Applied and Numerical Harmonic Analysis

Sagun Chanillo, Bruno Franchi
Guozhen Lu, Carlos Perez

Eric T. Sawyer

Editors

Harmonic Analysis,
Partial Differential
Equations and
Applications

In Honor of Richard L. Wheeden

X Birkhiuser



X Birkhiuser



Applied and Numerical Harmonic Analysis

Series Editor

John J. Benedetto
University of Maryland
College Park, MD, USA

Editorial Advisory Board

AKkram Aldroubi
Vanderbilt University
Nashville, TN, USA

Douglas Cochran
Arizona State University
Phoenix, AZ, USA

Hans G. Feichtinger
University of Vienna
Vienna, Austria

Christopher Heil
Georgia Institute of Technology
Atlanta, GA, USA

Stéphane Jaffard
University of Paris XII
Paris, France

Jelena Kovacevié
Carnegie Mellon University
Pittsburgh, PA, USA

Gitta Kutyniok
Technische Universitit Berlin
Berlin, Germany

Mauro Maggioni
Duke University
Durham, NC, USA

Zuowei Shen
National University of Singapore
Singapore, Singapore

Thomas Strohmer
University of California
Davis, CA, USA

Yang Wang
Michigan State University
East Lansing, MI, USA

More information about this series at http://www.springer.com/series/4968


http://www.springer.com/series/4968

Sagun Chanillo * Bruno Franchi ¢ Guozhen Lu e
Carlos Perez ¢ Eric T. Sawyer

Editors

Harmonic Analysis, Partial
Differential Equations and
Applications

In Honor of Richard L. Wheeden

Birkhauser



Editors

Sagun Chanillo Bruno Franchi

Dept. of Math Department of Mathematics
Rutgers University University of Bologna
Piscataway Bologna, Italy

New Jersey, USA

Guozhen Lu Carlos Perez

Dept. of Math. Department of Mathematics
Univ. of Connecticut University of Bilbao

Storrs CT, USA Bilbao, Spain

Eric T. Sawyer

Dept of Math and Stat

McMaster University

Hamilton

Ontario, Canada

ISSN 2296-5009 ISSN 2296-5017  (electronic)
Applied and Numerical Harmonic Analysis
ISBN 978-3-319-52741-3 ISBN 978-3-319-52742-0  (eBook)

DOI 10.1007/978-3-319-52742-0
Library of Congress Control Number: 2017933468
Mathematics Subject Classification (2010): 35R03, 35J70, 42B20, 42B37, 42B25

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This book is published under the trade name Birkhduser, www.birkhauser-science.com

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Richard L. Wheeden



Preface

It is a pleasure to bring out this volume of contributed papers on the occasion of
the retirement of Richard Wheeden. Dick Wheeden as he is known to his many
friends and collaborators spent almost all his professional life at Rutgers University
since 1967, other than sabbatical periods at the Institute for Advanced Study,
Princeton, Purdue University, and the University of Buenos Aires, Argentina. He
has made many original contributions to Potential Theory, Harmonic Analysis, and
Partial Differential equations. Many of his papers have profoundly influenced these
fields and have had long lasting effects, stimulating research and shedding light.
In addition many colleagues and especially young people have benefitted from the
generosity of his spirit, where he has shared mathematical insight and provided
encouragement. We hope this volume showcases some of the research directions
Dick Wheeden was instrumental in pioneering.

1 Potential Theory and Weighted Norm Inequalities
for Singular Integrals

Dick Wheeden’s work in Analysis can be broken into two periods. The first period
consists of his work in Potential Theory, the theory of singular integrals with a deep
emphasis on weighted norm inequalities, and a second period from the late 1980s
where he and his collaborators successfully applied weighted norm inequalities to
the study of degenerate elliptic equations, subelliptic operators, and Monge-Ampere
equations.

Wheeden obtained his Ph.D. in 1965 from the University of Chicago under the
supervision of Antoni Zygmund. One very productive outcome of this association
with Zygmund is the beautiful graduate textbook Measure and Integral [36].

vii



viii Preface

Wheeden'’s thesis dealt with hypersingular integrals. These are singular integrals
of the form

W= [ G- SN ﬂ v, O<a<2,

where € (y) is homogeneous of degree zero, integrable on S"~! and satisfies
| vemdo =0 1=izn
sn—1

Since the singularity of the kernel " Jm is more than that of a standard Calder6n-

Zygmund kernel, one needs some smoothness on f to ensure boundedness. A typical
result found in [34] is

1Tf I p ey < C I lwawgmy» 1 <p <oo,

where W*? (R") is the fractional Sobolev space of order «. These results are
developed further in [35].

Another important result that Wheeden obtained at Chicago and in his early
time at Rutgers was with Richard Hunt. This work may be viewed as a deep
generalization of a classic theorem of Fatou which states that nonnegative harmonic
functions in the unit disk in the complex plane have nontangential limits a.e. on the
boundary, that is on the unit circle. The theorem of Fatou was generalized to higher
dimensions and other domains by Calderén and Carleson. The works [17, 18] extend
the Fatou theorem to Lipschitz domains, where now one is dealing with harmonic
measure on the boundary. The main result is

Theorem 1 Let @ C R" be a bounded domain with Lipschitz boundary. Let
o’ (Q), Q € IR, denote harmonic measure with respect to a fixed point Py € Q.
Then any nonnegative harmonic function u (P)in Q has nontangential limits a.e.
with respect to harmonic measure ¥ on 9.

The proof relies on constructing clever barriers and in particular on a penetrating
analysis using Harnack’s inequality on the kernel function K (P,Q), P € @, Q €
42, which is the Radon-Nikodym derivative

do” (Q)

KEOD= om0y

1.1 Singular Integrals and Weighted Inequalities

In 1967, Wheeden moved to Rutgers University and began a long and fruitful
collaboration with his colleague B. Muckenhoupt. Two examples of many seminal
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results proved by Muckenhoupt and Wheeden are the theorems on weighted norm
inequalities for the Hilbert transform and the fractional integral operator. To state
these results we recall a definition.

Definition 1 Let 1 < p < oo, and let w € L} . (R") be a positive function on R”.
Then w € A, if and only if for all cubes Q,

1 1 1 r—l
S?Gmlf)ﬂmlf”:) =

The A, condition had already appeared in Muckenhoupt’s pioneering work on
the Hardy-Littlewood maximal function [51]. But now Wheeden along with Hunt
and Muckenhoupt [19] carried it further. They considered the prototypical one-
dimensional singular integral, the Hilbert transform,

<0y,

—0 XY

Hf (x) = p.v.

and established the following trailblazing theorem.

Theorem 2 A nonnegative w € L}OC (R) satisfies the P weighted norm inequality
for the Hilbert transform,

(AWWWYSQ(AVWO{

Their key difficulty in establishing this result was to prove it when p = 2. Then
one can adapt the Calderén-Zygmund scheme for singular integrals and finish with
an interpolation. The case p = 2 had been studied earlier by Helson and Szegd
[47] using a completely different function theoretic approach, where they obtained
the equivalence of the weighted norm inequality with a subtle decomposition of the
weight involving the conjugate function. Theorem 2 finally characterized these two
equivalent properties in terms of a remarkably simple and checkable criterion, the
A, condition. Theorem 2 was the forerunner to a deluge of results by Wheeden in
the decades since, to multiplier operators by Kurtz and Wheeden [20], to the Lusin
square function by Gundy and Wheeden [16] (preceded by Segovia and Wheeden
[33]), and the Littlewood-Paley gI function by Muckenhoupt and Wheeden [24],
to name just a few. With Muckenhoupt, Wheeden also initiated a study of the two
weight theory for the Hardy-Littlewood maximal operator and Hilbert transform
[25] and with Chanillo a study of the two weight theory for the square function [6].
That is one now seeks conditions on nonnegative functions v, w so that one has

(RJUVU)”sc;(AQVWW)ﬂ

ifand only ifw € A,
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where T could be a singular integral operator, a square function, or the Hardy-
Littlewood maximal operator. The papers [25] and [6] stimulated much research in a
search for an appropriate two weight theory for singular integrals. In the early 1990s
Wheeden returned to this question and undertook a study of two weight problems
for the fractional integral. These results are described later in this preface.

The later “one weight” results mentioned above relied on the so-called good-
A inequalities [37], [40], a beautiful stratagem with which Wheeden was wholly
won over. We cite two instances of results proved by Wheeden, where good-A
inequalities play a key step in the proofs. The first example is joint work with
Chanillo [1] where he investigated a complete theory of differentiation based on
the Marcinkiewicz integral

Mf (X) = ( - |t|n+2

1

f (et ) +f(x—t)—2f(x)lzdt)z
This work viewed Mf as a rough square function and the aim was to treat it in the
spirit of the work of Burkholder and Gundy [37] for the Lusin square function and
establish control via a good-A inequality and maximal functions.

The second work with Muckenhoupt, destined to play a major role in Wheeden’s
interest in degenerate elliptic PDE in the late 1980s onward, was the paper [23] on
fractional integral operators /. Define for 0 < o < n,

fo)
ww=[ T
Rre X =y
Theorem 3 Let v be a positive function on R". Then for 31 = ; —sl<p<]

and 11) + ;, = 1, the weighted norm inequality for I,

(L I(Iaf)vl"); <o ([ lfvl”);,

holds if and only if for all cubes Q,

1 0 /1 N
q -P
SZP(|Q|/Q”) (|Q|/Q” ) =0

The corresponding inequality for the fractional maximal operator

1
Mof (x) = . dy,
f (x) S 1ot /Qlf(y)l y

which is dominated by the fractional integral I, |f| (x) = [g. le_f;i)r?‘fa dy, can be

established by a variety of techniques, and from this, the inequality for the larger
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(at least when f > 0) fractional integral /, can be obtained as a consequence of the
good-A inequality:

[{x € R" : Mof (x) < A and |Iof (¥)] > 2X}
= CBlix e R 1 |Iof ()] > A}y s

valid for nonnegative functions f, and for all A > 0 and 0 < 8 < 1 and where we
have used the notation:

|E|ye = / v (x)dx.
E

This striking inequality says, loosely speaking, that the conditional probability of
doubling the size of I,f, given a fixed lower threshold, is small unless the maximal
function M,f exceeds a smaller threshold—in other words, I,f cannot increase by
much at a given location unless M,f is already large there.

The fractional integral operator I,f plays a major role in the proofs of Sobolev
inequalities and localized versions of Sobolev inequalities called Poincaré inequali-
ties. These inequalities, together with the energy inequalities of Cacciopoli, are used
to derive via an iteration scheme due to Moser, a fundamental inequality for elliptic
PDE, called the Harnack inequality. The Harnack inequality can be then used to
obtain regularity in Holder classes of weak solutions of second order elliptic PDE.
Thus Wheeden was now led in a second period to the study of degenerate elliptic
PDE and the particular problem of regularity of weak solutions to degenerate elliptic
PDE. One of the earliest Poincaré-Sobolev inequalities he obtained was a natural
outcome of earlier work for the Peano maximal function [2] and is contained in his
paper with Chanillo [3]. To state the main theorem in [3], we need some notation.
We consider v, w locally integrable positive functions on R". Fix a ball B. We now
consider balls B, (xo) C B, centered at xo with radius » > 0. We assume that v is

doubling, i.e.,
/ v < C/ v,
Bar(x0) B (xo)

and we also assume the balance condition (which turns out to be necessary)

1 1
FETOLAS -c (fBruo) w\’
< , (1)
h fB v fB v
where h = |B|'ll .

For f € C' (B), we set fuye = \119| [af
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Theorem 4 Let1 < p < g < 0o0. Assume that w € A, that v is doubling, and that
the balance condition (1) holds. Then

(1) Forf € C, (B) we have the Sobolev inequality,

(f;v/ﬁ'q”)le = Ch(f:w/g'vf'pw);'

(2) Forf € C' (B) we have the Poincaré inequality,

(o [rsme) zan(! frsms)

The results in [3] when combined with energy estimates like Cacciopolli’s
inequality and an appropriate Moser iteration scheme lead to Harnack inequalities
[5] and estimates for Green’s function for elliptic operators in divergence form [7].

2 Degenerate Elliptic Equations, Subelliptic Operators,
and Monge-Ampére Equations

In the early 1990s, Wheeden’s interests turned to the study of Sobolev-Poincaré
inequalities in the setting of metric spaces, focusing in particular on Carnot-
Carathéodory metrics generated by a family of vector fields and on the associated
degenerate elliptic equations. Let X = {Xi,...,X,} be a family of Lipschitz
continuous vector fields in an open set 2 C R”, m < n. We can associate with
X a metric in Q2—the Carnot-Carathéodory (CC) metric d. = d.(x, y) or the control
metric—by taking the minimum time we need to go from a point x to a point
y along piecewise integral curves of £Xj,...,£X, (if such curves exist). The
generating vector fields of the Lie algebra of connected and simply connected,
stratified nilpotent Lie groups, also called Carnot groups, as well as vector fields
of the form A0, ...,A4,0,, where the A;’s are Lipschitz continuous nonnegative
functions, provide basic examples of vector fields for which the CC distance is
always finite. The latter vector fields are said to be of Grushin type in [10].
A (p, g)-Sobolev-Poincaré inequality in this setting is an estimate of the form

P
1 2

1 q 1
Ig—gBI"dx) <Cr Xjgl* | dx
(IB(xo,r)l B(xo.r) IB(x0,7)| o) Zj: 7

2
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for all metric balls B(xp,r) := {x; d.(xo,x) < r} and for all smooth functions
g with average gg on B(xg, r). Moreover, Lebesgue measure on both sides of (2)
can be replaced by two different measures which may arise from weight functions.
This case gives rise to what is called a weighted (or two-weight) Sobolev-Poincaré
inequality. The weight functions are chosen to satisfy conditions akin to [3] and [5].

Wheeden in 1994, in collaboration with Franchi and Gutiérrez [10], proved a
two-weight Sobolev-Poincaré inequality for a class of Grushin type vector fields
that best illustrates this circle of ideas.

In the Poincaré-Sobolev inequality that follows, the weight function u is assumed
doubling. The vector fields are given by, V,g(z) = (ng @),A(x) Vg (z)) for

z = (x,y) € R"™, A(x) is assumed continuous. The continuity of A(x) allows
the notion of a metric d.(:,-) which is naturally associated with the vector fields
3)3(1 S, ai A (x) 82_1 s A () ag by means of subunit curves to be defined [42].

To this metric one may now associate balls B (zo, r) which are balls in R"*" with
center 7o and radius r defined by B(zo,7) := {z; d.(20,2) < r}. With some further
stipulation on the weight v that will be stated later, one has the Poincaré-Sobolev
inequality displayed below:

1

1 o !
(lB (Zo, r)|u /B(zo,r) |g (Z) gB| (Z) dz)

1
1 / P
<Cr [Vig @I v (2) dZ)
( |B (ZO’ r)lv B(z0.r)

Further assumptions on the coefficients of the vector fields are A(x) lies in some
Reverse Holder class, i.e., A € RHy and A" € strong Ao, in the sense of David and
Semmes [41] suitably adapted to the Carnot-Caratheodory metric situation. The key
assumption on the weight v above is that there exists w € strong A, for which we
have

pw ! €A, (wl_llvdz) s, N=n+m.

The following “balance condition” which is by now well known to be necessary
[3] is also assumed:

r(B) { u(B) é< v(B) \”
7 (Bo) (M(Bo)) _C(U(Bo)) » Bc+ab.

A typical example of a function A is A (x) = |x|* for « > 0. The results allow
weights v that vanish to high order and include new classes of weight functions
even in the case A (x) = 1. Other important examples arise from weight functions v
that are Jacobians of Quasiconformal maps.

The paper [10] contains two remarkable technical results: first of all, it is proved
that metric balls for the CC distance satisfy the so-called Boman condition, that by
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now has been proved to be equivalent to several other geometric conditions. This
allows one to apply the Boman chain technique (as studied by Chua and Bojarski)
to suitable metric spaces equipped with doubling measures. This makes it possible
to obtain (2) from a “weak” type Sobolev-Poincaré inequality, where in the right-
hand side of (2) we replace the ball B(x, r) by an “homothetic” ball B(x, tr), T > 1.
The second important idea in this paper consists in the clever use of a technique
inspired by Long and Nie [50], and that will become more or less standard in the
future. To illustrate this idea, consider a fractional integral I and let u — |Xu| be a
local operator, where |Xu| denotes the norm of the Euclidean gradient or of some
generalized gradient (Xju, ..., X,u). This technique makes it possible to obtain
strong type inequalities from weak type inequalities of the form:

T>1,

1
e Bi= B fut) — > 2y = ¢ (O
In particular one obtains (1, g)-Sobolev-Poincaré inequalities in situations where
one has no recourse to the Marcinkiewicz interpolation theorem. This is achieved
by slicing the graph of u(x) — ug in strips [27%T!, 27*]. The local character of |Xu|
yields that |Xu| vanishes on constants, so that it is possible to reconstruct |Xu| from
these slices.

This technique enabled Wheeden in [9] (in collaboration with Franchi and Gallot)
and in [11] (in collaboration with Franchi and Lu) to prove Sobolev type inequalities
and Sobolev-Poincaré type inequalities on Carnot groups in the geometric case p =
1, starting from a subrepresentation formula of a compactly supported function (or
of a function of zero average on a ball) which expressed the function in terms of a
suitable fractional integral of its generalized gradient. In particular, this argument
yields forms of Sobolev inequalities which are related to isoperimetric inequalities
on Carnot groups.

More generally, on a metric space (S, p, m) endowed with a doubling measure
m, we say that a (p, g)-Sobolev-Poincaré inequality holds (1 < p < ¢ < o0) if for
any Lipschitz continuous function u there exists g € L (S) such that

loc

p

qd )111 c ( 1 el d )ﬁ
m <Cr _ g m s
[BCx, )| JBcr

(3)

1

- _ udm
[B(x, )| JBcr

1
- u
(|B(X, N JaGn

where g depends on u but is independent of B(x, r) (notice again we could look
for similar inequalities where we replace the measure m by two measures u, v).
We recall that the metric space (S, p, m) endowed with a measure m is said to be
locally doubling, if for the measure m there exists A > 0 such that the measure
m satisfies the doubling condition m(B(x,2r)) < Am(x,r) for all x € S and
r < ro. That is the doubling condition holds for all balls with small enough radii.
The central point in the proof in [12] (see also [8]) consists in establishing the
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equivalence between (p, g)-Sobolev-Poincaré inequalities in metric measure spaces
and subrepresentation formulae. The following result is typical:

Theorem 5 Let (S, p,m) be a complete metric space endowed with a locally
doubling measure m and satisfying the segment property (i.e., for each pair of
points x,y € S, there exists a continuous curve y connecting x and y such that
p(y(®),y(s)) = |t —s|.) Let u, v be locally doubling measures on (S, p, m). Let
By = B(xo, ro) be a ball, let t > 1 be a fixed constant, and let f, g € L'(tBy) be
given functions. Assume there exists C > 0 such that, for all balls B C tB,,

1 B r(B)
U(B)/Blf fB,U|duscM(B)/B|g|du, 4

where~f3,\, = V(IB) Jzfdv. If there is a constant 6(ro) > 0 such that for all balls B, B
with B C B C 1B,

u(B) (B)
>0 o,
wd =" b
then for (dv)-a.e. x € By,
p(x,y)
- v f d . 5
10 sl = [ 15 050 ©

We notice that, by Fubini-Tonelli Theorem, clearly (5) implies (4).

The proof of the above result relies on the construction of a suitable chain of balls
with controlled overlaps, starting from a ball B and shrinking around a point x € B.
Repeated use of the Poincaré inequality (4) yields the subrepresentation formula (5)
for any Lebesgue point of u.

Applying results on I” — L? continuity for fractional integrals, like for example
in [3, 29], from (5) one obtains (two-weight) Sobolev-Poincaré inequalities. In [22]
Lu and Wheeden were able to get rid of the constant T > 1 in the subrepresentation
formula (5).

A (po, 1)-Poincaré-inequality with po > 1 yielding a (p, ¢)-Sobolev-Poincaré
inequalities (and possibly with weights) is referred to as the self-improving property
of the Poincaré inequality. This notion had been introduced by Saloff-Coste in [53]
in the Riemannian or sub-Riemannian setting. The result in [53] states that the
(o, 1)-Poincaré inequality plus the doubling property of the measure yields (p, g)-
Sobolev-Poincaré inequalities. The arguments of [12] can be carried out only in the
case po = 1, basically since a(B) defined by

1 1/po
a(B) = r(B) (|B| / |glP° dx) (g and p fixed)
B

is not easy to sum, even over a class of disjoint balls B if py > 1.
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In particular, in [15], this difficulty was overcome by considering a sum operator
T (x) which is formed by summing a(B) over an appropriate chain of balls associated
with a point x:

Tx)= Y  aB).

B in a chain for x

Incase py = 1, the sum operator becomes an integral operator. The L” to LY mapping
properties of the sum operator can be derived in much the same way as those for
fractional integral operators, and these norm estimates for 7" lead to correspondingly
more general Poincaré estimates. These results by Wheeden and collaborators for
the weighted self-improving property of the Poincaré inequality on general metric
spaces may be found in [13-15].

In [21], the authors proved a counterpart of the equivalence between subrep-
resentation formulae and Sobolev-Poincaré inequality for higher order differential
operators. These results are counterparts of earlier results for the gradient derived
in [12]. In the higher order case, on the left-hand side of the Poincaré inequality,
instead of subtracting a constant given by the average of the function, one subtracts
appropriate polynomials, related to the Taylor polynomial on Euclidean spaces, and
related Folland-Stein polynomials [43] for the situation on stratified groups.

2.1 Two Weight Norm Inequalities for Fractional Integrals

Beginning in 1992, Wheeden returned to the study of the two weight inequality for
fractional integrals,

([anrs) zc([r) . sz0

and showed with Sawyer [29] that for ]| < p < ¢ < cocand 0 < a <
n, this inequality could be characterized by a simple two weight analogue of
Muckenhoupt’s condition:

1 1
o q / 12 p’
Azsq = Sup|Q|1_n (/ S[éw) (/ %U_P )1 < o0,
Q Q Q

where sp (x) = |Q| Ty |x — xp|*" is a “tailed” version of the scaled indicator
10| o 1¢ (x). This work built on the weak type work of Kokilashvili and Gabidza-

shvili. Unfortunately, this simple solution fails when p = g, but there it was shown
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that a “bumped-up” version of A; , suffices for the fractional integral inequality:
there is r > 1 such that

1 1
o 1_1 1 ar 1 N\ P
sup Q" Fa7r ( /w’) ( /v_’p) < o0.
0 10| Jo 0] Jo

A forerunner to the situation when p = ¢ is the paper by Chanillo and Wheeden [4],
where weighted fractional integral inequalities when p = ¢ are derived and then
applied to obtain Weyl type eigenvalue estimates for the Schrédinger operator with
appropriate potential.

The results on weighted norm inequalities for two weights for fractional integrals
and other similar results were then extended in [29] to spaces of homogeneous type.
Along the way two discoveries were made which we list:

e The failure of the Besicovitch covering lemma for the Heisenberg group
equipped with the usual left invariant metric and where all balls are chosen
using this metric (also obtained independently by Koranyi and Reimann).

* A construction of a dyadic grid for spaces of homogeneous type (a variant was
also obtained independently and a bit earlier by M. Christ [38], and a precursor
of this by G. David even earlier).

2.2 Fefferman-Phong and Hormander Regularity

The 2006 Memoir of Wheeden with Sawyer [30] is concerned with regularity of
solutions to rough subelliptic equations. Previously, regularity had been reasonably
well understood in two cases:

1. when the equation is subelliptic, and the coefficients are restricted to being
smooth,
2. when the equation is elliptic, and the coefficients are quite rough.

In the subelliptic case, there were two main types of result. First, there was the
algebraic commutator criterion of Hérmander for sums of squares of smooth vector
fields [48]. These operators had a special “sum of squares” form for the second order
terms, but no additional restriction on the smooth first order term. Second, there
was the geometric “control ball” criterion of Fefferman and Phong that applies to
operators with general smooth subelliptic second order terms, but the operators were
restricted to be self-adjoint. They obtained the following analogue of the Fefferman-
Phong theorem for rough coefficients, namely a quadratic form Q (x, §) = £Q (x) &
is subelliptic (which means that in a quantitative sense we leave unspecified, all
weak solutions u to the equation V'Q (x) Vu = ¢ are Holder continuous, i.e., u €
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C* for o > 0), if the control balls K (x, r) relative to Q satisfy

—

. |K(x,2r)| < CIK (x, r) | (doubling),

N

. D(x,r) C K (x,Cr®) (containment),

1 20 ZIJ 1 5 ) é
o] el (e

1 2 : 1 ) >
{|K|/K|W—WK|} SCF(K){IK*I/K* ||Vw||Q} ,

where w € Wé’z (K) in the Sobolev inequality and w € W'? (K*) in the Poincaré
inequality, where K* is the double of K.

The containment condition 2. is necessary. The Sobolev inequality 3. is necessary
for a related notion of subellipticity for the homogeneous Dirichlet problem for
L = V'Q (x) V: for all balls B there exists a weak solution u satisfying

2
Lu=f inB q\ 4
d < 2 ).
% u=00ndB Sl;plulw (/Blf| )

The Poincare inequality 4. is necessary for a related notion of hypoellipticity for the
homogeneous Neumann problem for nyp = n’Q (x) V: for all balls B there exists a
weak solution u satisfying

w

b

Lu = inB
{ f and [|ull;2p) < r(B)? I ll2s) -

nou = 0 on 0B

The doubling condition 1. is not needed and has been replaced more recently with
the theory of nondoubling measures pioneered by Nazarov, Treil, and Volberg.

They also obtained an analogue of the Hérmander theorem for diagonal vector
fields with rough coefficients. As a starting point, they showed that if the vector
fields X; = a; (x) ai,- were analytic, then the X; satisfied a “flag condition” if and
only if they satisfied the Hormander commutation condition. They then extended the
flag condition to rough vector fields and obtained regularity theorems for solutions
to the corresponding sums of squares operators.

2.3 The Monge-Ampére Equation

Using the regularity theorems in their 2006 Memoir [30] (see also [28], [31] and
[32]), Wheeden with Rios and Sawyer [26, 27] obtained the following geometric
result: A C? convex function # whose graph has smooth Gaussian curvature k ~ |x|?
is itself smooth if and only if the sub-Gaussian curvature k,—; of u is positive in 2.
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The question remains open for C*! convex solutions today—this much regularity
is assured for solutions to the Dirichlet problem with smooth data and nonnegative
Gaussian curvature k (Guan et al. [46]), but cannot in general be improved to c?
by the example of Sibony in which the tops and sides of the unit disk are curled up
to form a smooth boundary but with second order discontinuities at the start of the
curls.

The proof of the regularity theorem for C? solutions draws from a broad spectrum
of results—an n-dimensional extension of the partial Legendre transform due to the
authors [26], Calabi’s identity for ) u’o;;, the Campanato method of Xu and Zuily
[54], the Rothschild-Stein lifting theorem for vector fields [52], Citti’s idea (see, e.g.,
[39]) of approximating vector fields by first order Taylor expansions, and earlier
work of the authors in [26] generalizing Guan’s subelliptic methods in [44, 45].
The proof of the geometric consequence uses the Morse lemma to obtain the sum
of squares representation of k. The necessity of k,—; > 0 follows an idea of Iaia
[49]: the inequality k < (k,—1) »“1 shows that for a smooth convex solution u with
k (x) ~ |x|> we must have k,—; > 0 at the origin.
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On Some Pointwise Inequalities Involving
Nonlocal Operators

Luis A. Caffarelli and Yannick Sire

To Dick Wheeden, with admiration and affection

Abstract The purpose of this paper is threefold: first, we survey on several
known pointwise identities involving fractional operators; second, we propose a
unified way to deal with those identities; third, we prove some new pointwise
identities in different frameworks in particular geometric and infinite-dimensional
ones.

1 Introduction

The present paper is devoted to several pointwise inequalities involving several
nonlocal operators. We focus on two types of pointwise inequalities: the Cérdoba-
Coérdoba inequality and the Kato inequality. In order to keep the presentation
simple, we state the inequalities in question in the case of the fractional lapla-
cian, i.e. (—A)* in R”. Actually, in subsequent sections, we will generalize
these inequalities to a lot of different contexts. Furthermore, we will present a
unified proof for both inequalities based on some extension properties of some
nonlocal operators. Our proofs are elementary and simplify the original argu-
ments.
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2 L.A. Caffarelli and Y. Sire

The fractional Laplacian can be defined in various ways, which we review now.
It can be defined using Fourier transform by

F((=A)v) = &% F(v),

for v € H*(R"). It can also be defined through the kernel representation (see the
book by Landkof [12])

v(x) —v(x)

" |X _ x|n+23

(=A)*v(x) = C,, PV. / dx, (1)
R

for instance for v € S(R"), the Schwartz space of rapidly decaying functions. Here
we will only consider s € (0, 1).
The inequalities considered in the present paper are the following

Theorem 1.1 (Cérdoba-Cérdoba Inequality) Let ¢ be a C*(R") convex function.
Assume that u and ¢(u) are such that (—A)*u and (—A)’¢(u) exist. Then the
following holds

(=A)'o() < ¢’ W) (=A)"u. 2

The next theorem is the Kato inequality.

Theorem 1.2 (Kato Inequality) The following inequality holds in the distribu-
tional sense

(=A)|ul < sgn(u)(—=A)" u. 3)

The previous two theorems are already known: Theorem 1.1 is due to Cérdoba
and Cordoba (see [8, 9]). Theorem 1.2 is due to Chen and Véron (see [6]). Both
original proofs are based on the representation formula given in (1). This formula
holds only when the fractional laplacian is defined on R". The Cérdoba-Cérdoba
inequality is a very useful result in the study of the quasi-geostrophic equation (see
[9]). This inequality has been generalized in several contexts in [10] for instance or
[7]. In this line of research we propose a unified way of proving these inequalities
based on some extension properties for nonlocal operators.

2 Some New Inequalities

In this section, we derive by a very simple argument several inequalities at the
nonlocal level, i.e. without using any extensions, which are not available in these
frameworks.
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2.1 A Pointwise Inequality for Nonlocal Operators
in Non-divergence Form

Nonlocal operators in non-divergence form are defined by

Zu() = = [ (@t 9) + =) = 20)KO) dy
for a kernel K > 0. Denote
Syu(x) = —(u(x +y) +ux—y) — 2u(x)).

Then, considering a C? convex function ¢, one has by the fact that a convex function
is above its tangent line

8,0 ()(x) = —(p(ux + ) + gl =) = 20(u(x)) ) =
—(w(u(x + ) — o) + @ulx—y)) — qo(u(X)))
< @' )8 u(x).

Hence for the operator Z one has also an analogue of the original Cérdoba-Cérdoba
estimate.
2.2 The Case of Translation Invariant Kernels

Consider the operator

Lux) = [ (ulx) —u(y)K(x—y)dy

R~

where K is symmetric. Hence one can write

Lu(x) = /Rn (u(x) —u(x — h))K(h) dh

or in other words, by a standard change of variables

Lu(x) = ;/Rn Spu(x)K (h) dh
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We start with the following lemma, which is a direct consequence of the symmetry
of the kernel

Lemma 2.1

Lu(x) =0.
RVI

The following lemma is consequence of straightforward computations
Lemma 2.2
Spuv(x) = udpv + véu+
(x4 h) —v)ux +h) —u@x) + ((x = h) — V) (ulx — h) — u(x)).

Hence by the two previous lemma one has the useful identity

— Lu? = L — 2 —y) dxdy.
0 u 2/nu u+2/” Rn(u(x) u(y))°K(x —y) dxdy

Rn

2.3 Some Integral Operators on Geometric Spaces

In this section, we describe new operators involving curvature terms. These
operators appear naturally in harmonic analysis, as described below. They are of
the form

Lu(x) = / () — u()K (x. ) dy

where the non-negative kernel K is symmetric and has some geometric meaning.
The integral sign runs either over a Lie group or over a Riemannian manifold. By
exactly the same argument as in the previous section, one deduces trivially Cérdoba-
Coérdoba estimates for these operators. We now describe these new operators.

2.3.1 The Case of Lie Groups
Let G be a unimodular connected Lie group endowed with the Haar measure dx.
By “unimodular”, we mean that the Haar measure is left and right-invariant. If we

denote by G the Lie algebra of G, we consider a family

X={X,..., X}
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of left-invariant vector fields on G satisfying the Hérmander condition, i.e. G is
the Lie algebra generated by the X/s. A standard metric on G , called the Carnot-
Caratheodory metric, is naturally associated with X and is defined as follows: let
£ :[0,1] — G be an absolutely continuous path. We say that £ is admissible if
there exist measurable functions ay, ..., a; : [0, 1] — C such that, for almost every
t € [0, 1], one has

k
@) =) aXi(L@).

i=1

If £ is admissible, its length is defined by

1 k ;
IH=A<2]MMM§-
i=1

For all x,y € G, define d(x,y) as the infimum of the lengths of all admissible
paths joining x to y (such a curve exists by the Hormander condition). This distance
is left-invariant. For short, we denote by |x| the distance between e, the neutral
element of the group and x, so that the distance from x to y is equal to [y~ 'x].

For all > 0, denote by B(x, r) the open ball in G with respect to the Carnot-
Caratheodory distance and by V(r) the Haar measure of any ball. There exists d €
N* (called the local dimension of (G, X)) and 0 < ¢ < C such that, forall r € (0, 1),

cr? < V(r) < cr,

see [14]. When r > 1, two situations may occur (see [11]):

¢ Either there exist ¢, C, D > 0 such that, forall » > 1,
c? <vir)y<cr®
where D is called the dimension at infinity of the group (note that, contrary to d,
D does not depend on X). The group is said to have polynomial volume growth.
¢ Or there exist ¢, ¢z, C1, C, > 0O such that, forall » > 1,

c1e? <V(r) < Ce“”

and the group is said to have exponential volume growth.

When G has polynomial volume growth, it is plain to see that there exists C > 0
such that, for all » > 0,

V(2r) < CV(r), @)
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which implies that there exist C > 0 and x > 0 such that, for all » > 0 and all
6 >1,

V(Or) < COFV(r). ®)]

On a Lie group as previously described, one introduces the Kohn sub-laplacian

k
A=) X;.
i=1

On any Lie group G, it is natural by functional calculus to define the fractional
powers (—Ag)*, s € (0, 1) of the Kohn sub-laplacian —A. It has been proved in
[13, 15] (see also [16]) that for Lie groups with polynomial volume

Ju(x) — u(y)|?

1(=Ae)ulPag, < C / D=0 gy,
26 =€ [ vy x

It is therefore natural to consider the operator which is the Euler-Lagrange
operator of the Dirichlet form in the R.H.S. of the previous equation given by

() — )
Lulx) = /G vy y-a @

It defines a new Gagliardo-type norm, suitably designed for Lie groups (of any
volume growth). By the structure itself of this norm, one can prove as before a
Coérdoba-Cérdoba inequality.

2.3.2 The Case of Manifolds

Let M be a complete Riemannian manifold of dimension n. Denote d(x,y) the
geodesic distance from x to y. Similarly to the previous case it is natural to introduce
the new operators, Euler-Lagrange of suitable Gagliardo norms, given by

() —u(y)
Lu(x) = /M L;();’ y):t+2s dy

These new operators also satisfy Coérdoba-Coérdoba estimates (see [15] for an
account in harmonic analysis where these quantities pop up).
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3 A Review of the Extension Property

3.1 The Extension Property in R"

We first introduce the spaces
H'®R") ={ve ’(R") : [ (Fu)) e PR},

where s € (0,1) and F denotes Fourier transform. For Q C ]R’fl a Lipschitz
domain (bounded or unbounded) and a € (—1, 1), we denote

H' (Q.,y") = {u e LX(Q,y*dxdy) : |Vu| e LZ(Q,y“dxdy)}.

Leta = 1 — 2s. It is well known that the space H*(R") coincides with the trace
on 8R'_‘:’1 of H' (R'_‘:’l ,¥"). In particular, every v € H*(R") is the trace of a function

u € L} (R, y?) such that Vu € L*(Rt', y*). In addition, the function u which
minimizes
: a 2 . _
mm{/mjly |Vu|® dxdy : ulaRTl =v (6)

solves the Dirichlet problem

{ Lou := div (*Vu) = 0 in R’
@)

u=v on BR’fl.
By standard elliptic regularity, u is smooth in R’fl. It turns out that —y“u,(-,y)

converges in H—*(R") to a distribution # € H*(R") as y | 0. That is, u weakly
solves

div (y*Vu) =0 in R+
®)

—yoyu=nh on BRZ_‘H.
Consider the Dirichlet to Neumann operator

I,:H H@®R"Y > H*(R")
du

vi>Ty(v) =h:=— lim y*0,u = ,
() y—>0+y }u 81)“



