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1
Integrative Analysis of Omics Data

Tobias Österlund, Marija Cvijovic, and Erik Kristiansson

Summary

Data generation and analysis are essential parts of systems biology. Today, large
amounts of omics data can be generated fast and cost-efficiently thanks to the
development of modern high-throughput measurement techniques. Their inter-
pretation is, however, challenging because of the high dimensionality and the often
substantial levels of noise. Integrative analysis provides a framework for analysis
of the omics data from a biological perspective, starting from the raw data, via
preprocessing and statistical analysis, to the interpretation of the results. By inte-
grating the data into structures created from biological information available in
resources, databases, or genome-scale models, the focus moves from the individ-
ual transcripts or proteins to the entire pathways and other relevant biochemical
functions present in the cell. The result provides a context-based interpretation of
the omics data, which can be used to form a holistic and unbiased view of biolog-
ical systems at a molecular level. The concept of integrative analysis can be used
for many forms of omics data, including genome sequencing, transcriptomics, and
proteomics, and can be applied to a wide range of fields within the life sciences.

1.1
Introduction

Systems biology is an interdisciplinary approach to biology and medicine that
employs both experimentation and mathematical modeling to achieve a better
understanding of biological systems by describing their shape, state, behavior, and
evolutionary history. An important aim of systems biology is to deliver predictive
and informative models that highlight the fundamental and presumably conserved
relationships of biomolecular systems and thereby provide an improved insight
into the many cellular processes [1]. Systems biology research methodology is a
cyclical process fueled by quantitative experiments in combination with mathe-
matical modeling (Figure 1.1) [2, 3]. In its most basic form, the cycle starts with
the formulation of a set of hypotheses, which is followed by knowledge generation
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Figure 1.1 Systems biology research
methodology. In the systems biology cycle,
novel hypotheses are first formulated, which
is followed by knowledge generation, model
construction, and model predictions, which,
in turn, leads to new biological insights. The
development of high-throughput techniques
have enabled rapid and cost-efficient gen-
eration of omics data from, for example,

genome sequencing, transcriptomics, and
proteomics. Integrative analysis provides a
framework where omics data is systemat-
ically analyzed in a biological context, by
data integration into known biological net-
works or other data resources, which enables
improved interpretation and easier integra-
tion into quantitative models.

and model construction where an abstract description of the biological system (a
model) is formulated and its parameters are estimated from data taken from the
literature. The final step is defined by model predictions, where the constructed
model is used to address the original hypotheses by providing a quantitative anal-
ysis of the system, which, in turn, generates new biological insight.

The development of high-throughput measurement techniques in the recent
years has resulted in an unprecedented ability to rapidly and cost efficiently
generate molecular data. Bioassays are today established for large-scale char-
acterization of genes and their expression at the different layers defined by the
central dogma: the genome, the transcriptome, and the proteome. The resulting
data, which in this chapter will be referred to as omics data, is however complex
because of its high dimensionality and is therefore hard to interpret and directly
integrate into quantitative models. The concept of integrative analysis is a
framework to systematically analyze the different components of omics data in
relation to their corresponding biological functions and properties. The resulting
biological interpretation can be used to form a holistic and unbiased view of
biological systems at a molecular level. Thanks to the comprehensiveness of the
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Figure 1.2 Description of the concept of
integrative analysis as a tool for reduction
of the dimension of omics data. Integrative
analysis starts with raw omics data, which
is typically affected by high levels of noise
and errors. Computational and statistical
approaches are first used to process the
data to produce a ranked list of genes that
are found to be of significant importance
in the experiment. The gene list is used as

input to the data integration, where known
biological information is used as a basis for
the interpretation of the data. During inte-
grative analysis, the dimension of the data
is significantly reduced, from potentially
millions of data points to a limited num-
ber of significant biological functions and
pathways, which considerably facilitates the
interpretation.

omics data, all components (i.e., genes, transcripts, or proteins) can be measured
simultaneously, which opens up opportunities for testing of existing hypotheses as
well as generation of completely new hypotheses of the studied biological system.

The process of integrative analysis can be divided into two main steps: data
processing and data integration (Figure 1.2). Integrative analysis starts from raw
omics data and ends with the biological interpretation, and during this process the
dimensionality of the data is reduced. The first step, the data processing, takes the
high-dimensional omics data, and by applying computational and statistical tools,
removes noise and errors while identifying genes and other components that con-
tain information significant for the experiment. The next step, the data integration,
uses the list of identified genes to pinpoint relevant functions and pathways by
integrating the data on top of a “scaffold” built using established biological infor-
mation collected from various resources and databases. The result, which is based
on the combined analysis of the genes with similar functional properties, has a
substantially reduced dimension, which considerably facilitates its interpretation.

Many studies in the life sciences aim to understand biological systems, often
in relation to a perturbation caused by, for example, disease, genetic variability,
changes in environmental parameters, or other factors introduced through labora-
tory experiments. A commonly used measurement technique is transcriptomics,
where the transcriptional response is analyzed and the genes that are differen-
tially expressed between investigated conditions are identified. In this setting, the
data integration shifts the focus from what genes are differentially expressed to
providing a biological context where activated and repressed pathways, functions,
or subnetworks can be identified. This provides a more relevant view of the data,
which paves the way toward more sound and detailed biological conclusions.
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In this chapter, we provide a broad overview of integrative analysis of omics
data. We will describe the general concept of integrative analysis and provide
an outline of the many associated computational steps. It should, however, be
pointed out that this topic has been extensively researched during the recent
years and – due to the scope of the topic at hand – we will not be able to cover all
aspects and details in a single chapter. We have therefore provided a comprehen-
sive set of references throughout the text, which are the recommended starting
points for further reading. Also, our main focus throughput this chapter will be on
data generated by techniques from genomics, transcriptomics, and proteomics.
This means that other types of data, which are commonly encountered in systems
biology, such as metabolomics and lipidomics, will receive little attention, and
here we instead refer the reader to the recent reviews by Robinson et al. [4] and
Kim et al. [5].

The chapter is organized as follows. Section 1.2 contains an overview of some
the types of omics data that are commonly used in integrative analysis. This is
followed by Section 1.3, where we focus on the data processing, starting from
the quality assessment of the raw data to statistical analysis. Section 1.4 explains
the concepts of data integration and describes the different approaches and data
resources that can be used. We end the chapter with an outlook discussing future
challenges related to the continuous growth of biological information.

1.2
Omics Data and Their Measurement Platforms

In this section three commonly used types of omics data will be described,
namely genome sequencing, transcriptomics (RNA sequencing and microarrays),
and mass spectrometry (MS)-based proteomics.

1.2.1
Omics Data Types

Genome sequencing is used for determining the order of the complete set of
nucleotides present in an organism. The comparative analysis of the genome of a
strain or a multicellular organism in relation to a reference genome is referred to
as “resequencing,” which enables identification of the complete genotype and its
variation between individuals. This includes both small mutations, such as single
nucleotide polymorphisms (SNPs) and short insertions/deletions (indels), and
larger structural variations such as genome rearrangements and copy number
alterations [6]. The resulting information, containing a list of all identified genetic
variants, is often subjected to integrative analysis in order to provide a biological
context where the genotype can be linked to a phenotype [7]. Whole-genome and
exome resequencing are important techniques for the study of human disease
[8], and in, for example, cancer, the set of germline and somatic mutations are


