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Preface

Energy is one of the most important issues for humankind. Increasing 
energy demand, regional limitations and serious environmental effects of 
conventional energy sources have brought about the need for new, clean 
and sustainable energy. This book series has been planned as a presenta-
tion of the basics in the areas of renewable energy and storage as well as the 
cutting-edge new technologies for these applications. Hydrogen Production 
Technologies is the first volume of the series due to the undeniable impor-
tance of hydrogen as a clean energy carrier. Hydrogen has been gaining 
more attention in both transportation and stationary power applications. 
Fuel cell-powered cars are on the roads and the automotive industry is 
demanding feasible and efficient technologies to produce hydrogen. There 
are various ways to produce hydrogen in a safe and cost-effective manner. 
This volume covers the new technologies used to obtain hydrogen more 
efficiently via catalytic, electrochemical, bio- and photohydrogen produc-
tion and as such is a valuable component in the research area of hydrogen 
production. The principles and methods described herein lead to reason-
able mitigation of the great majority of problems associated with hydrogen 
production technologies. The book is edited to be useful as a text for uni-
versity students at both introductory and advanced graduate levels and as a 
reference text for researchers in universities and industry. The chapters are 
written by distinguished authors who have extensive experience in their 
fields. Besides researchers in the engineering area, those in the energy, 
materials science and chemical engineering fields have been focusing on 
new materials and production technologies in order to generate hydrogen 
in an efficient and cost-effective way. Hence a multidisciplinary approach 
is taken to covering the topics of this book. Readers will absolutely have 
a chance to compare the fundamental production techniques and learn 
about the pros and cons of these technologies.

The book is organized into three parts. Part I shows the catalytic and 
electrochemical principles involved in hydrogen production technologies. 
It should be clear from this part that the fundamentals and modern status 

xvii



xviii  Preface

of water electrolysis, ammonia decomposition, methane reforming, steam 
reforming of hydrocarbons and biethanol, hydrolysis of ammonia borane 
and also SO2 electrolyzer are of great importance. Therefore, their vari-
ous aspects are discussed such as catalyst development, thermodynamics 
and kinetics of reaction mechanisms, reactor and mathematical modeling, 
novel membrane structures, and advanced nanoparticles. Part II is devoted 
to biohydrogen production. This part is designed to be a good introduction 
to gasification and fast pyrolysis of biomass, dark fermentation, microbial 
electrolysis and power production from algae. It specifically presents vari-
ous catalytic formulations as well as reactor designs to overcome catalytic 
deactivation due to coking. In addition to gasification of wood, dried 
sewage sludge, and plastic waste, newly developed staged gasifiers with 
fewer impurities are discussed. Moreover, there is a discussion of dark fer-
mentation using sulphate-reducing bacteria from the genus Desulfovibrio 
utilized in hydrogen production. Part II also addresses hydrogen produc-
tion from electrochemically active bacteria (EAB) by decomposing organic 
compound into hydrogen in microbial electrolysis cells (MECs). Lastly, 
highly efficient harvesting of energy from algae in the forms of hydrogen 
and enhanced process integration reducing exergy destruction are dem-
onstrated. The last part of the book is concerned with photohydrogen 
generation. Recent developments in the area of semiconductor-based 
nanomaterials, specifically semiconductor oxides, nitrides and metal-
free semiconductor-based nanomaterials for photocatalytic hydrogen 
production are extensively discussed. Moreover, Part III also includes pris-
tine and doped TiO2 nanostructures for fast hydrogen production during 
photocatalytic water splitting. Finally, an earth abundant catalyst for water 
splitting is presented as a very promising narrow band gap visible-light 
photocatalyst. 

Since the findings range over many useful topics specifically discussed 
in the book, readers from diverse fields such as chemistry, physics, mate-
rials science and engineering, mechanical and chemical engineering and 
also energy-focused engineering programs can benefit from this compre-
hensive review of the hydrogen production technologies.

Series Editors
Mehmet Sankır, PhD and Nurdan Demirci Sankır, PhD

Department of Materials Science and Nanotechnology Engineering
TOBB University of Economics and Technology

Ankara, Turkey
January 1, 2017
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Hydrogen Production from Oxygenated 
Hydrocarbons: Review of Catalyst 

Development, Reaction Mechanism 
and Reactor Modeling

Mohanned Mohamedali, Amr Henni and Hussameldin Ibrahim*

Clean Energy Technologies Research Institute (CETRi), 
Process Systems Engineering, Faculty of Engineering and Applied Science, 

University of Regina, Canada

Abstract
Hydrogen is viewed as a clean and efficient fuel for future energy generation, with 
an enormous amount of research being pursued to study the various routes for the 
production, storage, and application of hydrogen fuel. To date, diverse approaches 
have been employed for the production of hydrogen-rich fuel through catalytic pro-
cesses using nonrenewable materials as well as sustainable feedstocks. This review of 
the recent literature, is intended to provide an outlook on the catalyst development, 
reaction mechanism and reactor modeling studies of hydrogen production using 
catalytic steam reforming of oxygenated hydrocarbons with focus on methanol, 
ethanol, and glycerol feedstocks. Various attempts to optimize the catalyst perfor-
mance, including the utilization of various noble and transition active metals as well 
as oxide support materials, are extensively discussed. Tremendous effort has been 
dedicated to develop a reaction mechanism for the reforming of oxygenated hydro-
carbons, with no consensus to date on the exact reaction pathway due to the complex 
nature of the reforming process. This review provides insights into the fundamental 
understanding of the reaction mechanism and the contribution of the active met-
als and support on the observed kinetics. Moreover, the previous literature on the 
modeling and simulation of the hydrogen production process is also reviewed.

Keywords:  Hydrogen production, oxygenated hydrocarbons, catalyst 
development, reaction kinetics, reaction mechanism, reactor modeling
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4  Hydrogen Production Technologies

1.1 � Introduction

The global reliance on fossil fuels as the main energy source for power 
generation, transportation, and as a feedstock for chemical industries 
is widely increasing with the discoveries of new fossil fuel reserves and 
the technological advancement in their production and application. 
According to the recent annual energy outlook released in 2014 by the 
International Energy Agency (IEA), fossil fuels are projected to supply 
more than 80% of the world total energy by 2040. However, fossil fuel-
based energy generation has increased the concentration of greenhouse 
gas emissions to an alarming level of 400 ppm in 2013 [1]. The continued 
increasing levels of anthropogenic greenhouse gases in the atmosphere 
will ultimately cause further weather changes, resulting in severe impacts 
on life on earth; therefore, combating climate change requires sustain-
able development of green technologies and policies to mitigate climate 
change. In accordance with the Paris Climate Conference (COP21) of 
2015, several countries have pledged to reduce their emission levels to 
possibly achieve a 2 °C scenario (2DS) and cut the emissions to 60% by 
2100, corresponding to cumulative CO2 emissions of 1000 GtCO2. In order 
to achieve such objectives a portfolio of low-carbon technologies has to be 
deployed to reach the 2DS, consisting of energy efficiency, fuel switching, 
and renewable energies. According to the 2016 energy technology per-
spective report issued by the IEA, the contribution toward the reduction 
of the cumulative CO2 emissions in the 2DS over the period 2013 to 2050 
is estimated to be 38% from electricity efficiency, 12% for carbon capture 
and sequestration (CCS), and around 32% should come from the deploy-
ment of renewable energy sources. To establish clean energy for the future, 
the development of low carbon energy supply is urgently required. Among 
the possible alternatives, hydrogen has the potential to provide an ideal 
energy carrier that can meet the increasing global demand for energy and 
efficiently replace the existing fossil fuels [2, 3]. Hydrogen can provide 
an energy of 122 kJ/g, which is almost three times higher than hydrocar-
bon fuels [4], and is projected to contribute 34% of the total renewable 
resources in 2050 [5]. The application of hydrogen in the transportation 
and power generation sectors is receiving growing interest from both the 
technological and the policy-making aspects [6–8]. The contribution of 
hydrogen as a fuel for the transportation sector is mainly driven by the 
great achievements in fuel cell technology and the development of inter-
nal combustion engines that uses hydrogen fuel [9–12]. Fuel cell-based 
engines have three times higher efficiency than conventional gasoline 
engines due to the excellent characteristics of hydrogen as an energy 
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carrier [13], in addition to the outstanding performance of hydrogen as a 
transportation fuel [14]. Hydrogen fuel being a gas at normal temperature 
and pressure, as compared to liquid hydrocarbon fuels, presents a major 
challenge for safe storage and transportation [15, 16]. Traditional storage 
schemes require energy-intensive techniques and have great safety con-
cerns; however, the latest developments in the methods and technologies 
of the materials used for hydrogen storage are promising for realizing the 
hydrogen economy. Several review papers have described the current sta-
tus and future trends in hydrogen storage materials [15, 17, 18]. Hydrogen 
can be produced from various energy sources using different processes, 
which could be categorized into renewable and nonrenewable resources. 
Hydrogen production from fossil fuel derivatives, such as methane and 
coal through gasification and thermocatalytic processes, is considered the 
major source for nonrenewable hydrogen production, representing more 
than 95% of the hydrogen produced to date [19]. In addition to being 
nonrenewable, hydrogen produced from fossil fuel resources contributes 
to global warming by releasing CO2 during the production process. On 
the other hand, biomass is considered as a sustainable route for hydro-
gen production with less net CO2 produced due to the fact that the CO2 
released from the conversion of biomass has already been naturally cap-
tured from the atmosphere. In addition to the most widely used thermo-
chemical technology, other methods, such as the electrolysis of water, 
have also been used for hydrogen production, with a major drawback of 
being highly energy intensive and having a low efficiency of around 25% 
[20, 21]. Other technologies, such as the photobiological techniques, are 
also reported based on the photosynthetic stimulation of some types of 
bacteria to release hydrogen; however, the sluggish release rate of hydro-
gen is considered a major challenge for these technologies [22–24]. Several 
review papers are available that give a detailed overview of the different 
hydrogen generation technologies [14, 25, 26]. Dincer et al. [27] followed 
a comparative assessment approach to evaluate several hydrogen produc-
tion schemes such as natural gas reforming, electrolysis, coal and biomass 
gasification. The assessment criteria included environmental, economic 
and social impacts of these various methods. It was concluded that for the 
case of Turkey, biomass gasification has the best energy efficiency, whereas 
electrolysis methods were found to be less attractive when the hydrogen 
cost is considered.

This chapter aims at reviewing the sustainable and environmentally 
friendly hydrogen production from the steam reforming of oxygenated 
hydrocarbons, with a special focus on methanol, ethanol and glycerol, to 
recapitulate the state of the art in this field, and summarize the research 
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conducted in the past five years (2012 to 2016) in order to get deep insights 
into the promising future for these technologies. The literature pertain-
ing to the catalyst development for the steam reforming process, reaction 
mechanism, reactor modeling and simulations is thoroughly reviewed fol-
lowing a comparative analysis approach whenever possible.

1.2 � Catalyst Development for the 
Steam Reforming Process

The catalyst development is considered the heart of sustainable hydrogen 
production through the steam reforming of oxygenated hydrocarbons. 
The hydrogen production rate, purity, and the selectivity of the reform-
ing process are significantly impacted by the characteristics of the catalyst 
used. This crucial role of the catalyst has been highlighted by the numerous 
research projects conducted over the past years to understand the funda-
mentals of the catalytic process, and to develop highly efficient catalysts that 
can increase the overall conversion, improve hydrogen yield and prolong 
their lifetime [28, 29]. There are certain catalytic traits that need to exist for 
an efficient catalyst to be used in the steam reforming hydrogen produc-
tion. These characteristics are prominently dependent on the nature of the 
oxygenated hydrocarbon feed (i.e., methanol, ethanol or glycerol) as well 
as the feed purity (i.e., crude versus pure) [30]. However, there are general 
requirements for catalytic surfaces such as: (1) the activity for C-C bond 
cleavage to produce CO, CO2, and CH4, (2) steam reforming of intermedi-
ates to produce hydrogen, and (3) the ability to produce free oxygen while 
preventing coke formation as well as C-O bond creation [31, 32]. Based on 
the contribution in the catalytic reforming reaction, there are three distinct 
parts of the catalyst: the active metal, the support, and the metal-support 
interactions. Control of the interaction between the metal and support is 
essential to improve the dispersion of the active sites and consequently 
achieve a better reaction rate and hydrogen yield. It was found that it is 
not only the nature of the individual support and metal sites that affects 
the reforming reaction but rather the interface that plays a vital role as 
reported recently [33]. In the following section we will thoroughly review 
and summarize the work that been performed over the past five years in 
the development of active metals and support materials for the catalytic 
transformation of oxygenated hydrocarbons to hydrogen. As stated earlier, 
this review chapter will focus on methanol, ethanol and glycerol as models 
for the oxygenated hydrocarbon feed; thus, accordingly, this section will be 
discussed in light of these three contexts.
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1.2.1 � Catalyst Development for the Steam 
Reforming of Methanol (SRM)

A very good review paper by Sá et al. [29] has been published which 
summarizes the development on catalysts used for the SRM process 
reported before 2010. In this section we will mainly present the latest work 
conducted after 2010 to provide the most recent perspective in order to 
keep up to date with the rapid progress in the research related to the cata-
lyst development for the SRM process. The most common catalyst for SRM 
is Cu-based catalyst. Tremendous effort has been dedicated to understand-
ing the catalytic reforming over Cu-based catalysts and to prepare efficient 
catalysts with high dispersion, high surface area, and small particle sizes. 
Several approaches are available to accomplish these objectives such as 
investigating novel synthesis methods [34], using promoters [33, 35], uti-
lizing active support materials and the optimization of the operating con-
ditions for higher hydrogen yield and improved catalyst stability [36, 37]. 
Table 1.1 summarizes the recent literature pertaining to the heterogeneous 
catalyst development for SRM process using Cu-based catalysts. Researchers 
in this field have been focusing on improving certain characteristics of the 
Cu-based catalysts such as the particle size, support surface area, and Cu 
dispersion. To achieve these objectives several approaches were used, 
including the optimization of the synthesis method, using support pro-
moting materials, and the utilization of novel non-oxide supports. Cu sup-
ported on ZnO has gained considerable attention in the literature owing to 
its high activity in SRM [38]. The ZnO support provides the required sur-
face area to disperse the Cu metals and prevent its agglomeration, and 
most importantly increase the reducibility of Cu by acting as a withdraw-
ing agent for H atoms [37, 39]. A recent study suggested that increasing the 
surface area of the ZnO support by varying its calcination temperature can 
significantly improve the Cu dispersion, whereas the reducibility of the 
ZnO support could be controlled by changing the Zn precursor gel [39]. 
The selectivity of the Cu/ZnO catalyst prepared using highly polar precur-
sor solution of Zn acetate as opposed to Zn nitrate was proven to be even 
higher than the commercial Cu/ZnO/Al2O3 catalyst [39], which was attrib-
uted to the increase in the catalyst reducibility. The effects of the support 
pretreatments, such as calcination conditions [40] and anodic oxidation 
[41], have also been studied in the literature. Nakajima et al. [42] have also 
proposed a new approach for the fabrication of Cu/ZnO catalyst by prepar-
ing ZnO nanowires on quartz substrates and then using UV laser to grow 
Cu on the surface of ZnO nanowires. The careful control of the ZnO 
nanowires length has shown an improved selectivity toward hydrogen 
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