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Preface

Aeroelasticity is the study of the static and dynamic interaction between airflow and flexible
structures. Classical aeroelasticity deals with linearised problems; all displacements are
small, all springs are perfect, all contacts are smooth and all flows are attached. Nonlinear
aeroelasticity does exactly the opposite; it studies the static and dynamic interaction between
airflow and flexible structures in the presence of large deformations, friction, freeplay in
actuators, backlash in gears, nonlinear control laws, flow separation, oscillating shock waves
and other nonlinear phenomena. The combined output of researchers in the field has now
reached the level of maturity necessary to make nonlinear aeroelasticity an important and
useful branch of engineering.

This book is an introduction to nonlinear aeroelasticity, which means that it aims to present
the phenomena of interest and the most common analysis methodologies. The emphasis of the
discussion is on application, so that all theories are accompanied by practical examples solved
by means of Matlab codes. The latter are available to the reader on the Wiley website; they
have been tested on Matlab versions 2013 and 2014 but could also be compatible with earlier
versions. The reader should note that the purpose of the codes is to illustrate the examples
and the underlying theories. They solve the particular problems for which they were written
but they should not be seen as general nonlinear dynamic analysis codes that can be directly
applied to different problems.

Chapter 1 is a brief introduction to nonlinear aeroelasticity, summarising some of the main
advances accomplished since the 1940s. Chapter 2 is an introduction to nonlinear dynamics,
discussing issues such as fixed point stability and limit cycle oscillations on very simple
aeroelastic systems. The solution methods used at this stage are still either qualitative or
approximate; Chapter 3 presents in detail the numerical solution methods for calculating the
time response of nonlinear systems that will be used throughout the rest of the book. Additional
numerical methodologies for analysing nonlinear system responses are presented in Chapter 4.

The bulk of the dynamic phenomena typically encountered in nonlinear aeroelastic systems
are demonstrated on a fundamental model in Chapter 5, while Chapter 6 presents additional
phenomena caused by non-smooth nonlinearities. Numerical continuation approaches are
introduced in Chapter 7 and are used throughout the rest of the book. The focus of Chapter 8 is
low-speed aerodynamic nonlinearities caused by unsteady flow separation, while high-speed
nonlinear aeroelastic phenomena are discussed in Chapter 9. Finally, Chapter 10 introduces
nonlinear structural and linear aerodynamic modelling techniques for finite wings.



xii Preface

I have worked on nonlinear dynamic and aeroelastic research since 1995 and I would like
to take this opportunity to thank all the people with whom I have collaborated on the subject
over the years. In particular, I would like to thank Jonathan Cooper who introduced me to
aeroelasticity and supervised my doctoral research. I would also like to thank Earl Dowell,
Bob Kielb, Gareth Vio, Xavier Amandolese and Pascal Hemon who welcomed me in their
departments during my sabbatical year.
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The field of aerospace is multi-disciplinary and wide ranging, covering a large variety of
products, disciplines and domains, not merely in engineering but in many related supporting
activities. These combine to enable the aerospace industry to produce innovative and techno-
logically advanced vehicles. The wealth of knowledge and experience that has been gained by
expert practitioners in the various aerospace fields needs to be passed onto others working in
the industry and also researchers, teachers and the student body in universities.

The Aerospace Series aims to be a practical, topical and relevant series of books aimed at
people working in the aerospace industry, including engineering professionals and operators,
engineers in academia and allied professions, such as commercial and legal executives. The
range of topics is intended to be wide ranging, covering design and development, manufacture,
operation and support of aircraft, as well as topics such as infrastructure operations and current
advances in research and technology.

Aeroelasticity is the scientific discipline that arises from the interaction of aerodynamic,
elastic and inertial forces, and has a significant effect upon the design and performance of
all aircraft. The influence of nonlinearities, appearing in structures, aerodynamics and control
systems, can have a major influence upon aeroelastic behaviour; for instance, phenomena such
as Limit Cycle Oscillations can only occur in nonlinear systems.

This book, Introduction to Nonlinear Aeroelasticity, provides an excellent introduction to
the effects of structural and aerodynamic nonlinearities on aeroelastic behaviour and describes
a number of methodologies to predict the resulting behaviour. The text is complemented
with a comprehensive set of Matlab codes that will enable the reader to readily apply the
methods themselves. This book makes a strong addition to the Wiley Series’ existing content
in aeroelasticity and related topics.

Peter Belobaba, Jonathan Cooper and Alan Seabridge
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1
Introduction

Nonlinear aeroelasticity is the study of the interactions between inertial, elastic and
aerodynamic forces on engineering structures that are exposed to an airflow and feature
non-negligible nonlinearity. There exist several good textbooks on linear aeroelasticity for
aircraft (Bisplinghoff et al. 1996; Fung 1993; Hodges and Alvin Pierce 2002; Wright and
Cooper 2015). Dowell (2004) even includes chapters on nonlinear aeroelasticity and stall
flutter, while Paidoussis et al. (2011) discusses a number of nonlinear aeroelastic phenomena
occurring in civil engineering structures. However, there is no introductory text that presents
the methodologies of nonlinear dynamics and applies them to a wide range of nonlinear
aeroelastic systems. The present book aims to fill this gap to a certain degree. The subject
area is vast and mutlidisciplinary and it would be impossible to fit every aspect of it in a
textbook. The main omission is high fidelity numerical simulation using Computational Fluid
Dynamics and Computational Structural Dynamics solvers; these methodologies are already
the subject of a dedicated text (Bazilevs et al. 2013). The aerodynamic models used in this
book are analytical, empirical or based on panel methods while the structural models are either
analytical or make use of series solutions.

The book is introductory but it assumes knowledge of structural dynamics, aerodynamics
and some linear aeroelasticity. The main linear aeroelastic phenomena of flutter and static
divergence are discussed in detail because they can affect nonlinear behaviour, but the present
work is by no means a complete text on linear aeroelasticity. Unsteady aerodynamic modelling
is used throughout the book and discussed in Chapters 8, 10 and in the Appendix. However,
again this book is not a complete reference on unsteady aerodynamics, linear or nonlinear. On
the other hand, nonlinear dynamics and bifurcation analysis are presented in great detail as they
do not normally feature in most undergraduate or even graduate Aerospace and Mechanical
Engineering courses. The emphasis of all discussions is on the application rather than the
rigorous derivation of the theorems; there already exist several classic textbooks for the
latter (Kuznetsov 1998; Guckenheimer and Holmes 1983). More application-based works on
nonlinear dynamics also exist (e.g. Strogatz 1994) but they address a wide range of physical,
chemical, biological, accounting models, to name a few, whereas the present book concentrates
exclusively on aeroelastic phenomena.

Introduction to Nonlinear Aeroelasticity, First Edition. Grigorios Dimitriadis.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Dimitriadis/NonlinearAeroelasticity



2 Introduction to Nonlinear Aeroelasticity

Nonlinear aeroelasticity has become an increasingly popular research area over the last 30
years. There have been many driving forces behind this development, including faster comput-
ers, increasingly flexible structures, automatic control systems for aircraft and other engineer-
ing products, new materials, optimisation-based design methods and others. Aeroelasticians
have acquired expertise from many different fields in order to address nonlinear aeroelastic
problems, mainly nonlinear dynamics, bifurcation analysis, control theory, nonlinear structural
analysis and Computational Fluid Dynamics. The main applications of nonlinear aeroelasticity
lie in aeronautics and civil engineering but other types of structure are also concerned, such as
bridges and wind turbines.

In classical linear aeroelasticity, the relationships between the states of a system and the
internal forces acting on them are always assumed to be linear. Force-displacement diagrams
for the structure and lift or moment curves for the aerodynamics are always assumed to
be linear, while friction is neglected and damping is also linear. As an example, consider
a torsional spring that provides a restoring moment M when twisted through an angle 𝜙.
Figure 1.1a plots experimentally measured values of 𝜙 and M. Clearly, the function M(𝜙)
is not linear but, if we concentrate in the range 𝜙 = [−0.5◦ 2◦], the curve is nearly linear and
we can curve fit it as the straight line M = K𝜙 + M0, where K is the linear stiffness of the
spring.

Figure 1.1b plots the aerodynamic lift coefficient acting on a wing placed at an angle 𝛼 to a
free stream of speed U, defined as

cl =
l

1∕2𝜌U2c

where l is the lift force per unit length, 𝜌 is the air density and c is the chord. The curve
cl(𝛼) is by no means linear but, again, if we focus in the range 𝛼 = [−5◦ 10◦], we can
curve fit the lift coefficient as the straight line cl = cl𝛼

𝛼 + cl0
, where cl𝛼

is the lift curve
slope. An aeroelastic system featuring the spring of Figure 1.1a and the wing of Figure 1.1b
will be nonlinear but, if we ensure that 𝜙 and 𝛼 never exceed their respective linear ranges
for all operating conditions, then we can treat the system as linear and use linear analysis to
design it. In nonlinear aeroelasticity, the angles 𝜙 and 𝛼 will always exceed their linear ranges
and therefore we must use nonlinear analysis, both static and dynamic, in order to design the
system.

Nonlinear dynamics is the field of study of nonlinear ordinary and partial differential
equations, which in this book model aeroelastic systems. Unlike linear differential equations,
nonlinear equations have no general analytical solutions and, in some cases, several different
solutions may coexist at the same operating conditions. Furthermore, nonlinear systems can
have many more types of solution than linear ones. The operating conditions of an aeroelastic
system are primarily the free stream airspeed and the air density (or flight altitude), while
the Reynolds number, Mach number and mean angle of attack can also be important. As these
system parameters vary, the number and type of solutions of the nonlinear equations of motion
can change drastically. The study of the changing nature of solutions as the system parameters
are varied is known as bifurcation analysis. In this book we will use almost exclusively local
bifurcation analysis, which means that we will identify individual solutions and track their
nature and their intersections with other solutions for all the parameter values of interest.

A wide variety of nonlinear aeroelastic phenomena will be investigated, from the galloping
of cables to the buckling and flutter of panels in supersonic flow and from stall flutter to
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the limit cycle oscillations of finite wings. We will also briefly discuss transonic aeroelastic
phenomena but we will not analyse them in detail because such analysis requires high fidelity
computational fluid and structural mechanics and is still the subject of extensive research.
The equations of motion treated in this book are exclusively ordinary differential equations;
whenever we encounter partial differential equations we will first transform them to ordinary
using a series solution. It is hoped that the book will contribute towards the current trend of
taking nonlinear aeroelasticity out of the research lab and introducing it into the classroom and
in industry.

1.1 Sources of Nonlinearity

Traditionally, a lot of effort has been devoted to designing and building engineering structures
that are as linear as possible. Despite this effort, nonlinearity, weak or strong, has always
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been present in engineering systems. In recent years, increasing amounts of nonlinearity have
been tolerated or even purposefully included in many applications, since nonlinear analysis
methods have progressed sufficiently to allow the handling of nonlinearity at the design
stage. Furthermore, nonlinearity can have significant beneficial effects, for example in shock
absorbers and suspension systems.

In this book we will only consider nonlinearities that are present in aeroelastic systems.
Since aeroelasticity is of particularly importance to the fields of aeronautics, civil engineering
and energy harvesting, we will limit the discussion of nonlinearity to these application areas.
The nonlinear functions that are most often encountered in these systems have three main
sources:

• the structure,
• the aerodynamics and
• the control system.

The structural nonlinearities of interest occur during the normal operation of the underlying
engineering system. Nonlinearities appearing in damaged, cracked, plastically deformed
and, in general, off-design systems are beyond the scope of this book. The most common
forms of nonlinearity appearing in structures are geometric (caused by large deformations),
clearance (i.e. freeplay, contact and other non-smooth phenomena), dissipative (i.e. fric-
tion or other nonlinear damping forces) and inertial (of particular interest in rotors and
turbomachinery).

Aerodynamic nonlinearities arise from the existence of either unsteady separated flow
or oscillating shock waves or a combination of the two (e.g. shock-induced separation).
Separation-induced nonlinearity can affect all aeroelastic systems, although bluff bodies such
as bridges, towers and cables are always exposed to it. Shock-induced nonlinearity is of interest
mostly to the aeronautical industry. It should be noted that aerodynamic nonlinearity is inertial,
dissipative and elastic.

Engineering structures are increasingly designed to feature passive and/or active control
systems. These systems can either aim to stabilise the structure (e.g. suppress or mitigate
unwanted vibrations) or to control it (e.g. aircraft automatic flight control systems). Passive
systems can be seen as parts of the structure and therefore included in the structural non-
linearity category (if they are nonlinear). Active systems, however, can feature a number of
prescribed and incidental nonlinearities that can be turned off by running the structure in
open loop mode. These nonlinear functions are in a category of their own and can take many
forms, such as deflection and rate limits on actuators or nonlinear control laws. Furthermore,
control actuators always feature a certain amount of freeplay, which is usually strictly limited
by airworthiness regulations.

One more source of nonlinearity can be external stores on aircraft that carry them (mainly
military aircraft). Stores such as external fuel tanks, bombs and missiles can cause store-
induced oscillations, particularly at transonic flight conditions. However, the mechanisms
behind these oscillations are still not fully understood and the relevant analyses usually
involve computational fluid-structure interaction. Consequently, these phenomena will not be
discussed further in this book. Human operator-related nonlinearities (pilot, driver, rider etc.)
will not be considered either.
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1.2 Origins of Nonlinear Aeroelasticity

Some of the first investigations of nonlinear aeroelasticity concerned stall flutter and started
just after WWII. For example, Victory (1943) reported that the airspeed at which wings
undergo flutter decreases at high incidence angles, while Mendelson (1948) attempted to
model this phenomenon. Rainey (1956) carried out a range of wind tunnel experiments of
aeroelastic models of wings and noted the parameters that affect their stall flutter behaviour.
It was quickly recognised that, in order to analyse stall flutter, the phenomenon of unsteady
flow separation known as dynamic stall needed to be isolated and studied in detail. Bratt and
Wight (1945) and Halfman et al. (1951) carried out two of the first experimental studies of
the unsteady aerodynamic loads acting on 2D airfoils oscillating at high angles of attack.
They were to be followed by a significant number of increasingly sophisticated experiments,
covering a wide range of airfoil geometries, Reynolds numbers, Mach numbers and oscillation
amplitudes and frequencies. The phenomena of dynamic stall and stall flutter are discussed in
Chapter 8.

The effects of structural nonlinearity were first investigated by Woolston et al. (1955, 1957)
and Shen (1959). They both set up aeroelastic systems with structural nonlinearity and solved
them using analog computers. The systems included 2D airfoils with nonlinear springs, wings
with control surfaces and buckled panels in supersonic flow. Such systems have been explored
ever since, using increasingly sophisticated mathematical and experimental methods. They are
in fact the basis of nonlinear aeroelasticity and will be discussed in detail in the present book.
Two-dimensional airfoils with nonlinear springs will be analysed in Chapters 2 to 7, panels in
supersonic flow will be presented in Chapter 9 and 3D wings in Chapter 10.

Wind tunnel experiments on nonlinear aeroelastic systems with nonlinear springs have been
carried out since the 1980s, notably by McIntosh Jr. et al. (1981); Yang and Zhao (1988);
Conner et al. (1997). These works provided both valuable insights into the phenomena that can
be encountered in nonlinear aeroelasticity and a basis for the validation of various modelling
and analysis methods. The focus of the present book is the application of nonlinear dynamic
analysis to nonlinear aeroelasticity. Modelling will be discussed in the last three chapters, as
well as in the Appendix.

Shen (1959) was one of the first works to apply the Harmonic Balance method to nonlinear
aeroelasticity. This method was first presented in the West by Kryloff and Bogoliuboff (1947)
and has since become one of the primary analysis tools for nonlinear dynamic systems
undergoing periodic oscillations. We will use several different versions of the Harmonic
Balance technique throughout this book.

One of the first studies to apply elements of bifurcation theory to nonlinear aeroelastic
systems was carried out by Price et al. (1994). They used stability boundaries, Poincaré
sections and bifurcation diagrams to analyse the behaviour of a simple 2D mathematical
nonlinear aeroelastic system with structural nonlinearity. Aside from the Hopf bifurcation, they
also observed period-doubling bifurcations and chaotic responses. Bifurcation analysis is used
throughout the present book but most of the bifurcations typically encountered in nonlinear
aeroelasticity are discussed in detail in Chapter 5.

Alighanbari and Price (1996) were the first to use numerical continuation in nonlinear
aeroelasticity. Numerical continuation (Allgower and Georg 1990) is a set of mathematical
methods for solving nonlinear problems that have static or periodic dynamic solutions.
Continuation methods are strongly linked to bifurcation analysis, as they very often start
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evaluating solutions at bifurcation points. Such methods will be presented in detail in Chapter 7
and used in all subsequent chapters.

Towards the end of the 1990s, Friedmann (1999) identified nonlinear aeroelasticity as
a major research direction in his paper on the future of aeroelasticity. Lee et al. (1999)
published a lengthy and authoritative review of past and current nonlinear aeroelastic research,
describing all major advances in both understanding and methodologies. A few years later,
the nonlinear aeroelasticity chapter by Dowell (2004) provided an extensive description of
nonlinear aeroelastic phenomena encountered in flight and in benchmark aeroelastic wind
tunnel models and summarised the state of the art.

Thirteen years later, there has been a significant increase in the research and application
of nonlinear aeroelasticity. Transonic aeroelastic phenomena, the highly flexible structures
of High Altitude Long Endurance aircraft, aeroelastic tailoring, gust loads acting on nonlinear
aircraft, wind turbine aeroelasticity and high-fidelity fluid structure interaction have all become
major areas of research. Major national and international research projects have addressed such
issues and the results are slowly starting to be applied in industry. Given this wealth of activity
in the field, it was felt that an introductory text in nonlinear aeroelasticity is missing from
the literature. It is hoped that the present book will come to fill this gap, providing a basis
for understanding nonlinear aeroelastic phenomena and methodologies on relatively simple
systems and preparing the reader for more advanced work in state-of-the-art applications.

References

Alighanbari H and Price SJ 1996 The post-hopf-bifurcation response of an airfoil in incompressible two-dimensional
flow. Nonlinear Dynamics 10(4), 381–400.

Allgower EL and Georg K 1990 Numerical Continuation Methods: An Introduction. Springer-Verlag, New York.
Bazilevs Y, Takizawa K and Tezduyar TE 2013 Computational Fluid-Structure Interaction: Methods and Applications.

John Wiley & Sons, Ltd, Chichester, UK.
Bisplinghoff RL, Ashley H and Halfman RL 1996 Aeroelasticity. Dover Publications, New York.
Bratt JB and Wight KC 1945 The effect of mean incidence, amplitude of oscillation, profile and aspect ratio on pitching

moment derivatives. Reports and Memoranda No. 2064, Aeronautical Research Committee.
Conner MD, Tang DM, Dowell EH and Virgin L 1997 Nonlinear behaviour of a typical airfoil section with control

surface freeplay: a numerical and experimental study. Journal of Fluids and Structures 11(1), 89–109.
Dowell EH (ed.) 2004 A Modern Course in Aeroelasticity, 4th edn. Kluwer Academic Publishers.
Friedmann PP 1999 Renaissance of aeroelasticity and its future. Journal of Aircraft 36(1), 105–121.
Fung YC 1993 An Introduction to the Theory of Aeroelasticity. Dover Publications, Inc.
Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.

Springer-Verlag, New York.
Halfman RL, Johnson HC and Haley SM 1951 Evaluation of high-angle-of-attack aerodynamic-derivative data and

stall-flutter prediction techniques. Technical Report TN 2533, NACA.
Hodges DH and Alvin Pierce G 2002 Introduction to Structural Dynamics and Aeroelasticity. Cambridge University

Press, Cambridge, UK.
Kryloff N and Bogoliuboff N 1947 Introduction to Nonlinear Mechanics (a Free Translation by S. Lefschetz). Princeton

University Press, Princeton, NJ.
Kuznetsov YA 1998 Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York Berlin Heidelberg.
Lee BHK, Price SJ and Wong YS 1999 Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progress in

Aerospace Sciences 35(3), 205–334.
McIntosh Jr. SC, Reed RE and Rodden WP 1981 Experimental and theoretical study of nonlinear flutter. Journal of

Aircraft 18(12), 1057–1063.
Mendelson A 1948 Effect of aerodynamic hysteresis on critical flutter speed at stall. Research Memorandum RM No.

E8B04, NACA.



Introduction 7

Paidoussis MP, Price SJ and de Langre E 2011 Fluid Structure Interactions: Cross-Flow-Induced Instabilities.
Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi,
Dubai, Tokyo, Mexico City.

Price SJ, Lee BHK and Alighanbari H 1994 Poststability behavior of a two-dimensional airfoil with a structural
nonlinearity. Journal of Aircraft 31(6), 1395–1401.

Rainey AG 1956 Preliminary study of some factors which affect the stall-flutter characteristics of thin wings. Technical
Note TN 3622, NACA.

Shen SF 1959 An approximate analysis of nonlinear flutter problems. Journal of the Aerospace Sciences 26(1), 25–32.
Strogatz SH 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.

Perseus Books, Cambridge, MA.
Victory M 1943 Flutter at high incidence. Reports and Memoranda No. 2048, Aeronautical Research Committee.
Woolston DS, Runyan HL and Andrews RE 1957 An investigation of effects of certain types of structural nonlinearities

on wing and control surface flutter. Journal of the Aeronautical Sciences 24(1), 57–63.
Woolston DS, Runyan HL and Byrdsong TA 1955 Some effects of system nonlinearities in the problem of aircraft

flutter. Technical Report NACA TN-3539, NACA.
Wright JR and Cooper JE 2015 Introduction to Aircraft Aeroelasticity and Loads 2nd edn. John Wiley & Sons, Ltd,

Chichester, UK.
Yang ZC and Zhao LC 1988 Analysis of limit cycle flutter of an airfoil in incompressible flow. Journal of Sound and

Vibration 123(1), 1–13.





2
Nonlinear Dynamics

2.1 Introduction

This chapter will introduce the subject of nonlinear dynamics and will discuss some of its
most important concepts. The analysis will focus on dynamic systems with a single degree
of freedom, such as the linear harmonic oscillator and the galloping oscillator. Although the
concepts addressed in this chapter can be found in other textbooks on nonlinear dynamics,
the context is aeroelastic. Furthermore, the information presented here will be used in later
chapters in order to analyse more realistic aeroelastic systems with many degrees of freedom
and various nonlinearities.

Some of the important concepts to be discussed are common to both linear and nonlinear
dynamical systems. Examples are fixed points, the phase plane, response trajectories and
stability. As linear systems have analytical solutions, they will be preferred to nonlinear ones
for the introduction of such concepts. The early parts of the chapter are therefore mostly
devoted to linear dynamics; readers already familiar with the subject should read these sections
as a revision but also as a familiarisation with the terminology that will be encountered
throughout the book.

The main part of the chapter concerns nonlinear dynamics. Concepts such as multiple
solutions, bifurcations and limit cycle oscillations will be introduced on simple nonlinear
systems. The emphasis is not on the calculation of solutions of the equations of motion; such
calculations will be presented in the next chapter. The focus here is on the characterisation
of the types of response that can be observed and on simple methods for qualitative or
approximate analysis.

2.2 Ordinary Differential Equations

In this chapter, we will examine nonlinear Ordinary Differential Equations (ODE) of
the form

ẋ = f(x,q) (2.1)

where x(t) is the n×1 vector of system states, t is time, f is a n×1 vector of nonlinear functions,
q is a m × 1 vector of system parameters and the overdot denotes differentiation with respect
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© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Dimitriadis/NonlinearAeroelasticity



10 Introduction to Nonlinear Aeroelasticity

to time. The states x are functions of time, t, while the parameters q are constants. The overdot
denotes differentiation with respect to time, that is ẋ = dx∕dt. Notice that the system described
by equation 2.1 is autonomous, that is, there is no external excitation force. The equations are
completed by a set of initial conditions x(0) = x0.

Any linear or nonlinear unforced ODE can be written in the form of equation 2.1. To
demonstrate this fact, consider the equation of motion of the damped linear harmonic oscillator

mÿ + dẏ + ky = 0 (2.2)

where y(t) is the oscillator’s instantaneous displacement, m the mass, d the linear damping
coefficient and k the linear stiffness coefficient. The system defined be equation 2.2 has a
single degree of freedom (DOF), the displacement of the oscillator, y. By defining x1 = ẏ and
x2 = y, the equation of motion becomes

ẋ1 = − d
m

x1 −
k
m

x2 (2.3)

ẋ2 = x1 (2.4)

Defining q = [m d k]T , x = [x1 x2]T , where T denotes transposition, we obtain

ẋ = f(x,q) =
[
− d

m
x1 −

k
m

x2 x1

]T

which is an expression of the form of equation 2.1, whereby the functions f are linear.
Notice that the second order and first order formulations of the linear harmonic oscillator are
equivalent. The variables x1(t) and x2(t) are known as the system states and denote the system’s
velocity and displacement responses, respectively.

From here on in, the term system response will be used to denote the form of x(t) for all times
starting from t = 0, up to t → ∞. The objective of nonlinear dynamics is the calculation of the
response and its evolution as the initial conditions and parameters change values. It should be
stressed that, unlike linear systems, nonlinear equations can have multiple solutions. A global
analysis of a nonlinear dynamic system consists in the calculation of all the solutions of the
system at all parameter values of interest. In contrast, a local analysis follows one solution of
the system as the parameters vary.

The system response is the solution of the complete equations of motion 2.1. The static
solutions, or fixed points, of the system are the solutions of

f(x,q) = 0 (2.5)

or, equivalently,

ẋ = 0 (2.6)

The fixed points are denoted by xF and are constant in time. Clearly, as f(xF,q) = 0 and
ẋF = 0, fixed points are also solutions of equations 2.1. In some cases, the fixed points can
represent the steady-state response of the system, that is, the value reached by x(t) as t → ∞.
In other cases, a general system response will never subside to any one of the fixed points.
Finally, if f(x,q) = 0 has no real solutions, there will be be no fixed points.
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2.3 Linear Systems

In order to demonstrate some basic concepts of dynamic behaviour we will first consider the
solution of the damped linear harmonic oscillator of equations 2.3 and 2.4. The equations can
be written in matrix form as

ẋ = A(q)x (2.7)

where

A =

(
− d

m − k
m

1 0

)
(2.8)

The solution of equations of the form of 2.7 subject to the initial conditions x(0) = x0 are well
known but will be derived here in detail because similar mathematical treatments will be used
for the analysis of nonlinear systems in later chapters.

We will first evaluate the fixed points of the damped linear harmonic oscillator, that is the
solution of

AxF = 0 (2.9)

For a general A, these equations have one solution, xF = 0. Therefore, autonomous linear
systems have a single fixed point, the origin. As mentioned earlier, x(t) = xF is a static solution
of the complete equations of motion 2.7. Furthermore, if x0 = xF = 0, the system response
will be x(t) = 0 for all times.

In order to evaluate solutions of equations 2.7 from non-trivial initial conditions, we will
try to separate the variables x and t. To achieve this separation, we will make use of the matrix
exponential function; the matrix exponential of A is defined as

eA = I + A + A2

2!
+ A3

3!
+… =

∞∑
k=0

Ak

k!
(2.10)

where I is the unit matrix of the same size as A. This series always converges for a matrix A
with finite entries. Arnold (1992) discusses in detail the definition and properties of the matrix
exponential.

Equation 2.7 is written as

ẋ − Ax = 0

and pre-multiplied by the matrix exponential of −At, that is, e−At, giving

e−Atẋ − e−AtAx = 0 (2.11)

Using definition 2.10, it is straightforward to show that

d
dt

(
e−At

)
= −Ae−At = −e−AtA

Consequently, the left hand side of equation 2.11 is the time derivative of e−Atx, so that

d
dt

(
e−Atx

)
= 0
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As the left hand side is only a function of time, this equation can be integrated in time from 0
to t, yielding

∫
t

0

d
dt

(
e−Atx

)
dt = 0 (2.12)

Consequently, the general solution becomes

e−Atx(t) − x0 = 0

or, after pre-multiplying both sides by eAt,

x(t) = eAtx0 (2.13)

Note that this general solution includes the fixed point; if we set x0 = 0, then x(t) = 0 for all
times.

Expression 2.13 is the complete general solution of equation 2.7 but contains a matrix expo-
nential. A more useful version of the solution can be obtained by eigenvalue decomposition.
Consider the decomposition of matrix A into

A = VLV−1

where V is the matrix containing the eigenvectors of A as its columns and L is a diagonal
matrix containing the eigenvalues of A in its diagonal. Now we note that

A2 = VLV−1VLV−1 = VL2V−1

A3 = A2A = VL2V−1VLV−1 = VL3V−1

⋮

Aj = VLjV−1

Substituting these results in the definition of the matrix exponential 2.10, and noting that
I = VV−1, we get

eA = VeLV−1

Furthermore, the properties of the eigenvalue decomposition dictate that the eigenvectors of
At are equal to the eigenvectors of A, while the eigenvalues of At are equal to Lt. Therefore,

eAt = VeLtV−1 (2.14)

For a system with n states, taking advantage of the fact that L is diagonal, equation 2.13
becomes

x(t) =
n∑

i=1

vie
𝜆itbi (2.15)

where vi is the ith eigenvector of A (i.e. the ith column of V), 𝜆i is its ith eigenvalue (i.e. the
ith element of the diagonal of L) and bi is the ith element of the vector b = V−1x0.

The eigenvalues of matrix A are the solutions to det (I𝜆 − A) = 0, which is a polynomial
equation of order equal to the number of states n. This equations is usually referred to as the


