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Preface

The concept of green chemistry and sustainable development policy impose on industry
and technology to switch raw material base from the petroleum to renewable resources.
Remarkable attention has been paid to the environmental-friendly, green, and sus-
tainable materials for a number of applications during the past few years. Indeed, the
rapidly diminishing global petroleum resources, along with awareness of global envi-
ronmental problems, have promoted the way to switch toward renewable resources-
based materials. In this regard, biobased renewable materials can form the basis for
a variety of eco-efficient, sustainable products that can capture and compete markets
presently dominated by products based solely on petroleum-based raw materials. The
nature provides a wide range of the raw materials that can be converted into a poly-
meric matrix/adhesive/reinforcement applicable in composites formulation. Different
kinds of polymers (renewable/nonrenewable) and polymer composite materials have
been emerging rapidly as the prospective substitute to the ceramic or metal materials,
due to their advantages over conventional materials. In brief, polymers are macromo-
lecular groups collectively recognized as polymers due to the presence of repeating
blocks of covalently linked atomic arrangement in the formation of these molecules.
The repetitive atomic arrangements forming the macromolecules by forming covalent
links are the building block or constituent monomers. As the covalent bond formation
between monomer units is the essence of polymer formation, polymers are organic or
carbon compounds of either biological or synthetic origin. The phenomenon or process
of polymerization enables to create diverse forms of macromolecules with varied struc-
tural and functional properties and applications. On the other hand, composite materi-
als, or composites, are one of the main improvements in material technology in recent
years. In the materials science field, a composite is a multiphase material consisting of
two or more physically distinct components, a matrix (or a continuous phase) and at
least one dispersed (filler or reinforcement) phase. The dispersed phase, responsible for
enhancing one or more properties of matrix, can be categorized according to particle
dimensions that comprise platelet, ellipsoids, spheres, and fibers. These particles can be
inorganic or organic origin and possess rigid or flexible properties.

The most important resources for renewable raw materials originate from nature
such as wood, starch, proteins, and oils from plants. Therefore, renewable raw materials
lead to the benefit of processing in industries owing to the short period of replenish-
ment cycle resulting in the continuous-flow production. Moreover, the production cost
can be reduced by using natural raw materials instead of chemical raw materials. The
waste and residues from agriculture and industry have also been used as an alterna-
tive renewable resources for producing energy and raw materials such as chemicals,

Xix
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cellulose, carbon, and silica. For polymer composites applications, an intensifying focus
has been directed toward the use of renewable materials. Biobased polymers are one of
the most attractive candidates in renewable raw materials for use as organic-reinforcing
fillers such as flex, hemp, pine needles, coir, jute, kenaf, sisal, rice husk, ramie, palm,
and banana fibers, which exhibited excellence enhancement in mechanical and thermal
properties. For green polymer composites composed of inorganic-reinforcing fillers,
renewable resources-based polymers have been used as matrix materials.

Significant research efforts all around the globe are continuing to explore and
improve the properties of renewable polymers-based materials. Researchers are col-
lectively focusing their efforts to use the inherent advantages of renewable polymers for
miscellaneous applications. To ensure a sustainable future, the use of biobased materi-
als containing a high content of derivatives from renewable biomass is the best solution.

This volume of the book series ‘Handbook of Composites from Renewable Materials’
is solely focused on the ‘Biodegradable Materials. Some of the important topics include
but not limited to rice husk and its composites; biodegradable composites based on
thermoplastic starch and talc nanoparticles; recent progress in biocomposites of bio-
degradable polymer; microbial polyesters: production and market; biodegradable and
bioabsorbable materials for osteosynthesis applications; biodegradable polymers in tis-
sue engineering; composites based on hydroxyapatite and biodegradable polylactide;
biodegradable composites; development of membranes from biobased materials and
their applications; green biodegradable composites based on natural fibers; fully bio-
degradable all-cellulose composites; natural fiber composites with bioderivative and/
or degradable polymers; synthetic biodegradable polymers for bone tissue engineer-
ing; polysaccharides as green biodegradable platforms for building up electroactive
composite materials; biodegradable polymer blends and composites from seaweeds;
biocomposites scaffolds derived from renewable resources for bone tissue repair; pec-
tin-based composites; recent advances in conductive composites based on biodegrad-
able polymers for regenerative medicine applications; biosynthesis of PHAs and their
biomedical applications; biodegradable soy protein isolate/poly(vinyl alcohol) packag-
ing films; and biodegradability of biobased polymeric materials in natural environment.

Several critical issues and suggestions for future work are comprehensively discussed
in this volume with the hope that the book will provide a deep insight into the state
of the art of ‘Biodegradation’ of the renewable materials. We would like to thank the
Publisher and Martin Scrivener for the invaluable help in the organization of the edit-
ing process. Finally, we would like to thank our parents for their continuous encourage-
ment and support.

Vijay Kumar Thakur, Ph.D.
University of Cranfield, U.K.

Manju Kumari Thakur, M.Sc., M.Phil., Ph.D.
Himachal Pradesh University, Shimla, India
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Rice Husk and its Composites: Effects of Rice
Husk Loading, Size, Coupling Agents, and
Surface Treatment on Composites’ Mechanical,
Physical, and Functional Properties

A. Bilal, R.J.T. Lin* and K. Jayaraman

Centre for Advanced Composite Materials, Department of Mechanical
Engineering, University of Auckland, Auckland, New Zealand

Abstract

Among the many natural fibers used as reinforcements/fillers in the manufacture of natural
fiber composite materials, rice husk (RH) has not been attracting the deserved attention despite
its significant annual yield of tens of million tons due to the huge worldwide rice-consuming
population. This chapter presents an introduction to natural fibers and their composites
with an emphasis on RH and its use in the manufacture of composite materials. A thorough
review has been carried out on the manufacturing of RH composites with various polymers
and manufacturing processes. The effects of RH loading, size, surface treatment, and the use
of coupling agents on mechanical, physical, and functional properties of RH composites have
been discussed in detail. Although RH has also been used in the form of ash in manufacturing
different composites, this chapter only focuses on RH used in its natural form and its resulting
composites.

Keywords: Rice husk, coupling agents, surface treatment, composites manufacturing,
mechanical, physical and functional properties

1.1 Introduction

By definition, natural fibers are fibers which are not artificial or manmade (Ticoalu
et al., 2010). Natural fibers can be plant based such as wood, sisal, flax, hemp, jute,
kenaf, and ramie or animal based, e.g., wool, avian feather, and silk or mineral based
such as basalt and asbestos. They have been used as reinforcements with a variety of
materials for over 3000 years (Taj et al., 2007) and have demonstrated immense poten-
tial to replace synthetic fibers, such as glass and carbon fibers, because of their eco-
friendly and biodegradable characteristics.
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There is a large variation in the properties of natural fibers, which is affected by sev-
eral factors such as fiber’s place of growth, cultivation conditions, growth time, mois-
ture content, and form (yarn, woven, twine, chopped, and felt) (O’Donnell et al., 2004;
Ochi, 2008; Pickering et al., 2007). Table 1.1 shows various plant-based natural fibers
and their regions or countries of origin.

The mechanical and physical properties of natural fibers are greatly affected by
their chemical composition and structure (Taj et al., 2007). The majority of plant-
based natural fibers have cellulose, hemicellulose, and lignin as their main constitu-
ents along with pectin and waxes (John & Thomas, 2008). The reinforcing ability
of natural fibers depends on cellulose and its crystallinity (Bledzki & Gassan, 1999,
John & Thomas, 2008), whereas biodegradation, micro-absorption, and thermal
degradation of natural fibers depend on hemicelluloses (Taj et al., 2007), which is
hydrophilic in nature (John & Thomas, 2008). On the other hand, lignin which is
hydrophobic in nature plays a critical role in protecting the cellulose/hemicellulose
from severe environmental conditions such as water (Thakur & Thakur, 2014), and
is thermally stable but prone to UV degradation (Olesen & Plackett, 1999); pec-
tin gives plants flexibility, while waxes consist of various types of alcohols (John
& Thomas, 2008). Each of these constituents of natural fibers plays an important
role in determining the overall properties of natural fibrous materials (Thakur et al.,
2014b).

These fibers are chemically active and decompose thermo-chemically between
150 °C and 500 °C (cellulose between 275 °C and 350 °C; hemicellulose mainly between
150 °C and 350 °C; and lignin between 250 and 500 °C) (Kim et al., 2004).

The relative percentages of cellulose, hemicellulose, and lignin vary for different
fibers (John & Thomas, 2008). Table 1.2 shows the chemical composition of some
natural fibers.

Table 1.1 Fibers and their origin (Taj et al., 2007; Kim et al., 2007).

Fibers Regions/countries of origin

Flax Borneo

Hemp Former Yugoslavia, China

Sun hemp Nigeria, Guyana, Sierra Leone, India

Ramie Honduras, Mauritius

Jute India, Egypt, Guyana, Jamaica, Ghana, Malawi, Sudan, Tanzania
Kenaf Iraq, Tanzania, Jamaica, South Africa, Cuba, Togo

Roselle Borneo, Guyana, Malaysia, Sri Lanka, Togo, Indonesia, Tanzania
Sisal East Africa, Bahamas, Antigua, Kenya, Tanzania, India

Abaca Malaysia, Uganda, Philippines, Bolivia

Coir India, Sri Lanka, Philippines, Malaysia

Rice husk Asia, Pacific rim, North America
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Table 1.2 Chemical composition of some natural fibers (Malkapuram et al., 2009).

Cellulose | Hemicellulose | Lignin | Pectin | Wax | Moisture content
Fiber (wt%) (wt%) (Wt%) | (wt%) | (wt%) (Wt%)
Wood 40-50 15-25 15-30 - - 8-16
Jute 61-71.5 13.6-20.4 12-13 0.4 0.5 12.6
Hemp 70.2-74.4 17.9-22.4 3.7-5.7 0.9 0.8 10
Kenaf 31-39 21.5 15-19 - - -
Flax 71 18.6-20.6 2.2 2.3 1.7 10
Sisal 67-78 10-14.2 8-11 10 2.0 11
Coir 36-43 10-20 41-45 3-4 - 8
Bamboo 26-49 15-27.7 21-31 - - -

Generally, an increase in the cellulose content increases tensile strength and Young’s
modulus of fibers, whereas stiffness also depends on the micro-fibrillar angle. Fibers are
rigid, inflexible, and have high tensile strength if the micro-fibrils have an orientation
parallel to the fiber axis. If the micro-fibrils are oriented in a direction spiral to the fiber
axis, the fibers are more ductile (John & Thomas, 2008). This variation of material prop-
erties does cause some concerns about the use of such materials in the more advanced
and critical applications such as composite components for automobiles, infrastruc-
ture, aeronautical, and aerospace industries.

Agricultural wastes such as RH, wheat straw, rice straw, and corn stalks also come
under the category of natural fibers. Researchers are now increasingly looking toward
these by-products for manufacturing composite materials (Panthapulakkal et al.,
2005b; Nourbakhsh & Ashori, 2010; Ghofrani et al., 2012). The use of these agricul-
tural by-products provides a great opportunity to start a natural fiber industry in those
countries which have little or no wood resources (Ashori & Nourbakhsh, 2009). The
chemical components and contents of these materials are similar to those of wood and
they can be used in the form of fibers or particles (Yang et al., 2004; Yang et al., 2006b).
With the comparatively large quantity of agro-wastes from annual crops, Table 1.3,
there is a potential that wood can be substituted by these alternative materials (Ashori
& Nourbakhsh, 2009). These agro-residues are normally used as animal feed or house-
hold fuel and a large proportion is burned for disposal, which adds to environmental
pollution (Ashori & Nourbakhsh, 2009). These agricultural waste fibers can be formed
into chips or particles similar to wood (Yang et al., 2003), and their exploration and
utilization will contribute to rural agricultural-based economies in a positive way (Sain
& Panthapulakkal, 2006).

1.2 Natural Fiber-Reinforced Polymer Composites

Composite materials consist of two or more ingredients in which one component acts
as the matrix material and the other as the reinforcement (Pappu et al., 2015) and their
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Table 1.3 Annual production of natural fibers and sources (Taj et al., 2007).

World World
production production

Fiber source 10° tons Origin | Fiber source 10° tons Origin
Abaca 70 Leaf Nettles Abundant Stem
Bamboo 10,000 Stem Oil palm fruit | Abundant Fruit
Banana 200 Stem Palm rah - Stem
Broom Abundant Stem Ramie 100 Stem
Coir 100 Fruit Roselle 250 Stem
Cotton lint 18,500 Stem Rice husk Abundant Fruit/grain
Elephant grass | Abundant Stem Rice straw Abundant Stem
Flax 810 Stem Sisal 380 Stem
Hemp 215 Sun hemp 70 Stem
Jute 2,500 Wheat straw Abundant
Kenaf 770 Wood 1,75,000
Linseed Abundant Fruit

overall properties depend on the individual characteristics of the polymer matrix and
the reinforcement (Thakur et al., 2014a).

Although research on natural fiber-reinforced polymer composites (NFRCs) began
in 1908 (John & Thomas, 2008), it has not received much attention until from about
three decades ago (Westman et al., 2010). Nowadays, both the academic and industrial
sectors are showing a significantly increased interest in the use of NFRCs due to their
low cost, environmental friendliness, lightweight, biodegradable, and nonabrasive
nature (Rozman et al., 2000). Moreover, they have high electrical resistance, good
acoustic insulating properties, low energy consumption, less dermal and respiratory
irritation, good chemical and corrosion resistance, and are safe to handle (Ticoalu et al.,
2010; Taj et al., 2007; John & Thomas, 2008; Malkapuram et al., 2009; Ashori, 2008;
Mavani et al., 2007).

With the reported advantages of NFRCs and the growing awareness on the depletion
of petroleum-based resources as well as global environmental issues, the demand
of NFRCs has predicted to grow 15-20% annually with a growth rate of 15-20% in
automotive applications (Malkapuram et al., 2009), and 50% or more in building and
construction applications. North America is known as the leading region of NFRC
applications in the building and construction sectors with mainly wood fiber-based
composites, whereas Europe is the leading region of NFRC applications in the auto-
motive industries with mostly nonwood fiber-based composites (Lucintel, 2011). Of
course, there are other NFRC applications emerging in the other regions of the globe.
The earlier forecast for the NFRC market was with a compound annual growth rate
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(CAGR) of 10% to reach $3.8B by 2016 (Lucintel, 2011); interestingly, it has shown that
RH is emerging as an alternative for wood fibers in the applications of the building and
construction sectors.

Despite the promising forecast, NFRCs do have some inherent issues which need to
be addressed properly before their full potential can be realized for widespread indus-
trial applications in various sectors. Along with the nature of the fibers, the properties
of the resulting composites are also influenced by the type of polymer matrix used and
the amount and dimensions of the fiber. One of the critical issues is the weak adhe-
sion and poor interfacial bond strength between natural fibers and the matrix (Lee
et al., 2004; Hristov et al., 2004), and formation of aggregates during their processing
(Taj et al., 2007; Ashori, 2008), leading to inferior mechanical properties. Natural fibers
are polar and hydrophilic in nature and polymer matrix is nonpolar and hydrophobic,
which form the heterogeneous systems for NFRCs. Surface tension as well as polarity
of matrix and the fibers should be the same in order to have good interfacial adhesion
in NFRCs (Mwaikambo & Ansell, 2002), and a suitable adhesion is required between
the matrix and the filling material in order to improve mechanical properties of the
composites (Yang et al., 2004).

Due to the hydrophilicity of natural fibers, NFRCs could absorb water when used
in moist conditions which leads to the poor compatibility between fibers and hydro-
phobic polymer matrices (Yang et al., 2006a). The water absorption (WA) is due to the
hydrogen bond developed between the hydroxyl groups (OH) in the natural fibers and
water molecules present in the environment. Therefore, it is essential to prevent such
moisture infiltration so that swelling and/or permanent damage can be avoided for
effective usage of these cellulosic composites in wet conditions (Ishak et al., 2001).

In order to enhance the performance of NFRCs, the compatibility between hydro-
philic fibers and hydrophobic polymers can also be improved by using coupling agents
and/or surface modification of fibers. These measures can create efficient interfacial
bond strength between the fibers and the polymer matrices so that the effective load
transfer can be achieved when NFRCs are subjected to loading during applications.

Coupling agents, who have both the hydrophilic and hydrophobic properties neces-
sary to bond well with the fiber and the polymer matrix, make polymers more reactive
toward the surface of the natural fiber (Panthapulakkal et al., 2005b; Ershad-Langroudi
et al., 2008; Ahmad Fuad et al., 1993; Stark & Rowlands, 2003; Toro et al., 2005; Park
et al., 2004; Sombatsompop et al., 2005). They chemically link with the hydrophilic fiber
on one side and the hydrophobic polymer chain on the other to facilitate the wetting
of polymer surrounding the fibers. The interfacial region between the fiber and the
matrix has two types of interaction, i.e., primary and secondary bonding represented by
covalent bonding and hydrogen bonding, respectively (Rozman et al., 2005a; Rozman
et al., 2003).

1.3 Rice Husk and its Composites

Rice is a source of primary food for the majority of the population worldwide. Around
20 wt% of paddy received is husk which is separated from the rice grain during mill-
ing process (Chand et al., 2010); therefore, rice husk (RH) is abundantly available
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in significant quantity. The annual production of rice in 2012 was approximately
718 million tons according to the Food and Agriculture Organization of the United
Nations (FAO, 2012). RH is biodegradable, abundant, cost effective, lightweight, eas-
ily available, reduces the density of the finished product, has no residues or toxic by-
products, is environmentally friendly, low density, and recyclable (Yang et al., 2004;
Yang et al., 2006a; Ibrahim and Kuek, 2011; Rahman et al., 2010a; Premalal et al., 2002).

RH is mainly used as fuel, fertilizer in agriculture, landfill, and animal bedding (Kim
& Eom, 2001; Park et al., 2003; Mano, 2002), but the majority of RH is burnt for dis-
posal because of its resistance to decomposition in the ground, and its difficulty to
digest and low nutritional value for animals (Piva et al., 2004). In the past few years,
researchers have looked into the possibility of using RH, which is mostly an unwanted
material, for making composite materials (Razavi-Nouri et al., 2006).

Similar to other natural fibers, RH has cellulose, hemicelluloses and lignin as its
main constituents (George and Ghose, 1983), noticeably it also contains significant
amount of silica (20 wt%), which is present on its outer surface in the form of silicon-
cellulose membrane (Yoshida, 1962). RH has a cellulose content (35 wt%) similar to
that of wood (Marti-Ferrer et al., 2006; Rosa et al., 2009b) but has lower contents of
lignin (20 wt%) and hemicellulose (25 wt%) than those found in most other natural
fibers including wood. Since the thermal degradation of RH occurs due to the degra-
dation of hemicellulose and lignin (Kim et al., 2004), a similar mechanism to that of
wood, the lower content of lignin and hemicellulose allows RH-filled polymers to be
processed at higher temperatures as compared to wood polymer composites. While
wood has thermal stability issues at temperatures over just 200 °C, RH degrades and
decomposes at temperatures around 250 °C which enables the manufacturing of RH
composites to be performed at higher temperatures up to 250 °C (Marti-Ferrer et al.,
2006) without concern of losing material properties.

RH as reinforcement/filler in polymer-based composite materials has proven to be
a good option, provided there is good compatibility between RH and base polymer
matrix (Chand et al., 2010). Like other plant-based natural fibers, RH is hydrophilic
and its use with hydrophobic thermoplastics results in poor compatibility and adhe-
sion between the counter parts (Panthapulakkal et al., 2005a; Dhakal et al., 2007; Sain
& Kokta, 1993; Lai et al., 2003; Kazayawoko et al., 1999; Sain et al., 1993; Li & Matuana,
2003). One of the reasons for poor adhesion is the presence of silica, which is present
in the form of a silicon-cellulose membrane on the outer surface of RH (Vasishth,
1974). Removal of silica and other surface impurities can result in a better adhesion
between the fiber and the matrix and in turn improve properties of composites (Sain
& Panthapulakkal, 2006). Fiber matrix adhesion can also be improved by introducing
coupling agents (Panthapulakkal et al., 2005a; Dhakal et al., 2007; Kazayawoko et al.,
1999, Lai et al., 2003; Sain et al., 1993; Sain & Kokta, 1993).

RH is also more resistant to WA and fungal decomposition because it contains
20 wt% amorphous silica in combination with 30 wt% of a phenyl propanoid struc-
tural polymer called lignin (Rahman et al., 2010b). As mentioned earlier, common
NFRCs have a major disadvantage of WA mainly due to diffusion or infiltration (Czél &
Kanyok, 2007). In the case of RH, the percentage of cellulose is very low and the waxes
contained also make it comparatively less prone to water uptake.
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Composites made from RH have better dimensional stability under moist condi-
tions, good termite resistance, and high resistance to biological attack as compared to
wood-based materials (Kim et al., 2007). These RH composites have reasonable strength
and stiffness, no residues or toxic by-products when burnt, are recyclable, and low CO,
emissions when compared with inorganic-filler-reinforced polymer composites (Kim
et al., 2007; Yang et al., 2006a; Razavi-Nouri et al., 2006; Kim et al., 2005).

Flammability is another problem faced by natural fiber composites. Synthetic poly-
mers are petroleum based and are highly flammable. Various flame-retardant materials
such as halogen and phosphorus-based compounds can be used with polymers to
improve flame retardancy, but these flame retardants have a negative impact on the
environment and raise health concerns as well (Zhao et al., 2009). RH could prove
to be a good flame-retardant material in composites as it contains silica as one of
the main constituents. Silica is mainly responsible for the improved flame retardancy
by providing thermal shielding and diffusion barrier effects during the combustion
process (Zhao et al., 2009; Arora et al., 2012).

RH has been used both in thermoplastics and thermosets. The following subsec-
tions discuss a wide range of research undertaken in the area of RH composites. The
main focus of discussion is the type of polymers and manufacturing processes involved
in the manufacture of RH composites. The effects of RH loading and coupling agents
on mechanical, physical and functional properties of RH composites are also discussed.

1.3.1 Polymers Used in the Manufacturing of RH Composites

Over the past two decades, although both thermoplastics and thermosets have been
used as matrices in manufacturing of RH composites, yet thermoplastic polymers
have been the primary candidate for RH composites. Among the commonly available
thermoplastic resins, PE and PP of different densities (i.e., low, medium, and high)
have been used the most. On one hand, PE is primarily used as an exterior building
component. Low-density polyethylene (LDPE) has properties such as fluidity, flexibil-
ity, transparency, and a glossy surface and has been used mainly as a food packing
material in the forms of sheet and film; whereas, high-density polyethylene (HDPE)
has toughness, stiffness, solvent resistance, and electrical insulation and is mainly used
as an insulating material for electric wire and for producing various types of containers
(Yang et al., 2007b). The manufacturing of composites with RH as reinforcement and
PE (low, medium, and high densities) as polymer matrix has been carried out by quite
a number of researchers (Yang et al., 2007b; Kim et al., 2004; Panthapulakkal et al.,
2005b; Ghofrani et al., 2012; Yang et al., 2006a; Rahman et al., 2010a; Panthapulakkal
et al., 2005a; Rahman et al., 2010b; Zhao et al., 2009; Khalf & Ward, 2010; Najafi &
Khademi-Eslam, 2011; Favaro et al., 2010; Syafri et al., 2011; Rahman et al., 2011; Bilal
et al., 2014a-c).

On the other hand, PP is one of the most widely used packaging materials (George
et al., 2007). It is also commonly used in the automotive industry and recently has been
studied for use as building profiles (Razavi-Nouri et al., 2006). Similar to PE, compos-
ites manufactured with PP (low, medium, and high densities) and RH has also been
widely researched (Kim et al., 2007; Kim et al., 2004; Ashori & Nourbakhsh, 2009;
Yang et al., 2004; Yang et al., 2006a,b; Ishak et al., 2001; Ershad-Langroudi et al., 2008;
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Table 1.4 Manufacturing processes used in the manufacture of RH composites.

Manufacturing
process Reference
Injection Kim et al., 2007; Ashori & Nourbakhsh, 2009; Yang et al., 2004;
molding Yang et al., 2006b; Yang et al., 2006a; Ishak et al., 2001; Ershad-
Langroudi et al., 2008; Rahman et al., 2010a; Razavi-Nouri et al.,
2006; Rahman et al., 2010b; Czél & Kanyok, 2007; Yang et al., 2007b;
Favaro et al., 2010; Rahman et al., 2011; Bilal et al., 2014b; Bilal et al.,
2014c; Bilal et al., 2014a; Yang et al., 2007a; He et al., 2011; Yussuf
et al., 2010, de Carvalho et al., 2011; Nourbakhsh et al., 2014
Compression Chand et al., 2010; Premalal et al., 2002; Rosa et al., 2009b; Zhao et al.,
molding 2009; Syafri et al., 2011; Rosa et al., 2009a; Santiagoo et al., 2011
Extrusion Aminullah et al., 2010; Wang et al., 2014; Panthapulakkal et al., 2005a;
Panthapulakkal et al., 2005b
Hot press Ghofrani et al., 2012; Rozman et al., 2000; Rozman et al., 2005a;
Rozman et al., 2003; Khalf & Ward, 2010; Najafi & Khademi-Eslam,
2011; Nordyana et al., 2013; Zuhaira et al., 2013; Zurina et al., 2004;
El Sayed et al., 2012; Ndazi et al., 2007; Rozman et al., 2005b; Bakar
& Muhammed, 2011
Others Arora et al., 2012; Sheriff et al., 2009; Ahmad et al., 2007; Hua et al.,
2011; Sharma & Chand, 2013

Premalal et al., 2002; Razavi-Nouri et al., 2006; Rosa et al., 2009a,b; Czél & Kanyok,
2007; Santiagoo et al., 2011; El Sayed et al., 2012; Aminullah et al., 2010; Yang et al.,
2007a; He et al., 2011).

Apart from PE and PP, phenol formaldehyde (PF) (Bhatnagar, 1994; Ndazi et al.,
2007), polyurethane (PU) (Sheriff et al., 2009; Rozman et al., 2003), polyester (Rozman
et al., 2005a; Ahmad et al., 2007, Rozman et al., 2005b), polymer lactic acid (PLA)
(Yussuf et al., 2010, Hua et al., 2011), polyvinylchloride (PVC) (Chand et al., 2010),
polyvinyl alcohol (PVA) (Arora et al., 2012), polystyrene (Rozman et al., 2000), urea
formaldehyde (UF) (Bakar & Muhammed, 2011), and epoxy (Ibrahim & Kuek, 2011)
have also been used to manufacture composites with RH.

Injection molding, compression molding, extrusion, and hot press are the most com-
monly used techniques to manufacture RH-reinforced composite materials. The manu-
facturing of composites with different manufacturing processes using RH is shown in
Table 1.4.

1.3.2 Effects of RH Loading on the Properties of RH Composites

RH has been used with different percentages for the manufacturing of composites, as
shown in Table 1.5. The effect of RH loading on mechanical, physical, and functional
properties has been widely investigated.



