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Preface

Carbon dioxide (CO,) mineralization and utilization is an important technology
wherein CO, is captured and stored for utilization instead of being released into the
atmosphere. CO, mineralization and utilization demonstrated in the waste-to-
resource supply chain can “reduce carbon dependency, promote resource and
energy efficiency, and lessen environmental quality degradation,” thereby reducing
the environmental risks and increasing the economic benefits towards sustainable
development goals. This book provides comprehensive information on CO, min-
eralization and utilization using alkaline wastes via accelerated carbonation tech-
nology from theoretical and practical considerations, presented in 20 chapters.
Engineers, scientists, government officers, and project managers will consider this
book as an essential reference on CO, mineralization and utilization.

In this book, the concept of carbon cycle from the thermodynamic point of view
was first introduced. The principles, applications, and environmental impact
assessment of carbon capture and storage technologies also are illustrated in Part L.
Among the carbon capture and utilization processes, CO, mineralization via
accelerated carbonation technology is especially focused in Part II. Throughout the
carbonation process, huge amounts of CO, and alkaline wastes generated from
industries can be reclaimed and reused. From the theoretical consideration, the
process chemistry, reaction kinetics, mass transfer, and system analysis for accel-
erated carbonation are systematically presented. On the other hand, from the
practical consideration, the analytical methods and the application of accelerated
carbonation are introduced as well. In Part III, it then explores the utilization of
carbonated products as green materials such as supplementary cementitious mate-
rials and high value-added chemicals. Key performance indicators for evaluating
the function and properties of carbonated products are developed. Lastly, an inte-
gral approach for waste treatment and resource recovery is proposed to establish a
waste-to-resource supply chain towards a circular economy system. It discusses the
challenges, barriers, and strategies of integrated air pollution control at industry in
detail, and then illustrates the importance and significance of establishing
waste-to-resource green supply chain. Furthermore, the carbonation system is
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critically assessed and optimized from aspects of engineering, environmental, and
economic analysis.

Reduction in CO, emission in industries and/or power plants should be a
portfolio option. Integrated alkaline waste treatment with CO, mineralization and
utilization is an attractive approach to achieving direct and indirect reduction in
greenhouse gas (GHG) emissions in industries. The accelerated carbonation can not
only stabilize alkaline wastes but also fix CO, in flue gas from industries as a safe
and stable carbonate precipitate. On the other hand, the amount of CO, reduction by
carbonation could be certified as emission reduction credits, in conjunction with the
joint implementation (JI), emission trading scheme (ETS), and clean development
mechanism (CDM) issued by the Kyoto Protocol. Therefore, it suggests that the
establishment of a waste-to-resource supply chain should provide a method of
overcoming the barriers of energy demand, waste management, and GHG emis-
sions to achieve a circular economy system, under which the “win-win” philosophy
demonstrating green economy and healthy environment can be coexisted.

We gratefully acknowledge Prof. Liang-Shih Fan at the Ohio University for his
thoughtful comments and invaluable support during the development of this book.
We also deeply appreciate Prof. Chung-Sung Tan, Prof. Young Ku, Prof. E.-E.
Chang, and Prof. Yi-Hung Chen, who have contributed to this book. Special thanks
go to Dr. Pen-Tai Chiang, Dr. Mengyao Gao, Shelley Yang, and Ming-I Chen for
their hard work and patience. Moreover, we are wholeheartedly grateful to
Dr. Kinjal J. Shah, Andrew Chiang, Teresa Wang, Michael Du, Elena Blair, and
Michael Lin, who reviewed one or more chapters of this book and provided
valuable suggestions and comments. Our sincerest appreciation also goes to all the
laboratory group members, Silu Pei, Tai-Chun Chung, Jeffrey Chen, Chen-Hsiang
Hung, Kuan-Wei Chen, and Tse-Lun Chen for their hard work on developing
carbon mineralization and utilization technologies.

Furthermore, we would like to express our gratitude to Mark Goedkoop, who
kindly granted permission to use their photographs and valuable information in this
book. Over the years, Ministry of Science and Technology (Taiwan), along with
several industrial partners including China Steel Corp., Tung-Ho Steel Enterprise
Corp., Formosa Petrochemical Corp., and Cheng Loong Corp., provided funding in
support of our research grants for the development and deployment of carbon
mineralization and utilization technologies. Much of the results reported in this
book are based on the aforementioned efforts. Our thanks also go to Xiao-Li Pei for
her assistance in the preproduction of this book.

Taipei, Taiwan Pen-Chi Chiang
Shu-Yuan Pan
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Chapter 1
Introduction

Abstract Since the industrial revolution in 1750, human activities have resulted in
a 40% increase in the atmospheric concentration of CO,, thereby leading to rapid
global warming. To mitigate the global warming and climate change caused by
huge anthropogenic CO, emissions, different strategies, action plans, and economic
instruments have been proposed and implemented around the world. In this chapter,
the significance and importance of climate change and global warming are illus-
trated. An overview of several important formal meetings of the United Nations
Framework Convention on Climate Change (UNFCCC) Parties, i.e., Conferences
of the Parties (COP), is provided to reveal key milestones in dealing with global
greenhouse gas emissions. One such method uses accelerated carbonation of
alkaline wastes to capture and utilize CO,, the theoretical and practical consider-
ations of which are presented in 19 Chapters in this book.

1.1 Climate Change and Global Warming: Significance
and Importance

Greenhouse gases (GHGs) are gases in the atmosphere that can absorb and emit
radiation within the thermal infrared range, thereby leading to the greenhouse effect.
Without GHG, the average temperature of Earth’s surface would be approximately
0 °F (=18 °C), rather than present average of 59 °F (15 °C) [1, 2]. Of the gases
affecting the ambient temperature of the Earth, the following are most interesting
because they are known as long-lived greenhouse gases (LLGHGs):

Carbon dioxide (CO,)

Methane (CH,)

Nitrous oxide (N,O)
Chlorofluorocarbons (CFCs)
Hydrochlorofluorocarbons (HCFCs)
Hydrofluorocarbons (HFCs)
Perfluorocarbons (PFCs)

Sulfur hexafluoride (SFg)

© Springer Nature Singapore Pte Ltd. 2017 1
P.-C. Chiang and S.-Y. Pan, Carbon Dioxide Mineralization
and Utilization, DOI 10.1007/978-981-10-3268-4_1



2 1 Introduction

The most abundant GHGs in the atmosphere of the Earth are water vapor (H,0),
CO,, CHy4, N,0, O3, and CFCs. These gases can be discharged into the atmosphere
by natural and anthropogenic sources. However, since the beginning of the
industrial revolution, human activities have produced a 40% increase in the
atmospheric concentration of CO,, from 280 ppm in 1750 to 400 ppm in 2015. The
rapid increase of CO, concentration in the atmosphere has spurred worldwide
concerns of global climate change from government, industrial, and academic
groups. Anthropogenic emissions of CO, mainly come from combustion of
carbon-based fossil fuels (such as coal, oil, and natural gas), along with defor-
estation, soil erosion, and animal agriculture. It is noted that the major anthro-
pogenic GHGs are CO,, CHy, N,O, SF4, HFCs, and PFCs, which are regulated
under the international Kyoto Protocol treaty. The global warming potential
(GWP) depends on both the efficiency of the molecule as a GHG and its atmo-
spheric lifetime. CO, is defined to have a GWP of one over all time period. For
instance, methane has an atmospheric lifetime of 12 + 3 years, resulting in a GWP
value of 72 over a timescale of 20 years [3].

1.1.1 Kyoto Protocol in 1997

The Kyoto Protocol is an international treaty signed in 1997, which extends the
1992 United Nations Framework Convention on Climate Change (UNFCCC). The
Kyoto Protocol was adopted in Kyoto (Japan), and originally aimed to attain, by
2012, a reduction of global GHG emissions at least 5% less than the observed levels
in 1990. A total of six GHGs, including CO,, CH4, N,O, HFCs, PFCs, and SFg,
were regulated in the Kyoto Protocol, which came into effect in 2005. As a result of
the Kyoto Protocol, the European Union (EU) issued a global reduction aim of
GHG levels by 8%. The Protocol defines three flexibility mechanisms to meet the
emission limitation commitment for the Annex I Parties, which include interna-
tional emissions trading (IET), the clean development mechanism (CDM), and joint
implementation (JI). The economic basis for providing this flexibility is that the
marginal cost of reducing emissions differs among countries [4].

To negotiate the Kyoto Protocol for establishing legally binding obligations of
reducing GHG emissions for developed countries, the United Nations Climate
Change Conferences (UNCCC) are held annually in the framework of the
UNFCCC. They serve as the formal meeting of the UNFCCC Parties, i.e.,
Conferences of the Parties (COP), which assess the progress in dealing with climate
change. The first UNCCC (COP 1) was held at Berlin, Germany, in 1995. From
2011, the COP meetings have also been used to negotiate the Paris Agreement, as
part of the Durban platform activities (adopted at COP 17 in 2011), until its con-
clusion in 2015.
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1.1.2 Cancun Agreement (COP 16) in 2010

The 2010 UNFCCC, officially referred as the 16th session of the Conference of the
Parties (COP 16), was held at Cancun, Mexico, in 2010. The agreement includes
voluntary pledges made by 76 countries to control GHG emissions. At the time of
the agreement, these countries were collectively responsible for 85% of annual
global CO, emission. The most significant outcome was the agreement for a “Green
Climate Fund (GCF)” and a “Climate Technology Centre,” adopted by the states’
parties. The GCF aimed to distribute US$100 billion per year by 2020 to assist
poorer countries in financing emission reductions and adapting to climate change. It
also asked rich countries to reduce their GHG emissions as pledged in the
Copenhagen Accord and planed to reduce the emissions for developing countries.
However, at that time, the funding of the GCF was not agreed upon.

1.1.3 Durban Agreement (COP 17) in 2011

COP 17 meeting was held at Durban, South Africa, in 2011. In this meeting, the
implementation of carbon capture and storage (CCS) technologies was regarded as
eligible for clean development mechanism (CDM) projects and activities. However,
the geological storage of CO, demonstrated around the world still faces many
uncertainties and risks, such as accidental leakage of CO,, environmental impacts,
and public acceptance. On the other hand, carbon capture, utilization, and storage
(CCUS) have recently received global attention as a viable option for reducing CO,
emissions from industries and/or power plants [5—8]. In this meeting, the creation of
the GCF was also discussed.

1.1.4 Paris Agreement (COP 21) in 2015

The COP 21 meeting was held at Paris (France) in 2015. Negotiations resulted in
the adoption of the Paris Agreement, which represented a consensus of the repre-
sentatives of the 196 parties, to govern climate change reduction measures starting
from 2020. The agreement will become legally binding only if at least 55 counties,
which together produce at least 55% of the global GHG emissions, ratify the
agreement [9]. The agreement ended the work of the Durban platform which was
established during COP 17. The expected key result of COP 21 was highlighted by
the below statement:

Holding the increase in the global average temperature to well below 2 °C above
pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above
pre-industrial levels, recognizing that this would significantly reduce the risks and impacts
of climate change.
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The agreement also called for “zero net anthropogenic GHG emissions” to be
reached by 2050. Prior to the conference, a total of 146 national climate panels each
publicly presented draft national climate contributions, called intended nationally
determined contributions (INDCs), which was estimated to limit global warming to
2.7 °C by 2100. For instance, the EU suggested the INDC should set a binding
target for at least a 40% domestic reduction in GHG emissions by 2030, compared
to 1990 [10]. It also suggested that the regulated GHGs by EU members should
include CO,, CH4, N,O, HFCs, PFCs, SFg, and NF;.

1.2 Mitigation and Adaptation

The ocean is the major short-term sink in nature because of the imbalance between
CO; concentrations in the ocean and the atmosphere. Although the natural sink is
very important, offering —0.5 °C of temperature reduction following an overshoot
[11], the major application of anthropogenic sinks, such as carbon capture uti-
lization and storage (CCUS) and rapid reforestation, is also required to achieve a
plateau at 2 °C. Without technologies that remove CO, from the atmosphere, the
350 CO, ppm target is out of reach in the twenty-first century [11].

To mitigate rapid global warming and adapt to the climate change caused by huge
anthropogenic CO, emissions, different strategies and tools from various aspects
have been proposed and implemented. Action plans and practical technologies have
been executed to pursue scientific solutions for overcoming the challenges of global
warming [12, 13]. According to the international energy agency (IEA) report, the
strategies for reducing CO, emissions include the following: (1) improving overall
energy efficiency, (2) implementing carbon capture and storage (CCS) technologies,
and (3) utilizing renewable energy and material recycling [14]. Among the above
strategies, the CCS technologies could reduce CO, emissions by 9-50% in industrial
sectors, compared to the present level, by 2050 and could mitigate camulative global
climate change by 15-55% in 2100 [15].

Putting a price on carbon emission can also help shift the burden of the envi-
ronmental damage back to those who can reduce it. There are two types of carbon
pricing instruments that can be utilized to accelerate the CO, emission reduction:
(1) emissions trading systems (ETS) and (2) carbon taxes. The choice of carbon
pricing tools depends on national and economic circumstances. The ETS is
sometimes referred to as a cap-and-trade system. It caps the total level of green-
house gas emissions and allows industries with low emissions to sell their extra
allowances to larger emitters. By creating a platform of supply and demand for
emission allowances, an ETS can effectively establish a market price for GHG
emissions, ensuring that the emitters will be kept within their pre-allocated carbon
budget. Conversely, a carbon tax directly sets a price on carbon by defining a tax
rate on the GHG emissions (or the carbon content) of fossil fuels. It is different from
an ETS because the emission reduction outcome of a carbon tax is not predefined
but the carbon price is.
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1.3 Structure and Contents of This Book

This book provides comprehensive information on CO, capture and utilization
using alkaline wastes via accelerated carbonation technology from theoretical and
practical considerations, presented in the following 19 chapters. This book should
be beneficial to readers who take scientific and practical interests in the current and
future accelerated carbonation technology for CO, mineralization and utilization.
Engineers, scientists, government officers, and project managers will find this book
an essential reference on CO, mineralization and utilization.

In Part I, a broad review on challenges and opportunities for global warming
issues is provided, including post-combustion carbon capture, storage and utiliza-
tion (Chap. 2), CO, mineralization and utilization via accelerated carbonation
(Chap. 3), and environmental impact assessment (EIA) and carbon capture and
storage (CCS) guidance (Chap. 4).

In Part II, the integrated waste treatment via ex situ accelerated carbonation is
systematically presented, in terms of theories and principles (Chap. 5), analytical
methods for carbonation material (Chap. 6), mechanisms and modelling (Chap. 7),
practices and applications (Chap. 8). Chapter 9 covers the system analysis
methodology, including response surface methodology (RSM), life cycle assess-
ment (LCA), cost-benefit analysis (CBA), and 3E (Engineering, Environmental,
and Economic) triangle model.

In Part III, various types of feedstock for CO, mineralization are illustrated,
including natural silicate and carbonate minerals (Chap. 10), iron and steel slags
(Chap. 11), fly ash, bottom ash, and dust (Chap. 12) and paper industry, con-
struction, and mining process wastes (Chap. 13).

In Part IV, the valorization of carbonization product as green materials is dis-
cussed, including utilization of carbonation product as green materials (Chap. 14),
supplementary cementitious materials (SCMs) in cement mortar (Chap. 15), and
aggregates and other high-value products (Chap. 16).

In Part V, the concepts of integral approach for waste treatment and resource
recovery are illustrated. First, the carbon capture with flue gas purification (e.g.,
SO,, NO,, and particulate matter) via process integration and intensification is
provided in Chap. 17. After that, the importance and significance of
waste-to-resource (WTR) supply chain are discussed, in terms of barriers, chal-
lenges, strategies, and action plans (Chap. 18). Following that the principles of
system optimization, such as (1) mathematical programming approach, (2) graphi-
cal presentation for optimization, and (3) comprehensive performance evaluation,
are introduced to demonstrate the best available technology (Chap. 19). Moreover,
several demonstration and action plans around the world are reviewed. Finally, the
prospective and perspective on the strategies toward zero waste for sustainability
are provided in Chap. 20.


http://dx.doi.org/10.1007/978-981-10-3268-4_2
http://dx.doi.org/10.1007/978-981-10-3268-4_3
http://dx.doi.org/10.1007/978-981-10-3268-4_4
http://dx.doi.org/10.1007/978-981-10-3268-4_5
http://dx.doi.org/10.1007/978-981-10-3268-4_6
http://dx.doi.org/10.1007/978-981-10-3268-4_7
http://dx.doi.org/10.1007/978-981-10-3268-4_8
http://dx.doi.org/10.1007/978-981-10-3268-4_9
http://dx.doi.org/10.1007/978-981-10-3268-4_10
http://dx.doi.org/10.1007/978-981-10-3268-4_11
http://dx.doi.org/10.1007/978-981-10-3268-4_12
http://dx.doi.org/10.1007/978-981-10-3268-4_13
http://dx.doi.org/10.1007/978-981-10-3268-4_14
http://dx.doi.org/10.1007/978-981-10-3268-4_15
http://dx.doi.org/10.1007/978-981-10-3268-4_16
http://dx.doi.org/10.1007/978-981-10-3268-4_17
http://dx.doi.org/10.1007/978-981-10-3268-4_18
http://dx.doi.org/10.1007/978-981-10-3268-4_19
http://dx.doi.org/10.1007/978-981-10-3268-4_20

1 Introduction

References

10.
11.

12.

13.

14.

15.

. NASA GISS (2016) Science briefs: greenhouse gases: refining the role of carbon dioxide.

NASA GISS

Karl T, Trenberth K (2003) Modern global climate change. Science 302(5651):1719-1723
IPCC (2007) IPCC fourth assessment report (AR4). Climate change 2007: the physical
science basis. Intergovernmental Panel on Climate Change, Cambridge

Toth FL et al (2001) Where should the response take place? The relationship between
domestic mitigation and the use of international mechanisms. 10. Decision-making
frameworks

Birat JP (2010) Global technology roadmap for CCS in industry: steel sectorial report, Sth
edn. ArcelorMittal Global R and D, Maiziéres-lés-Metz, France

. Chiu P-C, Ku Y (2012) Chemical looping process—a novel technology for inherent CO,

capture. Aerosol Air Qual Res 12:1421-1432. doi:10.4209/aaqr.2012.08.0215

Yu C-H, Huang C-H, Tan C-S (2012) A review of CO, capture by absorption and adsorption.
Aerosol Air Qual Res 12:745-769. doi:10.4209/aaqr.2012.05.0132

Pan S-Y, Chiang A, Chang E-E, Lin Y-P, Kim H, Chiang P-C (2015) An innovative approach
to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res
15:1072-1091. doi:10.4209/aaqr.2014.10.02

UNFCCC (2015) Historic paris agreement on climate change—195 nations set path to keep
temperature rise well below 2 degrees celsius. UN Climate Change Newsroom, 12 Dec 2015
Intended Nationally Determined Contribution of the EU and its Member States (2015). EU
Paltsev S, Reilly J, Sokolov A (2013) What GHG concentration targets are reachable in this
century?. Massachusetts Institute of Technology, MA, USA

IPCC (2007) Climate change 2007: mitigation of climate change

Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon
dioxide separation and capture: a review. J Environ Sci 20(1):14-27. doi:10.1016/s1001-0742
(08)60002-9

International Energy Agency (IEA) (2014) Energy technology perspectives 2014—harnessing
electricity’s potential. IEA, France

International Energy Agency (IEA) (2012) Energy technology perspectives 2012: pathway to
a clean energy system. International Energy Agency, France


http://dx.doi.org/10.4209/aaqr.2012.08.0215
http://dx.doi.org/10.4209/aaqr.2012.05.0132
http://dx.doi.org/10.4209/aaqr.2014.10.02
http://dx.doi.org/10.1016/s1001-0742(08)60002-9
http://dx.doi.org/10.1016/s1001-0742(08)60002-9

Part 1
Global Warming Issues: Challenges and
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Chapter 2
Post-combustion Carbon Capture,
Storage, and Ultilization

Abstract Deployment of carbon capture, storage, and utilization technologies
worldwide from the CO, emission point source is a strategy that has been proposed
to address the challenge of climate change and global warming. As a viable option
for reducing CO, emissions, moving carbon capture and storage technology to
incorporate “utilization” (carbon capture and utilization) has received dramatically
global attention. This chapter provides an overview of various types of carbon
capture, storage, and utilization technologies. After that, one of the carbon capture
and utilization technologies, i.e., microalgae pond systems, is illustrated in detail.
The principles of microalgae open pond systems, key parameters affecting pro-
ductivity, and economic considerations of operating open ponds are systematically
illustrated.

2.1 Significance and Importance

Human activities resulted in emissions of four long-lived greenhouse gases (GHGs):
CO,, CHy4, N,O, and halocarbons, of which CO, is the most important anthro-
pogenic GHG due to its solitary responsibility for about two-thirds of the enhanced
greenhouse effect [1]. Meanwhile, rapid economic growth in developing countries
such as China and India is driving worldwide energy demand and usage day by day.
At the same time, it has been predicted that fossil fuels will remain the dominant
energy source around the world for at least another 20 years to fulfill such energy
demands [2]. As CO, keeps accumulating in the atmosphere after generating from
power plant, concerns about serious and irreversible damage, such as rising water
level and species extinction, are being raised regarding its influence on climate
change. Consequently, it is clear that effective control of CO, emissions is required
to achieve the goal of global CO, concentration below 550 ppm over next the
100 years [3].
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2.1.1 Strategies on Global CO, Mitigation

It is noted that the increased global average CO, concentration in the atmosphere is
likely to cause further warming and induce many changes in the global climate
system. To reduce CO, in the atmosphere, five strategies can be considerable [4]:

e Strategy 1: Reducing the amount of CO, producer sources (reducing energy
intensity)

Strategy 2: Using CO, (or reducing carbon intensity)

Strategy 3: Capturing and storing of CO,

Strategy 4: Switching to less carbon-intensive fuels from conventional fuels
Strategy 5: Increasing the use of renewable energies.

The third strategy involves the development of innovative, available, and
cost-effective carbon capture and storage (CCS) technologies because of a 50-year
estimate for the continued widespread burning of fossil fuels, the goal of reaching a
500 ppm atmospheric CO, concentration plateau, and the lag time needed for the
development and implementation of new carbonless sources of energy [4, 5]. In
general, the carbon capture technologies can be classified into three categories:

e Precombustion capture
e Post-combustion capture
e Oxy-fuel combustion

2.1.2 Transition from Storage to Utilization

As a viable option for reducing CO, emissions, moving CCS technology to
incorporate “utilization” [i.e., carbon capture and utilization (CCU)] has received
dramatically global attention. Europe (in particular Germany), the USA, and
Australia are well advanced in research and development of carbon capture, uti-
lization, and storage (CCUS) technologies [6, 7]. The utilization routes of the
captured CO, include enhanced fuel recovery (i.e., enhanced oil recovery and
enhanced gas recovery), biological conversion (i.e., algae), food industry, chemicals
(i.e., fertilizer and liquid fuel), refrigerant, inerting agents, fire suppression, plastics,
and even mineralization as carbonates (i.e., precipitated calcium carbonates
(PCC) and construction materials). The benefits of CCU technologies include the
following: [6, 8].

e Potentially reduce annual CO, emissions by at least 3.7 Gt, equivalent to about
10% of the world’s current annual emissions

e Value-added products that create green jobs and economic benefits and help
offset the abatement cost.
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As a result, CCUS technologies are key strategies to attenuate the impacts of
global warming during the transition period for developing sustainable energy
technologies. CCUS is considered to be a critical strategy in the pathway to a
sustainable energy system, contributing ~ 14% of reductions in global CO,
emissions by 2050 [9, 10]. However, none of the CCUS technologies alone can
provide a short—to medium-term solution to reduce CO, emissions at a level
necessary to stabilize current concentrations. Rather, a portfolio solution must be
identified to achieve the most effective CO, reduction while minimizing social and
€Cconomic costs.

2.1.3 Concept of Carbon Capture, Utilization,
and Storage (CCUS)

Figure 2.1 shows the major CCUS technologies, including CO, capture, storage
(sequestration), utilization (direct use), and conversion into chemicals and/or fuels.
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Fig. 2.1 Concepts of post-combustion carbon capture, utilization, and storage (CCUS)
technologies
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For example, the CCS technologies can effectively capture CO, from emission
sources, transport it, and then store it at suitable and permanent geological sites.

2.2 Post-combustion Carbon Capture and Storage

As the first step for CO, capture, dilute CO, in flue gas from industries and/or
conventional power plants should be separated and concentrated to a high purity in
a cost-effective manner with low energy consumptions. After capture, the CO, can
be stored into geological or saline formations to ensure long-term sequestration.
Also, the concentrated CO, stream can be directly utilized or converted into
carbon-based materials, such as fuels and chemicals.

2.2.1 Post-combustion CO, Capture Technologies

Figure 2.2 shows various approaches to post-combustion CO, capture from flue gas
or air. Although various CO, capture technologies are available, only a few pro-
cesses have been deployed on a large scale due to significant mass transfer limi-
tations in the processes and the need to treat a significant amount of flue gas [11].
Therefore, successful development and deployment of CO, capture processes have
been required for obtaining the breakthroughs in innovative reactor concepts and
process schemes as well as advancement for new materials.
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In order to achieve the above goals, the dilute CO, in flue gas (or air) can be
concentrated via various technologies:

e Chemical absorption: alkaline solutions such as NaCl, ammonium solution, and
monoethanolamine [11, 12]

e Physical adsorption: zeolite [13], activated carbon [14], and metal-organic

frameworks [15]

Selective membrane separation [16, 17]

Cryogenic techniques [18]

Tonic liquid absorption process [19]

High-temperature solid looping processes: calcium looping [20] and chemical

looping [21].

The aforementioned capture technologies can concentrate the dilute CO, in flue
gas to nearly pure CO,. After that, it should take the sequential storage or utilization
into consideration. Other approaches of post-combustion capture are integrated with
CO, utilization including the following:

e Mineral carbonation: natural ores and/or solid wastes [22]
e Biological method: microalgae and enzyme-based processes [23].

Some of the CO, capture technologies, such as biological method and mineral
carbonation, are related to direct conversion and utilization of CO, because the
physico-chemical property of CO, is changed after capture process. Therefore, no
additional CO, storage site is required with the capture plant. These two approa-
ches, i.e., biological method and mineral carbonation, are illustrated in detail in the
following Sect. 2.4 and Chap. 3, respectively.

2.2.1.1 Absorption and Adsorption Processes

Table 2.1 presents the comparison of the post-combustion CO, capture technolo-
gies by absorption process, such as using aqueous absorbents and ionic liquid (IL).
Meanwhile, chemical absorption via aqueous alkanolamine solutions is regarded as
the most applicable technology for CO, capture by 2030 [24]. It can be accom-
plished in two stages: (1) CO, absorption using an absorbent or solvent, and fol-
lowed by (2) desorption using pressure, temperature, or electric swing. However,
several technological issues, including equipment corrosion, energy consumption in
regeneration, and absorber volume, should be critically assessed in using alka-
nolamine aqueous solutions as absorbents. Thus, a modification and intensification
of the absorption process should be considered to enhance the mass transfer
between CO, gas and solution, for example, a high-gravity rotating packed-bed
reactor [25, 26]. In addition, appropriate absorbent genomes, such as using piper-
azine with diethylenetriamine [27], piperazine with diethylene glycol [28], and
NaOH solution [12], are needed to achieve high CO, capture efficiency and low
regeneration energy.
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Table 2.1 Merits and demerits of various physical and chemical absorption processes for
post-combustion CO, capture

Process description/chemical Advantages Disadvantages
components
Physical * Selexol process * Low vapor pressure and |« Low absorption
+ Rectisol process toxicity (Selexol) capacity
* Purisol process » Low corrosion + Limited refractory
(Rectisol) life (Selexol)
» Low energy * High capital and
consumption (Purisol) operating costs
(Rectisol)
Chemical + Alkanolamine solution * High absorption + Severe equipment
(MEA, DEA, and capacity corrosion rate
MDEA) * Low operating pressure * High energy
+ Sterically hindered and temperature consumption in
amine (AMP) + Suitable for retrofitting regeneration
* Promoter (PZ, PIP) of the existing power + Large absorber
plant volume required
* Amine degradation
by SO,, NO,, and
0,
* Ionic liquid (IL) * Low vapor pressure * High viscosity
+ Non-toxicity * High energy
* Good thermal stability requirement for
+ High polarity regeneration
+ High unit costs

Table 2.2 presents the post-combustion CO, capture technologies by adsorption
process using solid adsorbent and metal-organic frameworks (MOFs). The
adsorption processes exhibit a lower CO, adsorption capacity, compared to
chemical absorption processes.

2.2.1.2 Chemical Looping Process

Chemical looping process (CLP) is an advanced combustion process, where CO, is
inherently separated from the other flue gas components. Oxygen-carrier materials,
such as Fe-, Cu-, Ni-, Mn-, and Co-based metal oxides, are frequently used in the
transfer of oxygen from combustion air to the fuel. In this case, direct contact
between fuel and air can be avoided, thereby resulting in near 100% CO, in flue
gas. Figure 2.3 shows the schematic diagram of CLP for power generation.
Oxygen-carrier material (Me,O,) is reduced by carbonaceous fuel, such as coal and
CH,, to generate H,O and CO; in the fuel reactor, as described in Eq. (2.1).

C,Hyy, + (2n 4+ m)Me, Oy — nCO, + mH,0 + (2n+m)Me,O,_, (2.1)
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Table 2.2 Post-combustion CO, capture processes via physical and chemical adsorption

Process description

Advantages

Disadvantages

Physical * Activated carbon * Wide availability and low * Low CO, adsorption
(AC) cost capacity
* Zeolite + High thermal stability * Low CO, selectivity
» Mesoporous silica (AC) + Slow adsorption
MS) + Low sensitivity to kinetics
+ Metal-organic moisture (AC) » Thermal, chemical,
frameworks + High pore size and tunable and mechanical
(MOFs) pore size (MS and MOFs) stability in cycling
Chemical * Amine-based + Exothermic reaction + Deactivation of
adsorbent * High adsorption capacity synthesis adsorbent
+ Alkali earth metal * Low cost in natural * Low CO, selectivity
adsorbent minerals + Serious diffusion
+ Lithium-based resistance
adsorbent
+ Alkaline solid + Thermodynamically stable » Low CO, adsorption
waste (steelmaking product capacity
slag, ashes, etc) + High availability of wastes + Slow adsorption
* Reuse product in a variety kinetics and mass
of application transfer
* Decreased leaching of + High energy
heavy metal trace elements consumption in
from the wastes crushing

Fig. 2.3 Schematic diagram
of chemical looping process
(CLP) for power generation
with high-purity CO,
production
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