HANS VAN DIJK I RON VAN MEGEN

RUNNING

MAXTMOM PRRFORMANCE GATNS THROUGH RFFDCITVE POWER MOHORING AND TRAINING ANALYSIS

MEYER \& MEYER SPORT

THE SECRET OF RUNNING

Gerard Nijboer, Olympic Silver Medalist and European Champion Marathon
 "Most interesting! Reading this book brought back memories of my first running book The Complete Book of Running. Just like James Fix's book it is a real page-turner, each and every page fascinates the committed runner with an eye for details!"

Hunter Allen, Legendary Coach and Co-developer of TrainingPeaks' WKO+ software

"When Dr. Coggan and I wrote, Training and Racing with a Power Meter, there were some very elite coaches that took this information and became experts around the world. The authors of this book are such experts. They used the laws of nature to describe and calculate the performance in running as well as in cycling. This book will help to take your running to the next level and the concepts written inside are foundations to creating success."

Asker Jeukendrup, Sports Nutrition Scientist, Professor of Exercise Science

"One of the best books about endurance performance I have ever seen, with an evidence based analytical approach to performance in running. The many practical examples make it easy for the reader to understand and apply this to improve their own performance. The breakthrough of power meters is analyzed critically, including the possibilities to increase running economy and running performance."

Maria Hopman, Professor of Integrative Physiology, Radboud University, Nijmegen

"I like the quantitative approach to the physics and physiology of running in this book. I feel this is important to understand and improve the performance in sports. I believe this book will help coaches and runners as theory and practice are combined in a highly understandable way."

The contents of this book were carefully researched. However, all information is supplied without liability. Neither the author nor the publisher will be liable for possible disadvantages or damages resulting from this book.

HANS VAN DIJK I RON VAN MEGEN

岂SECRETO

RUNNING

MAXIMUM PERFORMANCE GAINS THROUGH RPFRCNIVE POWGR MBIERING AND TRAINING ANALYSIS

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
The Secret of Running
Maidenhead: Meyer \& Meyer Sport (UK) Ltd., 2017
ISBN 978-1-78255-773-9

All rights reserved, especially the right to copy and distribute, including the translation rights. No part of this work may be reproduced -including by photo copy, microfilm, or any other means- processed, stored electronically, copied or distributed in any form whatsoever without the written permission of the publisher.
© 2017 by Meyer \& Meyer Sport, Aachen, Germany
Auckland, Beirut, Dubai, Hägendorf, Hong Kong, Indianapolis, Cairo, Cape Town, Manila, Maidenhead, New Delhi, Singapore, Sydney, Teheran, Vienna

细 Member of the World Sports Publishers' Association (WSPA)
ISBN 978-1-78255-773-9
E-mail: info@m-m-sports.com
www.m-m-sports.com

Contents

Why Did We Write This Book? 8
Part I The Basics of Running. 16

1. Running Is Good for You! 18
2. Running Is Fun!. 22
3. Sports Physiology 26
4. Training Principles 32
5. Training Plans 36
6. Sports Nutrition. 42
Part II The Physics of Running 46
7. Energy 48
8. Power 52
9. Power Requirements for Sports I 56
10. Power Requirements for Sports II 62
11. The Running Model. 68
12. The Energy Cost of Running a Flat Course 76
13. The Energy Cost of the Air Resistance. 80
14. The Energy Cost of Hills 86
15. The Running Model and the Standard Conditions. 92
Part III The Power of the Human Engine. 96
16. The Power-Time Relationship 98
17. The Limits of Human Power. 106
18. The $\mathrm{VO}_{2} \max$ 114
19. The FTP 118
20. The Relationship Between FTP and VO_{2} max. 122
Part IV How Fast Can You Run? 126
21. The Impact of Your FTP. 128
22. The World Records of Men and Women 136
23. The Impact of Your Age 142
24. The World Records of the Masters 146

25. The Performance of the Ladies 150
26. The Performance Index 156
27. The Impact of Your Body Weight 160
28. BMI, Body Fat Percentage and Racing Weight. 164
29. How to Lose Body Fat and Gain Fitness 170
30. The Impact of Training 176
31. How Fast Should You Run in Training? 180
32. The Impact of Your Heart Rate 184
33. The Relationship Between HR and Pace 190
34. How to Train and Race With Heart Rate Meters. 196
35. How Useful Is the Software of Your Running Watch? 204
36. The Impact of Your Running Economy (RE) 208
37. Running Dynamics I: Running Style 212
38. Running Dynamics II: Stride Length and Cadence 220
39. Running Dynamics III: Running Economy 228
40. The Impact of Your Fatigue Resistance 236
41. The Impact of Altitude Training 240
42. The Impact of the Running Surface 244
43. The Impact of Race Shoes 248
44. The Impact of (No) Air Resistance 254
45. How Fast Could Usain Bolt Run the 100 Meter in Mexico? 264
46. The Impact of Pacemakers and Running in a Pack 270
47. The Impact of the Wind 276
48. The Impact of Hills 282
49. The Impact of Altitude 288
50. How Fast Could You Run the Climb to the Alpe d'Huez? 294
51. Which Is the Tougher Run: Up Alpe d'Huez or Battling Wind Force 7? 300
52. The Impact of Pace and Race Strategy 304
53. The Impact of Temperature 310
54. The Dangers of the Heat 316
55. The Foster Collapse: Crawling to the Finish 326
56. The Impact of the Rain, the Wind and the Cold 330
57. The Marathon I: Hitting the Wall 334
58. The Marathon II: The Impact of Carbo-Loading 340
59. The Marathon III: The Impact of Sports Drinks. 344
60. The Marathon IV: Tips and Tricks 348
61. How Fast Could You Cycle, Ice Skate and Climb Stairs? 354
62. The Maximum Power of Sprinters and Distance Runners 360
Part V Running With Power Meters 366
63. Power Meters: The Game Changer in Running! 368
64. How Good and How Reliable Are Power Meters? 374
65. Measuring and Improving Your Running Economy! 386
66. Determine Your FTP and Your Training Zones 396
67. Why Should You Train With Power Meters? 400
68. Why Should You Race With Power Meters? 406
69. Tips and Tricks for Using Power Meters. 410
70. Laboratory Testing 414
Part VI The Myths of Running 420
71. The Sub Two-Hour Marathon? 422
72. Nutrition, Supplements and Beet Juice 428
73. Avoid a Vitamin D Deficiency! 434
74. Don't Take Too Many Pills! 440
75. Jack Daniels' Running Formula 444
76. Prehistoric Man Was a Distance Runner! 450
77. Why Are Sprinters Also Good Jumpers? 452
78. The Amazing Ed Whitlock 458
79. Haile Gebrselassie: The Greatest Runner in History 462
REFERENCES 470
Credits 476

WHY DID WE WRITE THIS BOOK?

In theory, there is no difference between theory and practice. In practice, there is!

The Success of Our Books on the Dutch Market

Our previous Dutch books ${ }^{1,2,3}$ were an instant success in the running and cycling communities in the Netherlands and Belgium. Apparently many thousands of runners and cyclists share our passion to understand, quantify and optimize the power of our human engine and to calculate and predict our attainable performance in sports. More than 10,000 copies of our books have already been sold in the (relatively small) Dutch market. We get tons of enthusiastic reactions from fans, who call our quantitative approach "a revelation in sports books." The calculators at our websites www.thesecretofrunning.com and www.thesecretofcycling.com are visited by many thousands of runners and cyclists, who enjoy calculating how they can optimize their performance.

How to Get Fitter and Faster

We share a lifelong passion for running and science. The remarkable story of our books starts in 2011 when Hans retired (at the age of 57) from his position as full professor at Delft University of Technology. Hans decided to devote his time to running and studying the science of running to see if he could get fitter and faster. Hans has been a committed runner since 1980, but over the years his race times had declined slowly as shown in the figure below. Obviously, the decline in performance with age will not surprise our readers, but the fact that he got significantly faster after 2011 should! From 2013 onwards he even managed to become a multiple Dutch Masters Champion (M60)! The reasons for this amazing improvement are the topic of our books. You will gain insights into the factors that determine your performance and how you can get fitter and faster.

Half-Marathon Results Over 35 Years: Hans van Dijk

The Quantitative Approach to Running

As scientists and engineers, we were not satisfied with the traditional handbooks on running which are based mostly on the experiences of runners and coaches. They do describe the factors which influence the performance, but only in a qualitatively way. We were interested in hard numbers and formulas that would enable us to calculate the performance exactly. We also wanted to differentiate between scientific proof and the opinions of runners and coaches, so we have set out to develop science-based models for all factors influencing the running performance and to test these models with hard data from measurements.

One simple, but important, example is the impact of your body weight on your VO_{2} max and your running performance. In 2012, Hans rationed his diet, which resulted in a decrease of his body weight in six months by 15% (from 67.5 kg to 57.5 kg). As shown in the figure below, his VO_{2} max increased consistently and proportionally to his weight loss (finally by the same 15\%). This confirms the theoretical relationship between body weight and running performance, as explained in a later chapter. So, if you want to get fitter and faster, our first tip would be to shed some body fat!

Running Science:
 The Laws of Physics and Physiology

We have developed a new and complete running model based on the laws of physics and physiology. The figure below illustrates the model, which enables us to calculate the race time exactly.

The model is based on the fact that your muscles and cardiovascular system form your human engine. Your human engine has a certain capacity, which can be described in terms of the traditional notion of oxygen uptake capacity (VO_{2} max) or, more accurately, in terms of the amount of power (P , in watts). Obviously, the power (P) depends on factors such as talent, training, time or distance, altitude, tapering and so on.

In the equilibrium condition, the power of your human engine (P) is used to surmount the running resistance ($P_{r^{\prime}}$) the air-resistance $\left(P_{a}\right)$ and the climbing resistance $\left(P_{c}\right)$. Consequently, we can calculate your running speed and race time when the conditions of the race (such as footing, distance, wind, temperature, hills and altitude) are known.

We believe that our running model is a major step forward as compared to the existing running models such as the well-known VDOT model of Jack Daniels ${ }^{8}$. These models were not based on the laws of physics and physiology, and as a result they are less accurate and do not allow exact calculations based on the impact of many variables.

Another major step forward is our model of the human physiology. Based on the biochemistry of the four energy systems of the human muscles, we managed to calculate the ultimate limits of human power as a function of time, as illustrated in the figure below.

Our calculations show that these ultimate limits of human power match perfectly well with the current world-class performances in running, cycling and other sports.

The Theory of Nearly Everything: How to Calculate and Optimize Your Race Time

We have never met a runner that did not want to get faster. Moreover, most runners are keen to learn the impact of all factors that may affect their performance. Consequently, in this book we have systematically analyzed the impact of nearly everything on your running performance. In 79 chapters, you will find the answers to questions like:
» How big is the power of your human engine?
» How fast can you race with your human engine?
» How much slower do you get with age?
» How much faster can you get by shedding body fat?
» How much faster can you get from training?
» How fast should you train?
» What is the ultimate limit of the human power and the world records?
» Is it possible to run a marathon in under two hours?
» What is the energy cost of running a flat course?
» What is the impact of the air resistance on your race time?
» How much time do you lose on account of wind?
» How big is the impact of pacemakers and running in a pack?
» How much faster could Usain Bolt run the 100-meter race in Mexico?
» How much slower do you run uphill and how much faster downhill?
» What is the impact of your running economy (RE)?
» What is the impact of your running dynamics (i.e., cadence and stride length)?
» How much faster are racing shoes?
» How big is the impact of nutrition and carbo-loading?
» How good and reliable are running power meters?
» Can you improve your RE using power meters?

Power Meters: A Revolution in Running

Recently, the first running power meters have been developed ${ }^{4}$. This means you are among the first generation of runners who can actually measure the power of your human engine in real time, each and every day. We tested the Stryd power meter and were quite impressed. The figure below shows that the Stryd data were as good as those of the VO_{2} measurements in the lab, the gold standard of physiological research!

Based on our research we believe that power meters may have an equally revolutionary impact on running as they have had in cycling. Using the data from their power meter, runners can now optimize their daily training and races. Also, it is now possible to quantitatively determine your running economy (RE). This means you can now optimize your RE and running form, based on hard data on the specific energy cost of running.

Who Are the Authors?

Hans van Dijk is a lifelong runner and scientist. Since retiring from a full professorship at Delft University of Technology, he has devoted his time to studying the laws of sports, developing new concepts and models and writing books and columns on running, cycling and other endurance sports. Hans has also developed the running and cycling calculators, enabling the readers to analyze and calculate their own performances. As an added bonus, his research has led to a spectacular improvement in his race times at the age of 60 !

岸SECRETし RUNNING

Ron van Megen is a lifelong runner, engineer and managing director. He has been a friend and running mate of Hans for over 30 years. He enjoys quantifying his running results and using new running technologies, including power meters. Just like Hans, he is also keen on improving his race times, and was happy to see them go down by 20% at the age of 55 ! He has organized the production of the book and provided many of the photographs.

[^0]
Website and Calculators

The website www.thesecretofrunning.com contains many papers, columns, media reports, Q\&As and our calculators, which the readers can use to calculate and predict their race times, depending on many variables. We welcome reactions from readers and runners around the world, and hope that the readers will enjoy the calculators and share their feedback!

Hans van Dijk and Ron van Megen
Leusden, the Netherlands, September 2016

PART I

THE BASICS OF RUNNING

1. RUNNING IS GOOD FOR YOU!

I have two doctors, my left leg and my right.
 - George M. Treveyan

A Dutch magazine once summarized the advantages of running with the headline "Miracle cure within reach!" A daily routine of exercise and running indeed provides a miracle cure. The best thing you can do if you want to improve your fitness and health is to become a runner.

A daily run has an amazing positive impact on your physical and mental health, while a lack of exercise is the single largest health risk in Western society-even larger than the risk of smoking! A paper in The Lancet of July 20125 concluded that presently 1 out of 10 people die from insufficient exercise. This adds up to 5.3 million premature deaths worldwide as opposed to 5.1 million from smoking.

Anima Sana In Corpore Sano

The importance of physical fitness has been known through the ages, as evidenced by the above Roman proverb which translates to "A healthy mind in a fit body." Running improves your fitness and health in many ways:

1. The daily training has a direct and large positive impact on your physical fitness. Your body will slowly be transformed into that of an athlete.
2. Your habits will automatically become healthier. You will start to eat and drink less and more healthily, you will stop smoking and you will drink only the occasional glass of alcohol.
3. Your blood values and other health indicators will change for the better.
4. Your disease risk will decrease and your resistance to diseases will increase.

Running also has a big positive impact on your mental health, as millions of runners experience every day. This will be discussed in the next chapter.

Positive Impact of Training on Physical Fitness

1. The oxygen transport capacity of your heart-lung system increases substantially.
2. Your heart rate drops (both at rest and during exercise).
3. Your heart gets stronger and more efficient.
4. Your blood pressure lowers and your blood vessels become more flexible.
5. Your lungs get stronger and more efficient.
6. Your muscles become stronger (particularly the muscles of the legs, heart and lungs).
7. Your bones become stronger.
8. Your joints stay agile and flexible.
9. The energy production in your muscles becomes more efficient.
10. You lose weight and become leaner.
11. Your metabolism and bowel movement improve.

Medical professionals and sport coaches know that the human body has a tremendous capacity to adapt to training. By training on a daily basis, you can gradually transform your body. On a long-term basis, your body gets fitter. Your body is then able to achieve better results with less effort. Many aspects of fitness respond to training, such as endurance, speed, strength, agility and coordination. The box summarizes this miracle of training.

We have not found any scientific papers detailing why runners automatically change their lifestyle, but this is by no means less certain. We have never met a serious runner who smokes, and canteens of athletic clubs have been nonsmoking zones long before legislation made this mandatory. Also almost all runners change their eating and drinking habits after some time. They realize that their fitness and performance will improve when they eat and drink less and healthier. Runners are aware of their body and the need to take care of it. You are what you eat!

If You Could Stuff the Impact of Running in a Pill, You Could Make a Fortune!

Positive Impact of Training on Health Parameters

1. Your cholesterol levels change for the better (LDL lower, HDL higher).
2. Your insulin values get better (lower).
3. Your blood glucose values get better (lower).
4. Your bone density increases.
5. Your body fat percentage (BFP) decreases markedly.
6. Your blood volume increases.
7. The level of hemoglobin and myoglobin in your blood increases.
8. The buffer capacity of your blood increases.
9. Your immune system becomes more effective.
10. The hormone levels in your brain change for the better (adrenalin lower, serotonin higher).
11. The enzymes in your muscles become more efficient.

The positive impact of running is really amazing. Obviously, you get fitter and your body looks much better. Additionally, many processes in your body change with the result that many blood values and other health parameters improve. The box summarizes the positive impact of training on health parameters.

Prevention Is Better Than Cure

Proverbs like "Good health is above wealth" and the above "Prevention is better than cure" sum up the importance of the positive impact of running on the risk of disease, as indicated in the box below. No wonder that some health insurance companies offer runners a rebate on their premium! Running is also used as a therapy in the treatment of mental health issues. In general, running is considered to be an excellent therapy for many physical and mental complaints.

```
Physical and Mental Complaints Positively Affected
by Training
1. Heart and coronary diseases
2. Diabetes
3. Osteoporosis
4. Stroke
5. Certain types of cancer (colon, uterus, breast)
6. Certain lung diseases (bronchitis, emphysema and asthma)
7. Depression, fears and stress
8. Rheumatoid arthritis
9. Cystic fibrosis
10. Aging problems
11. Gout
```

Of course, running should not be seen as a panacea to all problems for all people. However, we feel that running has strongly improved the quality of our own lives and many others. We hope that you will have the opportunity to try it and experience the advantages for yourself, just like we have.

The best thing you can do if you want to improve your fitness and health is to become a runner. Enjoy a workout in the great outdoors, take a shower and feel fit and strong!

2. RUNNING IS FUN!

Every day is a good day when you run!

Runners are positively addicted; they enjoy their sport and rejoice in life and running outdoors, preferably in nature. The authors of this book have run almost every Sunday morning for over 30 years in the beautiful scenery surrounding their home town of Leusden in the Netherlands. During these long runs, they enjoy the splendor of the landscape, which includes stunning heath fields, mysterious forests and historical landmarks. They spot deer, squirrels, woodpeckers and buzzards, while talking about work and life. When they return home after 25-30 kilometers, they are tired, but happy and full of beans!

At their Sunday morning runs Hans and Ron enjoy the splendor of the landscape, which includes stunning heath fields, mysterious forests and historical landmarks.
Positive Impact of Training on Mental Health and Well-Being

1. You feel better.
2. You sleep soundly and wake up smiling.
3. You become more calm and relaxed.
4. You enjoy your body and your performance.
5. You feel younger and fitter.
6. Your concentration improves.
7. You get good ideas and see things more clearly.
8. You enjoy life and feel more energetic.
9. You feel free and in control of your life.
10. Your willpower increases.
11. You become more resistant to stress.
12. The quality of your life increases.

These are the moments when life is lived most intensely. You experience strong feelings of freedom, happiness and power. Most probably, this is related to some subconscious memories of prehistoric man, who roamed the landscape in search of his prey. The positive impact of running on our mental health and well-being is very broad and diverse. They are summed up by the ancient Roman proverb Anima sana in corpore sano, meaning "A healthy mind in a fit body." The box gives an overview of these positive effects and experiences.

Somebody who does not run may find it hard to believe all these advantages. But they are experienced by almost everybody who starts running! You leave your home, meet the elements and enjoy running in the great outdoors. Soon, your body becomes your friend, and you feel fitter and happier. Even beginners soon become ambassadors of the sport and advocate the many advantages.

Scientific research has established that the natural hormones endorphin and serotonin are produced during running. These are the hormones that stimulate a euphoric sense of happiness, often called a runner's high. Unfortunately, not everybody produces the same amount of these hormones and it may take some time before you feel more happy than tired. But research has shown that the level of endorphin in our brain is statistically increased by running. Our ancestors may have needed this in order to escape
predators and survive in the prehistoric landscape. We can enjoy the feelings of happiness without the use of drugs. As a matter of fact, most runners are pleasantly addicted to their sport.

Running can be done at any available time slot and you can do it by yourself, relaxing or meditating, and listening to the birds or to the music on your iPod. It is also great fun to run with some friends and chat and exchange ideas. The most serious runners join an athletic club. Together with their comrades they travel to the great races, telling tall tales en route and celebrating their performances and successes. One of the nicest things about running is that everybody is a winner. You mainly compete with yourself, trying to improve your performance and running times. Once you have made your first progress, your sense of pride and self-esteem will only grow.

There is also a belief that runners enjoy happier marriages and do not divorce. Although this has not been studied scientifically, it is true in our own circle of running friends!

Finally, running is a tested cure for aging problems and guaranteed to improve the quality of the life of the elderly. In many places, running therapy is used to improve the mental well-being of senior citizens.

[^1]

The authors of this book enjoy running in the beautiful scenery surrounding their home town of Leusden in the Netherlands.

3. SPORTS PHYSIOLOGY
 The heart of a runner is a superior and more efficient organ.-Cardiologist Dr. J. Wolffe, MD

In this chapter we will give some background information on the human engine. In short, the human engine is made up of the leg muscles and the cardiovascular (or heart-lung) system, which ensures the supply of oxygen to and the disposal of metabolites from the muscles.

Which factors determine the capacity of the human engine? Which fuels are used by the muscles and how much power can be produced? And what is the impact of training? Training leads to huge adaptations in our body as a result of which we become fitter. In many handbooks ${ }^{6,7,8,9}$ and papers, this miracle of training has been described. Below, we present a summary of the most important aspects of the human engine.

Training Effects

Consistent and balanced training leads to the following adaptations of the muscles and the cardiovascular system:

1. Muscles

The leg muscles become stronger. There is an increase of:

- the number of mitochondria (the energy producers of the cells);
- the number and size of the muscle fibers;
- the number of capillaries and the blood flow through the capillaries;
- the stockpile of ATP (adenosine triphosphate) and glycogen;
- the number and activity of enzymes (improving the breakdown of glycogen and fatty acids).

Recent research has shown that training can even lead to a modification of the ratio of fast-twitch (FT) muscles to slow-twitch (ST) muscles. As a consequence, both speed and endurance can be improved by training. Such training should be continuous and focused. As a result of the training stress, initially some muscles will be damaged. You can feel this, as your muscles may ache the first days after the training. However, in time your body will react by strengthening the muscles. Consequently, they can better cope with the training load. Training your leg muscles is a protracted process and you have to put many miles in the tank to get the best results. The majority of the training can be done at an easy pace, but in order to develop the FT muscles it is necessary to do some speed work as well.

2. Heart

The adaptation of the heart to the training is most remarkable. The number of heart muscle fibers increases and so do the number of the capillaries and the blood flow through the capillaries, in particular those of the left heart chamber. As a result of this, the sports heart is much more efficient than the heart of untrained, sedentary people. We can illustrate this by considering the heart as a pump. The discharge of this pump (called cardiac output or heart minute volume) is the number of liters of blood pumped per minute. This equals the stroke volume (in liters) times the heart rate (HR, in beats per minute). The stroke volume of a trained runner can be twice as large as that of an untrained person. Consequently, at rest the heart of a trained runner has a large spare capacity and the HR can be quite low. It is quite common for well-trained runners to have a resting heart rate (RHR) of 40 or even lower! During exercise, the sports heart is capable of pumping much more blood, leading to an increased oxygen transport to the leg muscles. As the muscles need oxygen to produce energy, this oxygen transport capacity is the single most important factor to determine the performance in sports in general and in running in particular. The increase in stroke volume and the corresponding decrease of the RHR are important physiological adaptations of the heart. These adaptations increase the capacity of the heart. The sports heart is able to increase the blood flow during exercise from $5 \mathrm{l} /$ \min to $40 \mathrm{l} / \mathrm{min}$, thus by a factor of eight. This is achieved by a combination of the increase in the stroke volume and the HR. The adaptation of the sports heart depends mainly on the intensity of the training (a high HR and thus a high intensity of the training is required) and can occur relatively quickly. It is possible to achieve a significant reduction in the RHR in as little as six weeks.

3. Blood

The blood volume of a well-trained runner is some 10\% larger than that of an untrained person. This is mainly caused by an increase of the plasma volume. Of course this increase has a positive impact on the oxygen transport capacity. Another important adaptation is an increase in the flexibility of the blood vessels, leading to a decrease in blood pressure. The blood composition also changes: the cholesterol levels decrease, in particular those of the bad LDL and the total cholesterol. The good HDL increases. The level of hemoglobin may increase as a result of altitude training. Hemoglobin is vital for the oxygen transport by the blood. One gram of hemoglobin can transport 1.34 ml oxygen $\left(\mathrm{O}_{2}\right)$, so an average hemoglobin level of $15 \mathrm{~g} / 100 \mathrm{ml}$ blood leads to an oxygen transport capacity of $15 * 1.34=20 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood or 20%. A low level of hemoglobin may indicate an iron deficiency in the nutrition or increased iron loss. A high level of hemoglobin may be the result of blood or EPO doping. Finally the blood vessels dilate during exercise, leading to a reduction of the peripheral resistance and an automatic increase of the blood flow to the leg muscles. Less blood is diverted to nonessential body parts, such as the digestive system.

4. Lungs

As a result of training, your breathing muscles become stronger and the tidal volume (functional lung volume) increases. We illustrate this in the same way as we did for the heart: by considering the lungs as a pump. The capacity of this pump (called respiratory minute volume) is the tidal volume (in liters) times the breathing frequency (in breaths per minute). At rest, we breathe around 10-15 times per minute and the tidal volume is around 0.5 liter, so the respiratory minute volume is $5-7.5 \mathrm{I} / \mathrm{min}$. During exercise, the respiratory minute volume can increase dramatically to 180-200 I/min for welltrained athletes. This is the result of an increase of both the breathing frequency (to 60 breaths per minute) as well as the tidal volume (to 3-4 liters). The increase in the capacity of the lungs is even larger than that of the heart, so the lungs are usually not the limiting factor. Consequently, we can conclude that normally the oxygen transport capacity of the cardiovascular system is the main factor that determines the performance in endurance sports. However, we should remark that the breathing muscles themselves need a significant amount of oxygen. This can amount to some 10\% of the maximum oxygen transport capacity or VO_{2} max.

Energy Systems

In order to run we need energy. This energy is produced in our muscle cells, to be precise in the mitochondria. The cells can do this by using any (or a combination) of the four following energy systems:

1. ATP

Adenosine triphosphate (ATP) is the primary fuel for sprinters. ATP can be transferred to ADP very quickly, releasing a large amount of energy and thus providing the muscles with the largest amount of power. Moreover, the process does not require oxygen. However, the stockpile of ATP in the muscles is extremely small, lasting only for a short sprint of some 10 seconds. During recovery, the muscle cells are able to regenerate the ATP from the ADP. This process requires energy, which has to be supplied by the aerobic (using oxygen) breakdown of glycogen. The amount of oxygen needed to regenerate the ATP is called the oxygen debt. So, the energy debt is created during exercise and needs to be redeemed during recovery. As a result of training the efficiency of the stockpiling and the use and recovery of ATP can be increased. This requires many repetitions of short sprints at top speed.

Relief by the Dutch sprint queen Dafne Schippers on Naomi Sedney in the 4×100-meter relay at the World Championships Athletics 2015 in Beijing.

2. Anaerobic glycolysis

The anaerobic breakdown of glycogen or glycolysis is the most important energy system for the middle (400-800 meter) distances. Glycogen is composed of large chains of glucose (sugar) units. Glycogen is stored in the muscles and the liver. The blood also contains a small amount of glycose. Glycogen can be broken down anaerobically (without the use of oxygen) into lactic acid. This lactic acid may accumulate and cause exhaustion and pain in the muscles. During recovery, the lactic acid can be broken down using oxygen, thus redeeming another oxygen debt. With training the efficiency of the glycolysis can be improved. This requires training at a high intensity so that lactic acid is accumulating. This occurs only at a high HR, around $85-90 \%$ of the maximum HR (MHR). This is called the anaerobic limit or threshold limit. The anaerobic breakdown of glycogen produces less power than the ATP system, but it is somewhat more durable. The time to exhaustion is a few minutes, depending on the speed and fitness.

[^0]: Hans van Dijk (right) and Ron van Megen (left), authors of this book.

[^1]: Youngsters and seniors enjoy their sport and rejoice in life and running outdoors, preferably in nature.

