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Preface

Visual attributes are generally defined as mid-level semantic visual concepts or
properties that are shared across categories, e.g., furry, striped, metallic, young.
They have recently gained significant popularity in computer vision, finding
applications in zero-shot classification (where a machine can recognize a concept
even without having seen it before), image ranking and retrieval, fine-grained
categorization, human–machine interaction, and many others.

This book provides an overview of and summarizes recent advances in machine
learning and computer vision related to visual attributes, while exploring the
intersection with other disciplines such as computational linguistics and human–
machine interaction. It contains a collection of chapters written by world-renowned
scientists, covering theoretical aspects of visual attribute learning as well as prac-
tical computer vision applications.

We would like to express our sincere gratitude to all chapter contributors for their
dedication and high-quality work, as well as to Simon Rees andWayneWheeler from
Springer for their support and help throughout the book’s preparation.

Yorktown Heights, NY, USA Rogerio Schmidt Feris
Vienna, Austria Christoph Lampert
Atlanta, GA, USA Devi Parikh
September 2016
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Chapter 1
Introduction to Visual Attributes

Rogerio Schmidt Feris, Christoph Lampert and Devi Parikh

Visual recognition has significantly advanced in recent years, particularly through the
widespread adoption of deep convolutional neural networks [22, 28] as the main tool
for solving computer vision problems. The recognition accuracy recently obtained in
standard benchmark datasets, such as Imagenet [7], has even surpassed human-level
performance [15].

The fuel to power up these neural network models is training data. In fact, current
methods often require at least thousands of manually annotated training examples
for learning robust classifiers for new categories. While it is easy to obtain a large
number of example images for common categories, such as images of vehicles or
dogs, it is not straightforward to obtain annotated training sets for other infrequent
categories, such as a particular vehicle model or a specific dog breed. There are tens
of thousands of basic categories in the world (and significantly more subordinate
categories) [3]. For many of them, only a few or no examples at all are available.

Zero-data or zero-shot classification refers to the problem of recognizing cate-
gories for which no training examples are available [26, 30]. This problem happens
in many practical settings. As an example, for the task of predicting concrete nouns
from neural imaging data [30], many nouns may not have corresponding neural
image examples because of the costly label acquisition process. In the visual surveil-
lance domain, while conducting a criminal investigation, the police may have only

R.S. Feris (B)
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2 R.S. Feris et al.

eyewitness descriptions available for searching a targeted suspect, instead of exam-
ple images [13, 40]. Many fine-grained visual categorization tasks have classes for
which only a few or no training images exist. For instance, the ImageNet dataset has
30 mushroom synsets, each with 1000 images, whereas there are more than ten thou-
sand mushroom species found in nature. The zero-shot classification problem is also
common in other fields. In large vocabulary speech recognition systems, it is infea-
sible to acquire training samples for each word. Recommender systems face issues
when new apps are released without any user ratings (also known as the cold-start
problem [35]).

Visual attributes, which are generally defined asmid-level semantic properties that
are shared across categories (e.g., furry, yellow, four-legged), provide an effective
way of solving the zero-shot classification problem. As initially demonstrated by
Lampert et al. [25, 26], a novel unseen category with an associated description
based on semantic attributes (either provided by experts or mined from language
sources, such asWikipedia [33, 34]) can be recognized by leveraging visual attribute
classifiers, which can be learned using existing training data from known categories.
This process is aligned with human capabilities of identifying objects only based on
descriptions. For example, when given a sentence like “large gray animals with long
trunks,” we can reliably identify elephants [26]. Currently, the highest-performing
methods for zero-shot learning rely on visual attributes, often in connectionwith other
forms of semantic embedding such as distributional word vector representations [1,
2, 14, 33].

Visual attributes are both semantic (human-understandable) and visual (machine-
detectable). In addition to zero-shot learning, they have proven effective in various
other applications. As a communication channel between humans and machines,
attributes have been used for interactive recognition of fine-grained categories [4],
active learning [21], and image search with humans in the loop [20]. Attributes
discretize a high dimensional feature space into a simple and readily interpretable
representation that can be used to explain machine decisions to humans [16] and
predict user annoyance [5]. Conversely, humans can provide rationales to machines
as a stronger form of supervision through visual attributes [10]. Along this direc-
tion, attributes can serve as a form of privileged information [36] for improving
recognition, especially when only a few training examples are available.

Another area inwhich attributes have recently played amajor role is visual analysis
of people. In the visual surveillance domain, state-of-the-art person reidentification
systems [27, 37, 39] benefit from human attributes as features for improving match-
ing of people across cameras. The extraction of face and clothing attributes enable
search for suspects or missing people based on their physical description [13, 40]. In
e-commerce applications, attributes are very effective in improving clothing retrieval
[17] and fashion recommendation [29]. It has also been shown that facial attribute
prediction is helpful as an auxiliary task for improving face detection [42] and face
alignment [43]. Methods for image ranking and retrieval also benefit from attributes
as a compact and semantic image representation [11, 23, 38].

Other applications of visual attributes include describing unfamiliar objects [12],
scene analysis [32], material classification [6], and image virality prediction [8].
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Beyond semantics, attributes have been used for understanding and predicting the
memorability and aesthetics of photographs [9, 18, 19]. Finally, attributes have been
recently used for image editing (e.g., allowing users to adjust the attributes of a scene
to be “snowy” or “sunset”) [24] and for conditional image generation in the context
of generative adversarial networks [41].

This book’s goal is to summarize the main ideas related to visual attributes that
were proposed in the past few years, and to cover recent research efforts related to
this emerging area in an accessible manner to a wider research community. Next, we
provide an overview of the chapters of the book, which comprise both theoretical
aspects of attribute learning and practical applications.

1.1 Overview of the Chapters

Part I: Attribute-Based Recognition

The first part of the book covers attribute-basedmethods for recognition of unseen
classes for which training examples are unavailable (i.e., zero-shot classification),
recognition of seen classes, where attributes are used as privileged information during
the training stage, and methods for multitask attribute learning.

Chapter 2, by Bernardino Romera-Paredes and Philip H.S. Torr, introduces the
problem of zero-shot learning and proposes a general framework that models the
relationships between features, attributes, and classes, so the knowledge learned at
the training stage can be transferred to the inference stage. The method is easily
implemented: one line of code for training and another for inference; yet, it achieves
impressive results on standard benchmark datasets.

In Chap.3, Viktoriia Sharmanska and Novi Quadrianto consider the problem of
visual recognition of categories when their attributes are used as privileged infor-
mation during training time. In particular, they address whether attributes are still
useful privileged data when modern deep convolutional features are used for visual
classification. Their analysis shows that the answer to this question depends on the
classification task’s complexity.

In Chap.4, Chao-Yeh Chen, Dinesh Jayaraman, Fei Sha, and Kristen Grauman
address the problem of multitask attribute learning, exploring when and to what
extent sharing is useful for attribute learning. They introduce the idea of selective
sharing during multitask learning of attributes, using semantic knowledge to decide
what to share and what not to share during learning.

Part II: Relative Attributes and Their Application to Image Search

The second part of the book introduces the concept of relative attributes [31],
which consists of measuring the relative strength of properties (for example, “bears
are furrier than giraffes”) instead of simply determining whether they are present

http://dx.doi.org/10.1007/978-3-319-50077-5_2
http://dx.doi.org/10.1007/978-3-319-50077-5_3
http://dx.doi.org/10.1007/978-3-319-50077-5_4
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or not, and demonstrates the effectiveness of modeling relative attributes in image
search applications.

In Chap.5, AdrianaKovashka andKristenGrauman show how semantic attributes
can be effectively used for interactive image search with user feedback based on rela-
tive attribute comparisons. They present a system called “WhittleSearch,” which can
answer queries such as “showme shoes like these, butmore formal.” This chapter also
covers techniques for actively selecting images for feedback and adapting attribute
models for personalized user queries.

Chapter 6, by Aron Yu and Kristen Grauman, addresses the problem of fine-
grained visual comparisons with attributes, which is valuable for sophisticated image
search systems that may need to distinguish subtle properties between highly similar
images. They develop computational models based on local learning for fine-grained
visual comparisons, where a predictive model is trained on the fly using only the data
most relevant to a given input. They also address the problem of determining when
an image pair is indistinguishable in terms of a given attribute.

In Chap.7, Fanyi Xiao and Yong Jae Lee introduce a weakly supervised method
for automatically discovering the spatial extent of relative attributes in images. This
is achieved by mining a set of local, transitive connections (“visual chains”) that
establish correspondences between the same object parts across images. They show
that the proposed localized approach better models relative attributes than baselines
that either use global appearance features or stronger supervision.

Part III: Describing People Based on Attributes

Automatically describing people based on their fine-grained semantic attributes is
important formany application domains, such as visual surveillance and e-commerce.
The third part of the book covers state-of-the-art methods for estimation of human
attributes and their use in different applications.

Chapter 8, by Chen Change Loy, Ping Luo, and Chen Huang, presents recent
progress and cutting-edge methods based on deep learning for solving problems
in estimating facial attributes such as gender, age, presence of facial hair, eyewear,
hairstyle, and others. They cover approaches for handling class imbalance in attribute
prediction, and demonstrate the use of facial attribute classification as an auxiliary
task for improving face detection and face alignment.

In Chap.9, Si Liu, Lisa Brown, Qiang Chen, Junshi Huang, Luoqi Liu, and
Shuicheng Yan introduce methods that leverage facial and clothing attributes as a
mid-level representation for applications related to fashion. In particular, they show
that modeling attributes is crucial for fashion recommendation systems. In addition,
they show that attributes play a major role in a system for clothing retrieval from
online shopping catalogs.

Part IV: Defining a Vocabulary of Attributes

After covering multiple uses of visual attributes, as described earlier, we address
the problem of discovering them, i.e., how to define a vocabulary of attributes.

http://dx.doi.org/10.1007/978-3-319-50077-5_5
http://dx.doi.org/10.1007/978-3-319-50077-5_6
http://dx.doi.org/10.1007/978-3-319-50077-5_7
http://dx.doi.org/10.1007/978-3-319-50077-5_8
http://dx.doi.org/10.1007/978-3-319-50077-5_9
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In Chap.10, Subhransu Maji surveys recent methods and defines a taxonomy
of techniques for discovering a vocabulary of parts and attributes. The approaches
discussed in this survey consider a vocabulary of attributes defined by experts and
based on discovery methods, such as non-semantic embeddings, text mining, simi-
larity comparisons, and others.

In Chap.11, Genevieve Patterson and James Hays use crowdsourcing to generate
a vocabulary of discriminative scene attributes related to affordances, materials, and
spatial layout. After the attributes are discovered, they annotate more than ten thou-
sand images with individual attribute labels, and show that attribute models derived
from this data serve as an effective intermediate representation for zero-shot learning
and image retrieval tasks.

Part V: Attributes and Language

We conclude our volume with a forward-looking topic: the connection of visual
attributes and natural language.

In Chap.12, Marcus Rohrbach discusses using visual attributes as semantic units
between natural language and visual recognition. In particular, he covers methods for
mining attributes from language resources, generating sentences from images and
video, grounding natural language in visual content, and visual question answering.

InChap.13,CarinaSilberer states that distributionalmodels ofwordmeaninghave
been criticized as “disembodied” in that they are not grounded in perception, and
show that visual attributes predicted from images can be used as a way of physically
grounding word meaning. Silberer introduces a new large-scale dataset of images
annotated with visual attributes and a neural network-based model, which learns
higher-level meaning representations by mapping words and images, represented by
attributes, into a common embedding space.
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Chapter 2
An Embarrassingly Simple Approach
to Zero-Shot Learning

Bernardino Romera-Paredes and Philip H. S. Torr

Abstract Zero-shot learning concerns learning how to recognise new classes from
just a description of them. Many sophisticated approaches have been proposed to
address the challenges this problem comprises. Herewe describe a zero-shot learning
approach that can be implemented in just one line of code, yet it is able to outperform
state-of-the-art approaches on standard datasets. The approach is based on a more
general framework which models the relationships between features, attributes, and
classes as a network with two linear layers, where the weights of the top layer are
not learned but are given by the environment. We further provide a learning bound
on the generalisation error of this kind of approaches, by casting them as domain
adaptation methods. In experiments carried out on three standard real datasets, we
found that our approach is able to perform significantly better than the state of the
art on all of them.

2.1 Introduction

Zero-shot learning (ZSL) is a relatively recent machine learning paradigm that was
introduced in the works [21, 28], and quoting the latter, it aims to tackle the following
question:

Given a semantic encoding of a large set of concept classes, can we build a classifier to
recognise classes that were omitted from the training set?

That is, ZSL consists in recognising new categories of instances without training
examples, by providing a high-level description of the new categories that relate
them to categories previously learned by the machine. This can be done by means of

B. Romera-Paredes (B) · P.H.S. Torr
Department of Engineering Science, University of Oxford, Parks Road,
Oxford OX1 3PJ, UK
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learning an intermediate encoding describing each class, referred to as attributes. In
words of [1]:

Attributes correspond to high-level properties of the objects which are shared across multiple
classes, which can be detected by machines and which can be understood by humans.

One recurrent example that we mention in this chapter is the use of attributes such
as white, strong, furry, and quadrupedal, to describe and learn classes of animals.

Zero-shot learning has attracted considerable attention due to both its wide
applicability to many real- world situations and the singular challenges it presents.
An example of ZSL happens when dealing with an ever growing set of classes, such
as detecting new species of living beings, using attributes such as the ones men-
tioned in the previous example. Another scenario occurs when the granularity of the
description of the categories to be distinguished makes it infeasible to obtain training
instances for each of them, e.g. when a user wants to recognise a particular type of
shoe (we refer to Chap. 9 for more on this topic). The main challenge ZSL poses is to
design a model able to exploit the relations between features, attributes, and classes,
so that the knowledge learned at the training stage can be transferred to the inference
stage, in a similar way as human beings are able to understand a new concept, if
it is described as a combination of previously known attributes or concepts [27].
Hereafter, we use the term signature to refer to this attribute description of a class.

Zero-shot learning is inherently a two-stage process: training and inference. In
the training stage, knowledge about the attributes is captured, and in the inference
stage this knowledge is used to categorise instances among a previously unseen
set of classes. Many efforts have been made to improve the training stage [10, 15,
17], whereas the inference stage has received little attention [16]. For example many
approaches blindly assume that all attributes convey the same amount of information,
and can be predicted with the same accuracy, thus, they are evenly utilised in the
inference rule. However these assumptions rarely hold true in real world cases.

We study a framework that is able to integrate both stages, overcoming the need
to make strong and unrealistic assumptions, as the ones previously described. This
framework, introduced in [1], is based on modelling the relationship between fea-
tures, attributes, and classes as a (linear) model composed of two layers. The first
layer contains the weights that describe the relationship between the features and the
attributes, and is learned at the training stage. The second layer models the relation-
ship between the attributes and the classes and is fixed using the prescribed attribute
signatures of the classes. Given that the seen classes and the unseen classes are
different, this second layer is interchangeable.

The main contributions of this work are:

• Given the framework in [1], we derive a principled choice of the regularizer, which
has three nice properties:

1. It performs comparably or better than the state of the art.
2. It is efficient both at the training and at the inference stages.
3. It is extremely easy to implement: one line of code for training and another one

for inference (without calling any external functions).

http://dx.doi.org/10.1007/978-3-319-50077-5_9
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• We provide a bound on the generalisation error of the approaches comprised in
this framework. This is done by bridging the gap between zero-shot learning and
domain adaptation, and making use of previous results in the latter [4, 5].

The remainder of the chapter is organised as follows. In Sect. 2.2 we briefly review
methods proposed to deal with zero-shot learning. In Sect. 2.3 we describe the above
ZSL framework, and present our method. In Sect. 2.4 we analyse its learning capa-
bilities. In Sect. 2.5 we report the results of our experiments on one synthetic and
three standard real datasets. Finally in Sect. 2.6 we discuss the main contributions of
this work and propose several research lines that can be explored.

2.2 Related Work

Zero-shot learning relies on learning how to recognise several properties or attributes
from objects, so that these learned attributes can be harnessed when used in the
description of new, unseen classes. Indeed, it is attributes learning that drives the
possibility of learning unseen classes based only on their description [27]. Within
the context of machine learning, an antecedent of the notion of attribute learning can
be found in [9] in the form of binary descriptors. The aim was using these binary
descriptors as error-correcting codes, although these did not convey any semantic
meaning. Recently, there has been an increasing interest in attributes learning, par-
tially due to the availability of data containing tags or meta-information. This has
proved to be particularly useful for images [10, 11, 21], as well as videos [13, 24].

Many papers focus on attributes learning, namely the training stage in zero-shot
learningmethods, putting special emphasis on the need to disentangle the correlations
between attributes at the training stage, because these properties may not be present
in the target data [17]. For example in [10] the authors focus on the feature extraction
process with the aim of avoiding confusion in the learning process of attributes that
often appear together in the training set instances.

With regard to the inference stage inwhich the predicted attributes are combined to
infer a class, many approaches are variants of 1-nearest neighbour, or probabilistic
frameworks. Approaches that resemble 1-nearest neighbour consist in looking in
the attribute space for the closest unseen class signature to the predicted attribute
signature of the input instance. It is used in [10], and in [28] the authors study risk
bounds of this approach when using the Hamming distances between the predicted
signature and the signatures of the unseen classes.Whereas 1-nearest neighbour is an
intuitive way for inferring classes from the attributes, it presents several drawbacks.
Namely, it treats equally all dimensions of the attribute space, which may be sub-
optimal, as some attributes aremore important than others for discriminating between
classes, and metrics such as Hamming distance ignore quantitative information in
the prediction of the attributes.
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In [21, 22] the authors propose a two-stage probabilistic framework in which
the predictions obtained in the first stage can be combined to determine the most
likely unseen class. Within this framework two approaches are proposed: directed
attribute prediction (DAP), and indirect attribute prediction (IAP). In DAP a proba-
bilistic classifier (e.g. logistic regression model) is learned at the training stage for
each attribute. At the inference stage, the previous estimators are used to infer among
the unseen classes provided their attributes signatures. In IAP one probabilistic clas-
sifier is learned for each seen class, whereas at the inference stage the predictions
are combined accounting for the signatures of both seen and unseen classes. The
DAP approach has been widely used by many other methods. In [35] the authors
extend DAP by weighting the importance of each attribute, based on its frequency of
appearance. These probabilistic approaches bring a principled way of combining the
attribute predictions of a new instance in order to infer its class. However, in addition
to being unable to estimate the reliability of the predicted attributes, they introduce
a set of independence assumptions that hardly ever hold in real world, for example,
when describing animals the attributes “terrestrial” and “farm” are dependent, but
are treated as independent in these approaches.

Very recently, the authors of [16] proposed an approach that acknowledges uncer-
tainty in the prediction of attributes, havingmechanisms to deal with it. The approach
is based on random forests that classify attribute signatures into the unseen classes,
using a validation partition from the training set. The resultant model empirically
proves to be superior to previous inferencemethods, such asDAP, and it obtains state-
of-the-art results in the benchmark datasets. One of the limitations of this model is
the need to have the attribute signatures of the unseen classes at the training stage.
In other words, the model learned at the training stage is tailored to work with a
predefined set of unseen classes.

The approach we describe in Sect. 2.3 bypasses the limitations of these methods
by expressing a model based on an optimisation problem which relates features,
attributes and classes. There are some works which follow a similar strategy. A
relevant approach is the one described in [1], where the authors propose a model that
implicitly learns the instances and the attributes embeddings onto a common space
where the compatibility between any pair of them can bemeasured. The approach we
describe here is based on the same principle, however we use a different loss function
and regularizer which not only makes the whole process simpler and efficient, but
also leads tomuch better results. Another related approach is proposed in [14], where
the authors use the information regarding the correlations between attributes in both
training and test instances. The main differences are that they focus on attribute
prediction, and they employ a max-margin formulation that leads to a more complex
approach. These approaches [1, 14], as well as the one we propose, can be seen as
particular instances of the general framework described in [37], which unifies a wide
range of multitask learning and multi-domain learning methods.

Other approaches consider the attributes as latent variables to be learned. For
example in [36], an explicit feature map is designed to model the relationships
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between features, attributes and classes. Other approaches, such as [24, 26], con-
sider different schemes where attributes representations are to be learned.

The approach we describe is grounded on the machine learning areas of transfer
learning and domain adaptation. The term transfer learning encompasses several
machine learning problems, and has received several names, such as learning to
learn [23] or inductive transfer [7, 31, 33]. Here, we refer to transfer learning in
the lifelong learning sense, that is, the aim is to extract knowledge from a set of
source tasks, so that it can be applied to learn future tasks more efficiently. Zero-shot
learning problems share the necessity to extrapolate the knowledge gained previously
to tackle a new learning scenario. The main difference is that in transfer learning the
information about the new tasks is given as a set of labelled instances, whereas
in zero-shot learning this information takes the form of descriptions of the unseen
classes. An extensive review of transfer learning methods can be found in [29].

The aim of domain adaptation is to learn a function from data in one domain,
so that it can be successfully applied to data from a different domain [4, 8, 19]. It
resembles transfer learning but there are important differences to note. In transfer
learning the marginal input distribution (domain) in both source and target tasks is
supposed to be the same, whereas each task comprises a different objective predic-
tive function. For example, given a set of journal documents sampled from a fixed
marginal distribution, a source task may consist in classifying documents between
different topics, and the target task could be about classifying each document in terms
of its author. Domain adaptation makes the reverse assumption, that is, the objective
predictive function is the same but the marginal distributions for source and target
tasks are different. Following the previous example, nowwe have a common function
to learn: classifying documents in terms of different topics. However the source and
target tasks receive documents from two different journals, that is, from two differ-
ent marginal distributions. The link between our approach and domain adaptation
becomes clear in Sect. 2.4.1.

2.3 Embarrassingly Simple ZSL

In order to explain our approach, we start by describing a standard linear supervised
learning method, and then extend that model to tackle the ZSL scenario. In the
following, we adopt the convention of using lower-case letters to denote scalars,
lower-cases bold letters to denote vectors, and higher-case bold letters to denote
matrices.

Supervised linear model

Let us denote by X ∈ R
d×m the instances available at the training stage, where d is

the dimensionality of the data, and m is the number of instances. Similarly we use
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Y ∈ {0, 1}m×z to denote the ground truth labels of each training instance belonging
to any of the z classes. In most cases, each row of Y contains only one positive
entry indicating the class it belongs to. Nevertheless, the present framework allows
an instance to belong to several classes simultaneously.

If wewere interested in learning a linear predictor for z classes, wewould optimise
the following problem:

minimise
W∈Rd×z

L
(
X�W,Y

) + Ω (W) , (2.1)

where W contains the parameters to be learned, L is a convex loss function, and Ω

a convex regularizer. Problem (2.1) encompasses several approaches, depending on
the choice of L and Ω . For example if L is the sum of hinge losses, and Ω is the
Frobenius norm, this would lead to a standard support vector machine (SVM), but
one can consider other loss functions such as logistic loss, and other regularizers,
such as the trace norm, leading to multitask learning methods [2, 32].

ZSL model

Quoting [21], the formal definition of the ZSL problem can be described as follows:

Let (x1, y1), . . . , (xm , ym) ⊂ X × Y be training samples where X is an arbitrary feature
space and Y consists of z discrete classes. The task is to learn a classifier f : X −→ Y ′ for
a label set Y ′ of z′ classes, that is disjoint from Y .

In order to accomplish that, we are given the attributes of all classes as additional
information. We assume that each class is described by a known signature composed
of a attributes. We can represent the training signatures in a matrix S ∈ [0, 1]a×z .
This matrix may contain boolean entries, when the description of classes is defined
as a list of attributes, or more generally, it may contain for each attribute any value in
[0, 1] providing a soft link between attributes and classes. Together matrices Y and
S provide enough information so that one can obtain the ground truth attributes for
each instance.

In problem (2.1) the attributes are not used, and therefore, there is no way to
perform knowledge transfer from this set of classes to new classes. One can introduce
the given information about the attributes, S, by introducing a mapping from the
attributes to the feature space, V, such that W = VS, where V ∈ R

d×a . That leads
to the following problem, similar to the one proposed in [1]:

minimise
V∈Rd×a

L
(
X�VS,Y

) + Ω (VS) . (2.2)

At the inference stage, given the features of an instance, x ∈ R
d , wewish to determine

to which class it belongs to, among a new set of z′ unseen classes, Y ′, disjoint from
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the set of seen classes, Y . To do so, we are provided with their attributes signatures,
S′ ∈ [0, 1]a×z′

. The prediction is then given by

argmax
i∈[1,...,z′]

x�Vs′i , (2.3)

where s′i ∈ [0, 1]a denotes the i-th column of matrix S′.
One interpretation of thismodel is provided in [1]. There, each class is represented

in the attribute space by means of its signature. Thus, the learning weights, V, map
any input instance, x, into this attribute space. Given that both classes and instances
are mapped into a common space, one can estimate the compatibility between them.
Thus, at the inference stage, themodel predicts the class inY ′ that is most compatible
with the input instance, by making use of (2.3). Note that if all given signatures are
normalised,

∥∥s′1
∥∥
2 = ∥∥s′2

∥∥
2 = . . .

∥∥s′z′
∥∥
2, then the notion of maximum compatibility

among the signatures corresponds to finding the minimal Euclidean distance with
respect to V�x in the attribute space.

It is important to note the advantage of this model with respect to typical ZSL
approaches reviewed in Sect. 2.2. Recall that these approaches were based on first
estimating the attributes of a given instance, and then finding the class that best
matches the predicted attributes, using some probabilistic or distance measure. In
this way, all attributes are assumed to convey the same amount of information, an
assumption that is likely detrimental, as often some attributes have more discrimina-
tive power than others. On the other hand, the approach in (2.2) is able to learn and
exploit the relative importance of each of the attributes for discriminating between
classes. For example, if the i-th attribute has less discriminative powers than the
others, then the i-th column of the learned weights V should have a smaller norm
than the others, so that it has a smaller contribution in the classification decision.

The method above makes the implicit assumption that for each attribute, its reli-
ability to discriminate between seen classes is similar to its reliability to distinguish
between unseen classes. In order to explain why this assumption is reasonable, let
us recall the example of animals classification, and let us assume that we are given
the attributes it has teeth, and is white. The former attribute may be more difficult
to recognise than the latter, given that some instances of animals may not show the
mouth, whereas the colour of an animal is easy to infer. Hence the importance of the
attribute it has teeth for the final classification decision should be low, independently
of the classes at hand, given that it is more difficult to learn a reliable predictor for
that attribute. This assumption is relevant whenever the reliability on estimating the
attributes remain constant, regardless of the classes considered. The key point of
this framework is that it does not try to minimise explicitly the classification error
of the attributes, which are an intermediate layer that we are not directly interested
in. Instead, it minimises the multiclass error of the final classes, by both learning
implicitly how to recognise attributes, and also pondering the importance of each of
them in the decision of the class.
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There are several points to note from problem (2.2). First, if the regularizer Ω

is of the form Ω(B) = Ψ
(
B�B

)
for an appropriate choice of the function Ψ , then

by using the representer theorem [3], this leads to a kernel version of the problem,
where only inner products between instances are used:

minimise
A∈Rm×a

L (KAS,Y) + Ψ
(
S�A�KAS

)
, (2.4)

where K ∈ R
m×m is the Gram matrix, ki, j = 〈

φ(xi ), φ(x j )
〉
, being φ(x) the repre-

sentation of x in a given feature space. Secondly, problem (2.2) and its equivalent
problem (2.4) are convex, thus its globally optimal solution can be found.

A scheme of this framework is shown in Fig. 2.1. This framework is utilised in
its linear form (Eq.2.2) in [1], for a particular choice of the loss function (based on
the hinge loss function), and the regularizer (based on the Frobenius norm of the
learning weights). In the following, we describe and justify a different choice for
those elements, which leads to a more efficient and effective training model.

2.3.1 Regularisation and Loss Function Choices

Wenow come to the first contribution of this chapter. The framework described above
comprises several approaches, which vary depending on their regularizers and loss
functions. Herewe design a regularizerwhich accomplishes the following desiderata:

• Given any (training) attribute signature, si ∈ [0, 1]a for some i ∈ [1, . . . , z], its
mapping to the d-dimensional feature space is given by Vsi ∈ R

d . This repre-
sentation must be controlled so that ideally the mapping of all signatures on the
feature space have a similar Euclidean norm. This allows fair comparisons between
signatures, and prevents problems that stem from highly unbalanced training sets.

• Conversely, the mapping of each training instance xi , for i ∈ [1, . . . ,m], into the
a-dimensional attribute space is given by V�xi ∈ R

a . Similarly to the previous
point, it would be interesting to bound the Euclidean norm of that term. The aim
here is to map all instances to a common region in the attribute space. In this
way, we can encourage the generalisation of the model to test instances, if their
representation into the attribute space fall into the same region where the training
instances lie.

A regularizer that accomplishes the previous points can be written as follows:

Ω (V;S,X) = γ ‖VS‖2Fro + λ
∥∥X�V

∥∥2

Fro + β ‖V‖2Fro , (2.5)

where the scalars γ, λ, β are the hyper-parameters of this regularizer, and ‖·‖Fro
denotes the Frobenius norm. The first two terms account for the above points, and
we have added one further term consisting in a standard weight decay penalising the
Frobenius norm of the matrix to be learned.
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Fig. 2.1 Summary of the framework described in Sect. 2.3. At the training stage, we use the matrix
of signatures S together with the training instances to learn the matrixV (in grey) which maps from
the feature space to the attribute space. At the inference stage, we use that matrix V, together with
the signatures of the unseen classes, S′, to obtain the final linear modelW′
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Having made these choices, we note that if:

• L (P,Y) = ‖P − Y‖2Fro.
• β = γ λ

then the solution to problem (2.2) can be expressed in closed form:

V = (
XX� + γ I

)−1
XYS� (

SS� + λI
)−1

. (2.6)

This, and the corresponding kernel version that can be derived from (2.4), are the
one-line-of-code solutions we mentioned in the introduction.

2.4 Risk Bounds

In this section we provide some theoretical guarantees about our approach, bounding
the expected error on the inference stage with respect to the training error. In order
to do so, we first transform our problem into a domain adaptation one.

2.4.1 Simple ZSL as a Domain Adaptation Problem

Let us assume that problem (2.2) can be expressed in the following way:

minimise
V∈Rd×a

m∑

i=1

z∑

t=1

�
(
x�
i Vs

�
t , yt,i

) + Ω (V) , (2.7)

where � (·, ·) : R × {−1, 1} −→ [0, 1]. That implies that one instance may be clas-
sified to belong to zero, one, or more than one classes. Such an assumption may be
realistic in some cases, for example when there are some instances in the training set
that do not belong to any seen class. Then, problem (2.7) can be expressed in a more
conventional form:

minimise
v∈Rda

m∑

i=1

T∑

t=1

�
(
x̃�
t,iv, yt,i

) + Ω (v) , (2.8)

where
x̃t,i = vec

(
xi s�t

) ∈ R
da . (2.9)

Note that at the inference time, given a new instance, x, the predicted confi-
dence of it belonging to an unseen class t with attribute signature st , is given by
x̃�
t v =v�vec

(
xs�t

)
. Therefore, even if the original test instances x were sampled

from the same distribution as the training instances, the transformation of them
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using attributes signatures makes the training and test instances come from different
distributions. Note also that in the current settings, we are learning a unique com-
mon function across domains. As a consequence, we are facing a domain adaptation
problem.

2.4.2 Risk Bounds for Domain Adaptation

Domain adaptation has been analysed from a theoretical viewpoint in several works
[4, 5]. Here we apply these developments to our problem.

In a domain adaptation problem we assume that the training instances are sam-
pled from a source distribution D, and the test instances are sampled from a target
distributionD′. Following the definition of [4], a function h is said to be a predictor if
it maps from the feature space to {0, 1}, and f is the ground truth labelling function
for both domains, mapping from the feature space to [0, 1]. Then the expected error
of h with respect to the source distribution is defined as:

ε(h) = Ex∼D [| f (x) − h(x)|] ,

and the expected error of h with respect to the target distribution, ε′(h), is defined
accordingly.

Theorem 2 in [4] states that given a hypothesis space H of VC-dimension d̄,
and sets U , U ′ of m̄ instances sampled i.i.d. from D and D′, respectively, then with
probability at least 1 − δ, for every h ∈ H:

ε′(h) ≤ ε(h) + 4

√
2d̄

m̄

(
log

2m̄

d̄
+ log

4

δ

)
+ α + 1

2
d̂HΔH

(U ,U ′) , (2.10)

where

• α is an upper-bound of inf
h∈H

[
ε(h) + ε′(h)

]
. In particular if the ground truth function

f is contained inH, then α = 0.
• dH

(D,D′) is known as the A-distance between distributions D and D′ over the
subsets defined inH [20]:

dH
(D,D′) = 2sup

h∈H
|PD(h) − PD′(h)| ,

where PD(h) denotes the probability of any event in h, under the distribution D.
This is equivalent to the expected maximal accuracy achieved by a hypothesis in
H separating the instances generated by the two different distributions D and D′.
In a similar vein, d̂H (US,UT ) is defined as the empirical distance between the
samples U and U ′.
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• HΔH is the symmetric difference hypothesis space ofH and it is defined as:
HΔH = {

h(x) ⊕ h′(x) : h, h′ ∈ H}
, ⊕ being the XOR operator. That is, a

hypothesis g is in HΔH, if for a couple of hypothesis h,h′ in H, g(x) is pos-
itive if and only if h(x) �= h′(x) for all x .

In our caseH is the hypothesis space composed of all linear classifiers, m̄ = mz,
and d̄ = da + 1. Let us assume that both train and test instances are sampled from
the same distribution, C. When we do the transformation specified in Eq. (2.9) using
S and S′ for the training and test instances, we end up having two different distribu-
tions, D, and D′ and we are interested in quantifying the A-distance between them
over our symmetric difference hypothesis space, dHΔH

(D,D′). The assumption
about both train and test instances are sampled from the same distribution (before
the transformation) may not hold true in many cases, however it can be a fair approx-
imation in the standard case where the contribution of the differences of training and
test distributions of the feature spaces is negligible in comparison to the differences
between S and S′ when quantifying the distance between distributions D and D′.

We observe two extreme cases. The first one contemplates the trivial scenario
where S = S′, so that both distributions are similar and thus the distance is 0. In
that case, if α = 0, the bound given in Eq. (2.10) becomes equivalent to the Vapnik–
Chervonenkis bound on a standard classifier. The second case arises when each
attribute signature of the seen classes is orthogonal to each attribute signature of the
unseen classes, that is, for each i ∈ {1 . . . z}, j ∈ {

1 . . . z′},
〈
si , s′ j

〉 = 0.
To make the explanation of the latter case clearer let us denote by x ∈ R

d any
training instance in the original feature space, and similarly let x′ ∈ R

d be any test
instance. Then, by applying equation (2.9) using the training signature si , and test
signature s′ j we have

x̃i = vec
(
xs�i

) ∈ R
da

x̃′
j = vec

(
x′s′�j

)
∈ R

da

Note that because of the orthogonality assumption between training and test sig-
natures the following holds true:

〈
x̃i , x̃′

j

〉 = trace
(
xs�i s

′
jx′�

)
= 0. (2.11)

Equation (2.11) implies that in the new feature space any training instance is
orthogonal to any test instance. Because of that, the following lemmabecomes useful.

Lemma 1 Let us consider H be the hypothesis space composed of all linear clas-
sifiers. Then given two orthogonal sets P , Q, in which the element 0 is not in either
of them, there exists a hypothesis g ∈ HΔH which separates them.

Proof Let us consider any couple of points p ∈ P , q ∈ Q with the only condition
that they are not zero. We define

h(x) = sign
(
(p + q)�x

)
, and

h′(x) = sign
(
(p − q)�x

)
.
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For any point p′ ∈ P , h(p′) = h′(p′), given that by definition p′ and q are orthog-
onal. Similarly, for any point q′ ∈ Q, h(q′) = −h′(q′).

Therefore, for any point in Q, g ∈ HΔH associated to functions h, h′ ∈ H will
be positive, and for any point in P , the same function g will be negative. �

As a consequence of Lemma 1, when the orthogonality assumption holds, the
right-hand side term inEq. (2.10) becomes bigger than 1, so that the bound is vacuous.
One illustrative instance of this case happenswhenS = [B, 0a,c, ], andS′ = [

0a,b,C
]

for some non-zero matrices B ∈ R
a×b, C ∈ R

a×c. In that case, the set of attributes
that describe the seen classes are completely different from the ones describing the
unseen classes, thus no transfer can be done.

All real scenarios lay between the previous cases. One interesting question is to
characterise the value dHΔH

(D,D′) as a function of solely S and S′. We leave this
question open.

2.5 Experiments

In order to assess our approach and the validity of the statements we made, we con-
ducted a set of experiments on one synthetic and three real datasets, which comprise
a standard benchmark of evaluation of zero-shot learning methods.1

2.5.1 Synthetic Experiments

First we used synthetically generated data with the aim of both checking the cor-
rectness of the described method, which we refer to as ESZSL (embarrassingly
simple zero-shot learning), and comparing it with the baseline algorithm DAP on
a controlled set-up. All hyper-parameters required by these methods were tuned by
a validation process. This process is based on leaving out one subset of validation
classes, so that the performance of the model is validated against them. In all cases
the range of values tried for the hyper-parameters was 10b, for b = −6,−5, . . . , 5, 6.
This set of valueswas chosen after performing preliminary experimentswhich empir-
ically showed that the optimal performance for both approaches is found within this
interval.

The data were generated as follows. Initially, we created the signatures for the
classes by sampling each element of S from a Bernoulli distribution with 0.5 mean.
We created the ground truth mapping from the attributes to the features,V+ ∈ R

a×d ,
where we have fixed a = 100 and d = 10, by sampling every element of it from a
Gaussian distribution G(0, 1). The value of d is intentionally low so that there appear
correlations between the attributes, as is usually the case in real data. For each class t ,

1The code can be found at http://romera-paredes.com/zsl.

http://romera-paredes.com/zsl
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Fig. 2.2 Multiclass
accuracy obtained by DAP
[21], and ESZSL
(Sect. 2.3.1), when varying
the number of seen classes,
z. Vertical bars indicate ±1
standard deviation
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we created 50 instances by first generating their representation in the attribute space
by adding Gaussian noise, G(0, 0.1) to the attribute signature St , then we brought
them back onto the original feature space by using V+. Following this process, we
generated a training set composed of z seen classes, and a test and validation set
composed of 100 unseen classes each.

In the first experiment, we evaluated how the number of seen classes affected
the performance of the methods on unseen classes. To do so, we varied the number
of seen classes from 50 to 500 in intervals of 50. According to the results shown
in Fig. 2.2, we can see that ESZSL significantly outperforms DAP in all cases. It is
remarkable that the performance of ESZSL with 100 seen classes is superior to the
performance of DAP with 500 seen classes. We also observe that the performance
of ESZSL plateaus when the number of seen classes is above 200, possibly because
there is no further margin of improvement.

In Sect. 2.3 we argue that the described approach should be robust to attributes
having different discriminative capabilities for characterising the classes. In the sec-
ond experiment, we assess how the approaches perform in the extreme case where
some attributes provide no information at all about the classes at hand. The way we
have implemented this is by first, synthesising a dataset just as described above, and
second, by randomly selecting a set of attributes (without replacement) so that their
information in all signatures is corrupted. In particular let us define byA the set of all
attributes, with cardinality |A| = a. From this setAwe randomly sampleψ mislead-
ing attributes, creating the set Ψ ⊆ A, |Ψ | = ψ . The way each of the inputs of the
attributes in Ψ is corrupted is again by sampling from a Bernoulli distribution with
0.5 mean. In this experiment we have tried different values of ψ in the range of 5–45
attributes (out of 100), in intervals of 5. The results, reported in Fig. 2.3, show that our
method significantly outperforms the baseline. For example we observe that when


