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Preface

The production of car and vehicle industry increased greatly in the past decades.
People would like to reach the destination as quickly as possible. The quick
transportation of persons and goods is more and more important. This is the case in
Hungary, where the improvement of the car industry was great in the past decades.
Great car producers settled here like Mercedes Benz, Audi, Suzuki, Opel and also
small and medium enterprises connected to car element production have developed
greatly.

Education has to follow this trend. Vehicle engineering training has a long
tradition in Hungary. At the Budapest Technical University and Economics, at the
István Széchenyi University in Győr they have a long-term experience in this kind
of training. At the University of Miskolc, which is a successor of the Mining and
Metallurgical Academy, the first technical higher educational institution on the
Earth, founded in 1735, the mechanical engineering training started in 1949. The
industrial demand forced the university to start vehicle engineering training also. It
was accredited in 2015 and started this year.

The main requirements for cars and car elements are safety, manufacturability
and economy. Safety against different loads such as permanent and variable actions
is guaranteed by design constraints on stresses, deformations, stability, fatigue,
eigenfrequency, while manufacturability is considered by fabrication constraints.
The economy is achieved by minimization of the cost.

The main topics of the conference are as follows:
Design: Acoustic investigations, Car electronics, Autonomic vehicles, Fatigue,

Industrial applications, Vehicle Powertrain, Modelling and simulation of vehicle
informatics and electronic systems, Vehicle navigation, Visual systems of vehicles,
Mechatronics, Numerical methods FEM and BEM applications, Vibration and
damping, Stability calculations, Structural materials, Structural safety, Structural
connections, Analysis and design of structural elements, Design guides, Fracture
mechanics, Thin walled structures, Driver assist systems, Hybrid and electric cars.

Fabrication: Forming technologies, Surface protection, Production logistics,
Manufacturing technologies, Welding technologies, Heat treatment, Innovative
casting technologies, Industrial applications, Maintenance, Environmental
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protection, Lean technologies, Quality assurance, Gluing technologies, Production,
Testing.

Economy: Life cycle assessment, Fabrication costs, Industrial applications, Cost
engineering, Structural optimization.

Education: Vehicle engineering training, Dual training, Industrial practice,
Training techniques, Training materials.

It is a great pleasure to organize this conference, to give participants an
opportunity to show and discuss the new research results in a friendly atmosphere.

The organizers wish all participants successful days to collect new ideas and get
new acquaintances.

Miskolc, Egyetemvaros, Hungary Károly Jármai
October 2016 Betti Bolló
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Investigation of Rolling Element Bearings
Using Time Domain Features

Dániel Tóth, Attila Szilágyi and György Takács

Abstract Rolling element bearings can be found widely in domestic and industrial
applications. They are important components of most machinery and their working
conditions influence the operation of the entire machinery directly. Bearing failures
may cause machine breakdown and might even lead to catastrophic failure or even
human injuries. In order to prevent unexpected events, bearing failures should be
detected as early as possible. Different methods are used for the detection and
diagnosis of bearing defects. These techniques can be classified as noise analysis,
acoustic measurements, wear debris detection, temperature monitoring, vibration
analysis etc. Vibration signals collected from bearings carry detailed information on
machine health conditions. This paper deals with a bearing test procedure which
based on vibration analysis.

1 Introduction

Vibration monitoring is one of the essential tool that allows to determine the
mechanical health of different components in a machine. When the assessment of a
ball bearing is performed by vibration analysis, several signal processing techniques
can be considered. These techniques can be performed within either the time or the
frequency ranges. Among these methods the time domain features are the most
appropriate with random signals, where other signal analysis methods are not
suitable. These methods facilitate fast data processing and computation. Numerous
time domain statistical parameters have been used as trend parameters to detect the

D. Tóth (&) � A. Szilágyi � G. Takács
University of Miskolc, Miskolc, Hungary
e-mail: toth.daniel@uni-miskolc.hu
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bearing failures. The most frequently applied stochastic features are the
root-mean-square (RMS) value, peak value, skewness, impulse factor, shape factor,
clearance factor, crest factor and kurtosis [1, 2].

2 Bearing Test Device

Rolling element bearing condition monitoring can be accomplished by using a test
instrument. Such a device is located at University of Miskolc, Department of
Machine Tools. The test device is illustrated in Fig. 1.

The equipment is suitable for performing the bearing fatigue and measurement
investigations. The particular symbols have the following meanings:

Fig. 1 Experimental test rig

4 D. Tóth et al.



• 1: three-phase motor,
• 2: rigid table,
• 3F: supporting bearings of fatigue side,
• 3M: special supporting plain bearings of measurement side,
• 4F: fatigued bearing position,
• 4M: measured bearing,
• 5: double-acting hydraulic cylinder,
• 6: load cell, the adjustment of hydraulic load,
• 7F: fatigue test shaft,
• 7M: measurement test shaft,
• 8: length ribbed belt,
• 9: belt tensioner,
• 10: piezoelectric vibration accelerometer.

During the measurements the “7M” shaft works at the given rotational speed
(1500 min−1), while the “6” hydraulic cylinder exerts artificial load (1 kN) for the
“4M” bearing.

3 Description of Investigation

Fundamentally, two proceedings are used for the experimental analysis of rolling
element bearings. One method is the fatigue test when the bearings operate until they
get permanent damage, and we measure their vibration trends meanwhile. However,
the process takes relatively long time, but it can be accelerated with the bearing
overload and increased rotational speed. Another technique is the production of one or
more artificial failure of the elements of bearings. In this case the vibration signal
should be measured and compared to data of faultless bearings. According to the
literature [3–5], generally this may use methods such as spark erosion, acid etching,
scratching or mechanical indentation. In this research, we used a well reproducible
method to create artificial faults. A Rockwell hardness tester applied to make defects
to the inner ring of bearings. This method needs a bearing with plastic cage, because it
should be disassemble and assemble non-destructively. Figure 2 shows the ball
bearing type 6303 which used during experiments.

Fig. 2 The test bearing and
the artificial defect on the
inner ring

Investigation of Rolling Element Bearings … 5



As it was written previously a Rockwell hardness tester is used to cause local
defects. The type of this machine is HR—150A. It is suitable for examining the
effects of three types of loads. The major load values are 60, 100 and 150 kg. The
effects of each loading were examined more than 10 times.

Optical examination can be applied to measure failure size. Polarising micro-
scope is widely used for higher resolution. Carl Zeiss Jenavert polarising micro-
scope is applied to inspect the extent of the defect.

The average extent of the failure is 265 lm in diameter in case of 60 kg load,
411 lm in diameter in case of 100 kg load and 478 lm in diameter in case of
150 kg load. The following illustrations show the effects of different loads (Fig. 3).

Fig. 3 Inner ring defects in case of 60 kg, 100 kg and 150 kg load (15 times magnification)

6 D. Tóth et al.



4 Analysis of Measurements

During the experiment, first of all the vibration patterns were measured from the
examined bearing using piezoelectric vibration accelerometer (the type of it is
Kistler 8632C50). After that the artificial defect was created and vibration patterns
were measured again. It is followed by time-domain tests during which statistical
features have been calculated. These stochastic indexes can be calculated by using
the formulas below (Fig. 4).

The measurement cycles are performed at 9.6 kHz sampling frequency. Five
vibration samples and 16,384-element samples were taken within each cycle.
Statistical features were calculated based on sampled values. These parameters were
computed by a program code, which runs in Maple mathematical software. Table 1
contains the statistical parameters in case of 60 kg load.

Table 2 includes the stochastic features in case of 100 kg load.
It is visible that the most of the parameters have doubled under this load. Table 3

contains the statistical parameters in instance of 150 kg load.
It is clearly visible that the statistical parameters of a defective bearing tend to be

higher than the values of a normal bearing. The percentage increase is depicted in
Fig. 5.

According to the graph it is clear that the Standard deviation, the Peak value and
the RMS were the most sensitive to this artificial error. Nevertheless, it is obvious
that the Kurtosis and the Skewness also have good correlation.

Fig. 4 Calculation of
stochastic features [1]

Investigation of Rolling Element Bearings … 7
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5 Conclusion

Trustworthy and accurate measuring methods and devices are inevitable for rotary
and bearing condition monitoring. The investigation of vibration signals is a sig-
nificant technique for monitoring the condition of machine components. Stochastic
parameters are widely used as features in failure diagnostics. Present paper shows
that the time domain techniques can be effectively used in condition monitoring and
fault diagnosis of ball bearings. These methods are reliable tools and they make
possible fast data processing.
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Truck Floor Design for Minimum Mass
and Cost Using Different Materials

Károly Jármai and József Farkas

Abstract In the chapter the floor structure of a truck produced by a company in
Hungary has been investigated. The structure consists of steel members, or extruded
Al-alloy longitudinal and cross members as well as a tread deck plate. Using an
optimum design process, namely the Hillclimb optimizer, significant mass and cost
savings may be achieved by decreasing the deck plate thickness and changing the
profile, dimensions and number of cross members. Comparison is made using the
combination of the steel and aluminium, or using only steel alone. Design con-
straints relate to fatigue stress range of welded joints, to local buckling of extruded
or normal profiles and to fabrication size limitations. A special loading case is also
considered when a wheel is staying on a curb and the floor is distorted.

1 Introduction

There are some trucks for beverage transport, where the truck structure has a steel
chassis consisting of two longitudinal beams. The subframe is constructed from two
longitudinal beams bolted on steel beams. They can be made from Al-alloys, or
structural steel. The Al-alloy floor structure has three layers as follows (Fig. 1):
cross members welded to subframe, the longitudinal members welded to cross
members, tread deck plate distributing the pallet loads. The material of cross
members is an Al-alloy AlMgSi0.7 according to German standard DIN 1725 [1] of
Rp.0.2 = 215 MPa according to DIN 1748 [2] (international alloy type 6005A). The
tread deck plate material is an Al-alloy AlMg2.5 (international alloy type 5052).
These main structural parts are framed by side rails, which carry the loads from
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roof, sidewalls and doors. We have made an optimization using aluminium, or
normal steel in the floor structure. Due to the fact that the fatigue limit for the steel
at Eurocode 3 up to 690 MPa and at IIW recommendation up to 960 MPa does not
change, it does not worth to use higher strength steels, only normal structural steel.

Our aim is to decrease the material cost of the floor structure by changing the
profile, dimensions and number of cross members, the thickness of deck plate as
well as the material grades.

2 Load Cases

2.1 Loads in the Horizontal Floor Position

Two load cases should be considered in the design of cross members as follows:
(a) loads due to pallets, roof, door and side walls in the horizontal floor position;
(b) the same loading as in (a) but a wheel is staying on a curb, thus, the floor is
distorted.

Fig. 1 Truck floor structure
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Loads acting on an outside cross member are as follows:

a corner column 205 N
roof 2060/4 515 N
upper door 1420/2 710 N
front wall 1033/2 516 N

F1 = 1946 N

Load from pallets: mass of a pallet is Fp = 8500 N, intensity of the uniformly
distributed load is p = Fpnp/(BL), where the number of pallets placed on the half
floor np = 5, B and L are the dimensions of a half cantilever floor surface. The
uniformly distributed normal load acting on a cross member is pc = pL/(nc−1), nc is
the number of cross members.

The maximum bending moment in a cross member is (Fig. 2)

Mmax ¼ pcB2

2
þF1B ¼ FpnpB

2 nc � 1ð Þ þF1B ð1Þ

Calculating with Fp = 8500 N, np = 5, B = 720 mm, F1 = 1946 N one obtains
bending moments for different numbers of cross members. This number is limited
by the dimension of pallets (800 mm) to nc.min = 10. Since the original number of
cross members is 14, we calculate with nc = 14, 12 and 10. For these values of nc
one obtains

M14 ¼ 2:578;M12 ¼ 2:792 andM10 ¼ 3:1011 kNm:

The corresponding shear forces are as follows:

Q ¼ Fpnp=ðnc � 1ÞþF1; Q14 ¼ 5215; Q12 ¼ 5810 and Q10 ¼ 6668N:

2.2 Loads on the Distorted Floor

Measurements have been carried out on a truck loaded with pallets and with a
wheel staying on a curb in a height of 91 mm. The measured deflections have

Fig. 2 Loads on the
cantilever part of cross
members
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shown that the cross members near the wheel being lifted up are loaded by bending
as it is seen on Fig. 3. This cross member can be modelled as a cantilever beam of
its whole length Lc loaded by a force F corresponding to a deflection w. This
deflection can be approximately calculated as w ¼ 138� Lcu, where
Lc = 2427 mm, uðradÞ ¼ 2:91�p=180� ¼ 0:0508, thus, w = 15 mm. Furthermore

F ¼ 3EIxw
L3c

;Mc:max ¼ FLc ð2Þ

where E = 7 x 104 MPa is the elastic modulus of aluminium, E = 2.1 x 105 MPa
for steel, Ix is the second moment of area.

3 Geometric Characteristics of Cross Members

The cross-section loaded by bending and shear consists of a cross member and a
part of the deck plate (Fig. 4). We calculate an effective width of the deck plate 50t,
t is the thickness. In the case of a rectangular hollow section (RHS) the geometric
characteristics of this cross section are as follows [3]:

A ¼ A1 þA2; A1 ¼ 2htw þ 2btf ; A2 ¼ 50t2 ð3Þ

yG ¼ A1

A
hþ t
2

þ c

� �
; yc ¼ hþ cþ t

2
� yG ð4Þ

Ix ¼ h3tw
6

þ btf h2

2
þA1 yc � h

2

� �2

þA2y
2
G ð5Þ

Fig. 3 Measured deflections of a distorted cross member, when a left truck wheel is staying on a
curb
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In the case of I-profile (Fig. 4) the characteristics are as follows:

A1 ¼ htw þ 2btf ð6Þ

Ix ¼ h3tw
12

þ btf h2

2
þA1 yc � h

2

� �2

þA2y
2
G ð7Þ

In our previous calculations [4] we have made comparisons using the rectangular
hollow section, I- and C-profiles. It was found that the best cross section is the
I-beam. That is the reason why the I-profile has been chosen.

4 Design Constraints

4.1 Constraints on Fatigue Stress Range for the Horizontal
Floor Position

r1 ¼ Mmax

Ix
ymax � DrN

cMf
; ymax ¼ max yG; ycð Þ ð8Þ

s1 ¼ Q
Aw

� DsN
cMf

; ð9Þ

where Aw = htw for I-profile.
Since the cross members are welded to longitudinal subframe beams, they should

be designed considering the fatigue of welded joints. According to Hobbache [5] the
fatigue stress range for number of cycles 2 x 106 in the case of transverse stiffener

Fig. 4 Cross-sections of cross members
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