soil remediation render the 
land useless as a medium for plant growth, as they remove all biological activities. 
Others are labor-intensive and have high maintenance cost. Phytoremediation, sus-
tainable and cheaper in situ remediation techniques was therefore considered. 
However, plants do not have the capability to degrade many soil pollutants especially 
the organic pollutant. It is therefore imperative to take advantage of the degrading 
ability of soil microorganisms. This chapter therefore focuses on phytoremediation 
techniques augmented by microbial inoculants.

Keywords  Inoculants • Microbes • Phytodegradation • Phytoremediation • Soil 
pollution • Soil management • Sustainable

1.1  �Introduction

Pollution of agricultural soils refers to its accumulation of heavy metals and related 
compounds which could be from natural or anthropogenic sources. This threatens 
food quality, food security, and environmental health [1]. Soil pollution produces 
change in the diversity and abundance of biological soil populations [2]. This is 
critical because of the role of soil organisms in plant establishment and survival. 
Such elimination of soil organisms can lead to problems with plant establishment 
and survival. Crops raised on polluted soil may contain harmful levels of pollutants 
that can be passed on to the animals and human that eat them [3]. Inhaling dust 
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blown from polluted soil can be injurious to one that inhales it. More also, polluted 
soil cannot be used for commercial development, parks or recreation [4]. Soil pol-
lutants alter plant physiology. It can cause cell membrane disruption, damage to 
photosynthetic apparatus, and can also alter the physical and chemical properties of 
the soil where plants are growing [5].

Cleaning of polluted soil may be very difficult because both soil pollutants and 
soil minerals carry small electric charges that cause each to bond with each other. It 
is well known that heavy metals cannot be chemically degraded and need to be 
physically removed or be immobilized [6]. Traditionally, remediation of heavy 
metal-contaminated soils is either on-site management or excavation, and subse-
quent disposal to a landfill site [7]. However, this method of disposal merely shifts 
the contamination problem elsewhere. Soil washing for removing contaminated soil 
is an alternative to excavation and disposal to landfill. This method is however 
costly and produces a residue rich in heavy metals, which will require further treat-
ment or burial. Moreover, these physico-chemical technologies used for soil reme-
diation render the land useless as a medium for plant growth, as they remove all 
biological activities. Other technologies such as vitrification, leaching, electrokinet-
ics soil vapor extraction, thermal desorption, chemical processing, etc., are labor-
intensive and have high maintenance cost [8, 9]. It is therefore imperative to develop 
a sustainable on-site technique for remediation of heavy metal contaminated sites.

For better soil management, an increase in use of biological potential is impor-
tant. Phytoremediation is one of the sustainable and cheaper in situ remediation 
techniques to be considered. Phytoremediation is a novel green technology that uses 
specialized plants and associated soil microbes to remove, destroy, sequester, or 
reduce the concentrations or toxic effects of contaminant in polluted soil and water 
[4]. The plant root-colonizing microbes or the plants themselves absorb, accumu-
late, translocate, sequester, and detoxify toxic compounds to non-toxic metabolites. 
Five important approaches can be considered in the use of plants to clean up pol-
luted soil. (1) Phytostabilization, a process in which pollutants are immobilized by 
plant activity resulting in attenuation of the wind and soil erosion and runoff 
processes into the ground water or air. (2) Hydraulic control, plants act like a pump, 
draws the groundwater up through their roots to keep it from moving. This reduces 
the movement of contaminated groundwater toward clean areas off-site. (3) Phyto
volatization involves use of plants to take up certain contaminants and then converts 
them into gaseous forms that vaporize into the atmosphere. (4) Phytofiltration refers 
torhizofiltration where contaminants such as metals are precipitated within the 
rhizosphere. (5) Phytoextraction (Phytoaccumulation) which involves metal hyper-
accumulating plants which can contain more than 1% of metals in harvestable 
tissues [10, 11] (Fig. 1.1).

However, plants do not have the capability to degrade many soil pollutants. It is 
therefore imperative to take advantage of the degrading ability of soil organisms. 
Organic toxins containing carbon such as the hydrocarbons found in gasoline and 
other fuels can only be broken down by microbial processes [12]. Symbiotic root 
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colonizing microorganism through metal sequestration increases metal tolerance in 
plants. The remediation by plant using the degrading ability of soil organisms is 
called phytodegradation. This helps us to understand integrated activity patterns 
between plants and microbes [13]. Some soil microbes such as the arbuscular 
mycorrhizal fungi (AMF) secret glycoprotein called glomalin. This can form com-
plexes with metals. Microbial organisms within the rhizoplane can take part in phy-
toremediation by protecting the plants from the toxic effect of the contaminants 
while the plants in return provide the microbial processes the boost they need to 
remove organic pollution from the soil more quickly. Plants excrete organic materi-
als that serve as food for microbes thus playing a key role in determining the size 
and health of soil microbial population. Bioaugmentation enables an increase of 
biodegradation of contaminated sites by the introduction of single strains or assem-
blages of microorganisms with the desired catalytic capabilities [14]. Microbial 
assemblages are found to be efficient since each partner can accomplish different 
parts of the catabolic degradation [15]. In this chapter, our focus is mainly on phy-
toremediation augmented by microbial inoculants. We begin with the contribution 
of plants and microbial inoculants in phytoremediation process. Then the methods 
of inoculating plants with microbial inoculants, the various mechanisms used by the 
microbial inoculants to assist plant in remediation, and the limitations of microbial 
inoculants-assisted phytoremediation are summarized and discussed.

PHYTOEXTRACTION

PHYTOVOLATIZATION

PHYTODEGRADATION

PHYTOSTIMULATION
Microbial
inoculants

PHYTODEGRADATION

HYDROLIC
CONTROL

PHYTOEXTRACTION

PHYTOSTABILIZATION

Fig. 1.1  Mechanisms of microbial-assisted phytoremediation

1  Microbial Inoculants-Assisted Phytoremediation for Sustainable Soil Management
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1.2  �Sources of Soil Pollution

Soil pollutants get introduced to the soil from various sources ranging from natural 
(Lithogenic) to anthropogenic activities (Fig. 1.2). Heavy metals commonly get 
introduced via human activities that are related to energy and mineral consumption 
[5], while petroleum hydrocarbons usually come from accidental spills of petroleum-
based products commonly used. Various industrial processes and anthropogenic 
activities in urban areas induce the release of metals and metalloids (MM) (toxic 
and genotoxic compounds) in natural environments.

Agricultural inputs such as chemical fertilizers, herbicides, and pesticides leaves 
the soil polluted with heavy metals [16]. According to Pietrzak and Uren [17], 
excessive use of fungicides and herbicides that are rich in heavy metal results in soil 
pollution. Copper for instance is used as a broad-spectrum bacterial and fungicidal 
agricultural pesticide and as fertilizer component because of its antimicrobial prop-
erties, but Cu is a common soil pollutant that persists in the soil providing a chronic, 
long-term stress on the soil microbial community [18]. Industrial activities such as 
chemical works, service stations, metal fabrication shops, paper mills, tanneries, 
textile plants, waste disposal sites, and intensive agriculture equally brings about  
the appearance of serious environmental problems such as soil pollution [19]. 
Indiscriminate waste disposal practices have led to significant build upon a wide 
range of metal(loid)s, such as arsenic (As), cadmium (Cd), chromium (Cr), copper 
(Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) in soils [20]. Kierczak 
et al. [21] found that soils in the areas around historic smelters are highly polluted 

Sources of
Soil
Pollution

Natural
Processes

Volcanic
eruption

Mining
Combustion
of fossil fuel

Military
activities

Industrial
discharge

Sewage
effluents

Air
Pollution
fall out

Agricultural
inputs e.g.
pesticides,
Fertilizers etc

Continental
dust

Weathering
processes of
earth crust

Soil erosion
Urban
runoff

Anthropogenic
Source

Fig. 1.2  Sources of soil pollutants
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with metal(loids)s (up to 4000  mg/kg Cu, 1500  mg/kg Zn, 300  mg/kg As, and 
200 mg/kg Pb). Fossil fuel combustion is another source of soil pollution reported 
by Krgović et al. [22]. Vehicle emissions, industrial processes, or waste incineration 
plants were revealed to introduce some pollutant such as heavy to what should  
have been valuable soil [23]. Soil pollutants could originate from the mining and 
smelting of metal ores [24], runoff of urban soils, fertilizer application, or effluents 
discharged [25].

1.3  �Contributions of Plants and Microbial Inoculants 
in Phytoremediation

Microbial-assisted phytoextraction optimizes the synergistic effect of plants and 
microorganisms and has been used for the cleaning-up of soils contaminated by 
metals [2].

Plant translocates and sequesters pollutions such as heavy metals while microbes 
degrade organic contaminants. Plants can store many contaminants in biomass that 
can later be harvested, while microbial assemblages can also convert contaminants 
such as heavy metals to stable and/or less toxic form. They can facilitate the uptake 
of pollutants such as heavy metals by plant roots. Microorganisms that reside on or 
within aerial plants tissue can help to stabilize and/or transform contaminants that 
have been translated which may limit the extent of volatization [13]. Plant root 
exudates such as enzymes, amino acids, aromatics, simple sugars, and aliphatics 
stimulate the growth of root-associated microorganisms; on the other hand, 
microbes can reduce the phytotoxicity of the contaminants in the soil or augments 
the capacity of the plant to degrade contaminant [3]. Ability of plant root to extend 
deeper into soil, allowing access to water and air and therefore changing the con-
centration of carbon dioxide, the pH, osmotic potential, redox potential, oxygen 
concentration, and moisture content of the soil, could lead to an environment that 
will better able to support high micro-biomass [26]. This enhanced trace element 
uptake by plants can be ascribed to an increase in root absorption ability and/or  
to an enhancement of trace metal bioavailability in the rhizosphere, mediated by 
microorganisms.

Plants can increase biodegradation through the transfer of oxygen to the rhizo-
sphere and the release of soluble exudates that provide nutrient sources for micro-
organisms [27]. Thus, plants enhance microbial growth and hence the associated 
contaminant-degradation processes. Microorganism contribution in immobilizing 
elements or facilitating plant absorption plants may significantly contribute to MM 
removal through uptake in biomass [28]. Microbial assemblages improve plant 
health and growth, suppress disease-causing microbes, and increase nutrient avail-
ability and assimilation [29].
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1.4  �Methods of Inoculating Plants with Microbial Inoculants

Plants to be used as phytoremediator to clean polluted soils could be inoculated with 
microbial assemblages via quite a number of techniques. These methods could 
include: (1) Seedinoculation, (2) Soaking plant roots with microbial suspension, 
when the root of ryegrass was soaked with a suspension of an endophytic Massilia 
sp. (Pn2) the same was found to have been translocated to the plant shoots [30].  
(3) Painting plant leaves with microbial suspension [31–33]. Afzal et al. [34] dis-
covered the cells of BurkholderiaphytofirmansPsJN in the internal tissue of the 
shoot and root when the plant was inoculated via leaf painting. Root colonization 
strategy was found to be the optimal colonization method for circumventing the risk 
of plant organic contamination [32].

1.5  �Types of Soil Pollutants

Soil pollutant could be organic or inorganic present in the hydrosoluble fraction 
(complexed, adsorbed onto particles or dissolved). The most common inorganic 
contaminants are heavy metals and mineral oils such as Cd, Cr, Pb, Cu, Hg, NiSe, 
As, and Zn [35]. Industrial effluents release organic pollutants like hydrocarbons, 
polycyclic aromatic hydrocarbons, and anionic detergent. Other soil pollutants 
include plant organic materials, petroleum hydrocarbons, and organochlorines [36]. 
Table 1.1 reveals some examples of soil pollutants that could be removed from soil 
via a microbial-assisted phytoremediation technique.

1.6  �Mechanisms of Microbial Inoculants 
in Phytoremediation of Polluted Soil

Microbial inoculants can improve pollutant removal through various mechanisms. 
Some has the potential to produce metal chelating siderophores, which could 
improve metal bioavailability [37]. Moreover, they produce biosurfactants (rhamno-
lipids) that can enhance the solubility of poor water-soluble organic compounds and 
the mobility of heavy metals [38]. Formation of biofilm is another mechanism by 
which microbial inoculants assist plants in remediation of polluted soils [39]. In 
addition, these microbes can transform metals into bioavailable and soluble forms 
through the action of organic acids, biomethylation, and redox processes [39]. 
Diverse soil microbes have the ability to secrete plant hormones such as indole- 
3-acetic acid (IAA), cytokinins, gibberellins (GAs), and certain volatiles which 
promote plant growth by altering root architecture [16]. The microbial plant growth 
stimulatory actions result from the manipulation of the complex and balanced net-
work of plant hormones that directly are responsible for growth and root formation. 
For example, IAA produced by soil microbes has been demonstrated to enhance 
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Table 1.1  Some examples of soil pollutants that could be removed from soil via microbial-assisted 
phytoremediation technique

Plant Microorganism Pollutants References

Helianthus annus Micrococcus  
sp. MU1 and 
Klebsiella sp. 
BAM1

Cd Prapagdee et al. [50]

Polygonum 
pubescens

Enterobacter  
sp. JYX7 and 
Klebsiella sp. 
JYX10

Cd Jing et al. [51]

Zea mays L Azotobactor 
chroococum  
and Rhizobium 
leguminosarum

Pb Hadi and Bano [52]

Solanum melongena Pseudomonas sp. NaCl Fu et al. [53]
Vigna unguiculata Scutelospore 

reticulate, 
Glomus phaseous

Al, Mn Alori and Fawole [2]

Solanum nigrum Pseudomonas  
sp. LK9

Cd Chen et al. [54]

Brassica napus Pantoea 
agglomerans 
Jp3–3, and 
Pseudomonas 
thivervalensis 
Y1–3-9

Cu Zhang et al. [55]

Brassica juncea Paenibacillus 
macerans 
NBRFT5, Bacillus 
endophyticus 
NBRFT4, B. 
pumilus NBRFT9

Cu Tiwari et al. [56]

Loliummultiflorum 
Lam

Staphylococcus 
sp. strain BJ06

Pyrene Sun et al. [57]

Brassica oxyrrhina Pseudomonas  
sp. SRI2, 
Psychrobacter  
sp. SRS8 and 
Bacillus sp. SN9

Ni Ma et al. [58]

Brassica napus Acinetobacter  
sp. Q2BJ2 and 
Bacillus sp. 
Q2BG1

Pb Zhang et al. [55]

Cytisus striatus Rhodococcus 
erythropolis 
ET54b 
Sphingomonas  
sp. D4

Hexachlorocyclohexane  
(HCH)-

Becerra-Castro  
et al. [59]

Cichorium intybus Rhizophagus 
irregularis

Diesel Driai et al. [60]

Medicago sativa Pseudomonas 
aeruginosa

(Cu, Pb and Zn and 
petroleum hydrocarbons)

Agnello et al. [35]

(continued)



Table 1.1  (continued)

Plant Microorganism Pollutants References

Orychophragmus 
violaceus

Bacillus subtilis, 
B. cereus, B. 
megaterium, and 
Pseudomonas 
aeruginosa

Cd Liang et al. [61]

Cytisusstriatus 
(Hill) Rothm

Rhodococcus 
erythropolis E T 
54b and 
Sphingomonas  
sp. D4

Becerra-Castro  
et al. [62]

Arabidopsis 
thaliana

Achromobacter 
xylosoxidans

Phenolic Ho et al. [63]

Solanum 
lycopersicum

Penicillium 
janthinellum LK5

Al Khan et al. [64]

Brassica napus Rahnella sp. JN6 Cd He et al. [65]
Triticum aestivum Pseudomonas 

putida KT2440
Cd, Hg, Ag Yong et al. [66]

Brassica juncea Bacillus subtilis 
SJ-101

Ni Zaidi et al. [67]

Sedum 
plumbizincicola

Bacillus pumilus 
E2S2 and 
Bacillus sp. E1S2

Cd Ma et al. [68]

Brassica napus Pseudomonas 
fluorescens G10 
and Microbacterium 
sp. G16

Pb Sheng et al. [69]

Trifolium repens Arbuscular 
mycorrhizal fungi 
and Bacillus 
cereus

Heavy metals Azcón et al. [70]

Iris pseudacorus Arbuscular 
mycorrhiza fungi

Pb, Fe, Zn, and Cd Wężowicz et al. [71]

Brassica juncea Rhizobium 
leguminozarum

Zn Adediran et al. [72]

Rahnella sp. Amaranthus 
hypochondriacus, 
A. Mangostanus 
and S. nigrum

Cd Yuan et al. [73]

Brassica juncea Staphylococcus 
arlettae 
NBRIEAG-6

As Srivastava et al. [74]

Orycoprhagmus 
violaceus

Bacilus subtilis, 
B. cereus, 
Flavobacterium 
sp. and 
Pseudomonas 
aeroginosa 
(Zhang et al. [55])

Zn He et al. [75]

Lupinus luteus Burkholderia 
cepacia VM1468

Ni and trichloroethylene 
(TCE)

Weyens et al. [76]

Alnus firma Bacillus 
thuringiensis 
GDB-1

As Babu et al. [77]
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root proliferation [40]. In addition, soil microbes possess growth- promoting traits, 
including phosphorus solubilization, nitrogen fixation, iron sequestration, and phy-
tohormone, which improve plant growth and increase plant biomass [39].

In addition to degrading soil pollutants microbial assemblages, also partake in 
phytoremediation by producing hormones, fixing atmospheric nitrogen, or solubi-
lizing P [41]. One of the most important mechanisms by which microbial assem-
blages respond to stress condition such as from soil pollutant is by increasing 
ethylene levels that result to an increase in cell and plant damage [42]. Many 
microbes that augment phytoremediation destroy a precursor of the ethylene (1-am
inocyclopropane-1-carboxylate (ACC)) that by producing the enzyme ACC deami-
nase, that in turn facilitates plant growth and development by decreasing plant 
ethylene levels [39]. Figure 1.3 depicts strategies of phytoremediation through 
microbial assemblages.

1.7  �Challenges of Microbial Inoculants-Assisted 
Phytoremediation

The success of microbial inoculation-assisted phytoremediation encounters some 
set back due to the following reasons: (1) The number of degrading microbes 
available regarding the pollutant to be degraded may be low or non-detectable, (2). 

Production of
organic acids

Formation of
biofilm

Biomethy
lation Produce metal

chelating
siderophores

Produce
biosurfactants
(rhamnolipids)

Secretion of
plant growth
hormones

Production of the
enzyme ACC
deaminase

Organic
acids

Microbial
assemblages

Redox
processes

Fig. 1.3  Strategies of phytoremediation through microbial assemblages
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The physical and chemical properties of pollutants. The various types of soil 
pollutants vary in their mobility, solubility, degradability, and bioavailability. These 
properties play very important role in the removal of the pollutants from the soil. 
Pollutant or mixtures of pollutants sometimes require several metabolic pathways 
operates simultaneously with sometimes metabolic intermediates whose toxicity 
toward indigenous microbes may be high, and (3) Some polluted areas requiring 
long microbial adaptation period of time justifying soil bioaugmentation [14, 43]. 
Other abiotic factors that also affect the success of microbial inoculation-assisted 
phytoremediation include; temperature, aeration, soil pH, cation exchange capacity 
(CEC), soil organic matter content, sorptive capacity of soil, and redox potential. 
According to Diels and Lookman [44], microbial inoculation-assisted phytoreme-
diation is influenced by temperature in the range 5–30 °C. It therefore means that 
the success of microbial inoculation-assisted phytoremediation will depend largely 
on season as this will be ineffective during winter in temperate countries. Grundmann 
et al. [45] reported that the efficiency of microbial inoculation-assisted phytoreme-
diation depends on pH in the range 5–8. Many metal cations like Cd, Cu, Hg, Pb, 
and Zn are reported to be more soluble and available in the soil solution at low pH 
(below 5.5) [46]. However, Phytoremediation of atrazine by two microbial consortia 
was seriously affected by pH and soil organic matter content. At pH 6.1 only one 
consortium degraded atrazine but at pH >7 atrazine was effectively degraded by the 
consortia, the microbial inoculants were ineffective at pH 5.7 because of their inter-
action with organic matter [47]. pH for the degradation of phenol and TCE was 
observed to vary from 6.7 to 10 depending on whether the microbial inoculant cells 
are free or immobilized [48]. As revealed by Bhargava et al. [46] higher CEC of soil 
permits greater sorption and immobilization of the metals. Depending on contami-
nant characteristics, different microbial-assisted phytoremediation mechanisms 
require different final electron acceptors. For example because of the highly reduced 
state of petroleum hydrocarbons, the preferred and most thermodynamically rele-
vant terminal electron acceptor for microbial process is O2 while the degradation of 
chlorinated solvents, depending on the degree of halogenation, is different from that 
of petroleum hydrocarbons and other oxidized chemicals, and the preferred redox 
condition is anaerobiosis [44].

1.8  �Characteristics to Consider in the Choice of a Plant 
for Microbial-Assisted Phytoremediation

A key aspect in biological remediation methods is the selection of appropriate 
plant–bacteria partnerships for the remediation of polluted soils [3]. Some of plant 
properties to be considered include: exceptional contaminant tolerance, ability to 
quickly grow on degraded land, and rapid biomass production. For instance alfalfa 
(Medicago sativa L.) that is often used in phytoremediation of contaminated soil is 
a fast growing species. Another critical characteristic to be considered is the 
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composition of plant-recruited microbial communities. Plants that develop extensive 
tap root system favor the establishment of rhizosphere microorganisms. Plants ideal 
for phytoremediation should possess the ability to grow outside their area of collec-
tion, to produce high biomass, easy harvesting and accumulation of a range of heavy 
metals in their harvestable parts [49]. Poplar and willow possess deep root systems, 
produce great biomass, can be grown in a wide range of climatic conditions and 
these explain why they are effective phytoremediator of polluted soil [46].

1.9  �Conclusions

Soil pollutant could be organic or inorganic present in the hydrosoluble fraction 
adsorbed onto particles or dissolved. Microbial-assisted phytoremediation remove, 
destroy, sequester, or reduce the concentrations or toxic effects of contaminant in 
polluted soils. Production of siderophores, biosurfactants, formation of biofilms, 
organic acids production, biomethylation, and redox processes and plant growth 
hormones stimulation are mechanisms employed by microbial inoculants in phy-
toremediation. The number of available degrading microbes and the physical and 
chemical properties of pollutants determine the success of microbial inoculants-
assisted phytoremediation. Exceptional contaminant tolerance, ability to quickly 
grow on degraded land, ability to grow outside their area of collection, and rapid 
biomass production are important plant characteristics to be considered in the 
choice of plant for phytoremediation.
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Chapter 2
Phytoremediation of Salt-Impacted Soils 
and Use of Plant Growth-Promoting 
Rhizobacteria (PGPR) to Enhance 
Phytoremediation

Karen E. Gerhardt, Gregory J. MacNeill, Perry D. Gerwing, 
and Bruce M. Greenberg

Abstract  Soil salinization negatively impacts plant growth and soil structure, 
which leads to environmental stress and agricultural/economic losses. Improved 
plant growth during salt-induced ionic and osmotic plant stress is the key to success-
ful phytoremediation of salt-impacted sites. Using plant growth-promoting rhizo-
bacteria (PGPR) in PGPR-Enhanced Phytoremediation Systems (PEPS), positive 
effects of PGPR on plant biomass and health have been observed in greenhouse and 
field experiments. Revegetation is arguably the most important aspect of salt phy-
toremediation and substantial biomass increases occur in PGPR-treated plants in 
both sodic and saline soils. PGPR protect against inhibition of photosynthesis and 
plant membrane damage, which suggests that they confer tolerance to plants under 
salt stress. Using PEPS, decreases in soil salinity are observed due to uptake of 
sodium and chloride from the soil into foliar plant tissue. Although rates of uptake 
do not change due to PGPR inoculation, higher plant biomass due to PGPR enhance-
ment of plant performance leads to greater salt uptake on a per area basis relative to 
that of untreated plants. Significant improvements in plant growth and commensurate 
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