
# Handbook of Composites from Renewable Materials

**BIODEGRADABLE MATERIALS** 



Edited by VIJAY KUMAR THAKUR,

MANJU KUMARI THAKUR and MICHAEL R. KESSLER



# Handbook of Composites from Renewable Materials

#### **Scrivener Publishing**

100 Cummings Center, Suite 541J Beverly, MA 01915-6106 www.scrivenerpublishing.com

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

# Handbook of Composites from Renewable Materials

Edited by Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler

**Volume 1: Structure and Chemistry** 

ISBN: 978-1-119-22362-7

**Volume 2: Design and Manufacturing** 

ISBN: 978-1-119-22365-8

**Volume 3: Physico-Chemical and Mechanical Characterization** 

ISBN: 978-1-119-22366-5

**Volume 4: Functionalization** 

ISBN: 978-1-119-22367-2

**Volume 5: Biodegradable Materials** 

ISBN: 978-1-119-22379-5

**Volume 6: Polymeric Composites** 

ISBN: 978-1-119-22380-1

**Volume 7: Nanocomposites: Science and Fundamentals** 

ISBN: 978-1-119-22381-8

**Volume 8: Nanocomposites: Advanced Applications** 

ISBN: 978-1-119-22383-2

8-volume set

ISBN 978-1-119-22436-5

# Handbook of Composites from Renewable Materials

# Volume 5 Biodegradable Materials

Edited by

Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler



This edition first published 2017 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2017 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

#### Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

#### Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

#### $Library\ of\ Congress\ Cataloging-in-Publication\ Data$

ISBN 978-1-119-22379-5

Names: Thakur, Vijay Kumar, 1981- editor. | Thakur, Manju Kumari, editor. |

Kessler, Michael R., editor.

Title: Handbook of composites from renewable materials / edited by Vijay

Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler.

Description: Hoboken, New Jersey: John Wiley & Sons, Inc., [2017] | Includes

bibliographical references and index.

Identifiers: LCCN 2016043632 (print) | LCCN 2016056611 (ebook) | ISBN 9781119223627 (cloth: set) |

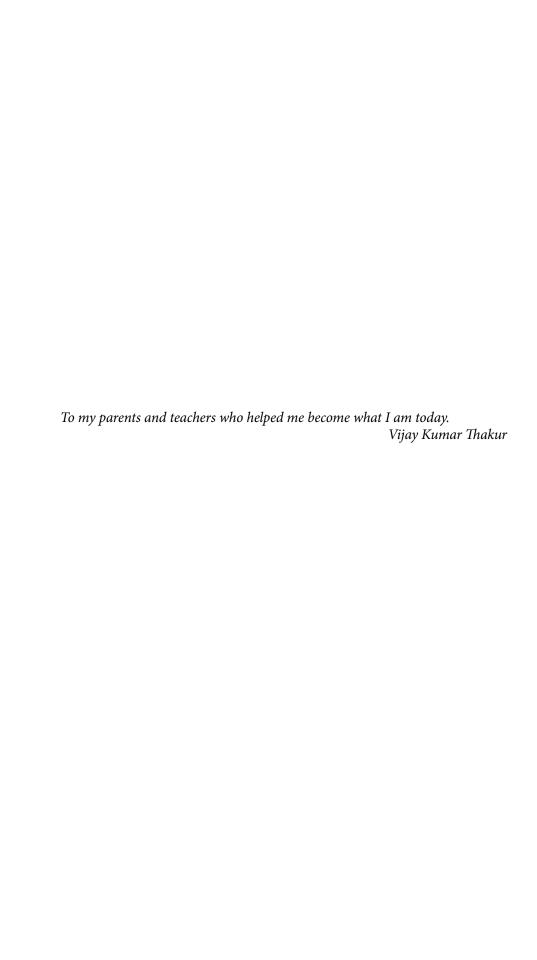
ISBN 9781119224235 (pdf) | ISBN 9781119224259 (epub)

Subjects: LCSH: Composite materials--Handbooks, manuals, etc.  $\mid$  Biodegradable

plastics--Handbooks, manuals, etc. | Green products--Handbooks, manuals, etc.

Classification: LCC TA418.9.C6 H335 2017 (print) | LCC TA418.9.C6 (ebook) |

DDC 620.1/18--dc23


LC record available at https://lccn.loc.gov/2016043632

Cover image: Vijay Thakur

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India

Printed in



# **Contents**

| Pro | eface |               |                                                                                                                                                 | xix |  |  |  |  |
|-----|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| 1   | Cou   | pling A       | and its Composites: Effects of Rice Husk Loading, Size,<br>Agents, and Surface Treatment on Composites' Mechanical,<br>nd Functional Properties | 1   |  |  |  |  |
|     | A. E  | ilal, R.      | J.T. Lin and K. Jayaraman                                                                                                                       |     |  |  |  |  |
|     | 1.1   | Introd        | luction                                                                                                                                         | 1   |  |  |  |  |
|     | 1.2   | Natur         | al Fiber-Reinforced Polymer Composites                                                                                                          | 3   |  |  |  |  |
|     | 1.3   | Rice F        | Husk and its Composites                                                                                                                         | 5   |  |  |  |  |
|     |       | 1.3.1         | Polymers Used in the Manufacturing of RH Composites                                                                                             | 7   |  |  |  |  |
|     |       | 1.3.2         | Effects of RH Loading on the Properties of RH Composites                                                                                        | 8   |  |  |  |  |
|     |       | 1.3.3         | Effects of RH Size on the Properties of Composites                                                                                              | 11  |  |  |  |  |
|     | 1.4   | Effect        | s of Coupling Agents on the Properties of RH Composites                                                                                         | 12  |  |  |  |  |
|     |       | 1.4.1         | Effects of Surface Treatment of RH on the Properties of                                                                                         |     |  |  |  |  |
|     |       |               | RH Composites                                                                                                                                   | 14  |  |  |  |  |
|     |       | 1.4.2         | Potential Applications of RH Composites                                                                                                         | 15  |  |  |  |  |
|     | 1.5   | Sumn          | nary                                                                                                                                            | 15  |  |  |  |  |
|     | Refe  | erences       |                                                                                                                                                 | 16  |  |  |  |  |
| 2   | Bio   | degrada       | able Composites Based on Thermoplastic Starch and Talc                                                                                          |     |  |  |  |  |
|     |       | Nanoparticles |                                                                                                                                                 |     |  |  |  |  |
|     |       | -             | Castillo, Olivia V. López, M. Alejandra García,                                                                                                 |     |  |  |  |  |
|     |       |               | Villar and Silvia E. Barbosa                                                                                                                    |     |  |  |  |  |
|     | 2.1   |               | luction                                                                                                                                         | 23  |  |  |  |  |
|     | 2.2   | Thern         | noplastic Starch-Talc Nanocomposites                                                                                                            | 27  |  |  |  |  |
|     |       |               | Effects of Talc Presence on TPS Structure                                                                                                       | 28  |  |  |  |  |
|     |       | 2.2.2         | Effects of Talc Presence on TPS Thermal Properties                                                                                              | 34  |  |  |  |  |
|     |       |               | Effects of Talc Presence on TPS Dimensional and                                                                                                 |     |  |  |  |  |
|     |       |               | Thermal Stability                                                                                                                               | 36  |  |  |  |  |
|     |       | 2.2.4         | Effects of Talc Presence on TPS Optical Properties                                                                                              | 38  |  |  |  |  |
|     | 2.3   |               | f Talc Samples with Different Morphologies                                                                                                      | 40  |  |  |  |  |
|     |       | 2.3.1         | Talc Morphology Influence on Composite Structure                                                                                                | 40  |  |  |  |  |
|     |       | 2.3.2         | Talc Morphology Influence on Composite Thermal Properties                                                                                       | 44  |  |  |  |  |
|     |       | 2.3.3         | Talc Morphology Influence on Composite Final Properties                                                                                         | 45  |  |  |  |  |
|     | 2.4   | Packa         | ging Bags Based on TPS-Talc Nanocomposites Films                                                                                                | 49  |  |  |  |  |
|     |       | 2.4.1         | Thermo-Sealing Capacity                                                                                                                         | 49  |  |  |  |  |
|     |       |               |                                                                                                                                                 |     |  |  |  |  |

|   | 2.5<br>Refe | 2.4.2<br>2.4.3<br>Conclusive |            | sistance<br>ess of Bags Based on TPS–Talc Nanocomposite Films | 51<br>52<br>54<br>54 |
|---|-------------|------------------------------|------------|---------------------------------------------------------------|----------------------|
| 3 | Rec         | ent Pro                      | gress in I | Biocomposite of Biodegradable Polymer                         | 61                   |
|   | Vice        | ente de                      | Oliveira S | Sousa Neto and Ronaldo Ferreira do Nascimento                 |                      |
|   | 3.1         | Introd                       | luction    |                                                               | 61                   |
|   | 3.2         | Biode                        | gradable   | Polymers: Natural Origin and Development                      | 63                   |
|   | 3.3         | Polysa                       | ccharide   | S                                                             | 63                   |
|   |             | 3.3.1                        |            | charides from Vegetal Sources: Development                    |                      |
|   |             |                              |            | plication                                                     | 64                   |
|   |             |                              | 3.3.1.1    | Cellulose                                                     | 64                   |
|   |             |                              |            | Chitosan                                                      | 69                   |
|   | 3.4         |                              | •          | nesis Produced Polymer                                        | 77                   |
|   |             | 3.4.1                        | Polylact   |                                                               | 77                   |
|   |             |                              |            | Polylactic Acid: Structure and Properties                     | 77                   |
|   |             |                              |            | Poly(lactic Acid): Monomer from the Biomass                   | 77                   |
|   |             |                              |            | Application and Advantage of Productions of PLA               | 78                   |
|   |             |                              |            | Packaging Materials: PLA                                      | 79                   |
|   |             | _                            |            | PLA Fibers: Environment-Friendly Materials                    | 80                   |
|   | 3.5         | •                            |            | uced by Microorganism or by Plants                            | 83                   |
|   |             | 3.5.1                        |            | lroxy-Alcanoates                                              | 83                   |
|   |             |                              | 3.5.1.1    | PHA Blended with Others Biopolymers                           |                      |
|   |             |                              |            | and Eco-Composites                                            | 84                   |
|   |             |                              |            | PHA-Based Green Renewable Eco-Composites                      | 84                   |
|   |             |                              | 3.5.1.3    | Poly-3-hydroxybutyrate: Antiadhesion Applications             | 86                   |
|   | 3.6         |                              | uding Re   | marks                                                         | 87                   |
|   | Rete        | erences                      |            |                                                               | 88                   |
| 4 | Mic         | robial I                     | Polyesters | s: Production and Market                                      | 95                   |
|   | Neh         | a Patni                      | , Yug Sar  | aswat and Shibu G. Pillai                                     |                      |
|   | 4.1         | Introd                       | luction    |                                                               | 95                   |
|   | 4.2         | Polyh                        | ydroxy Al  | lkanoates                                                     | 96                   |
|   |             | 4.2.1                        | Product    | tion                                                          | 96                   |
|   |             | 4.2.2                        | Applica    | tions                                                         | 97                   |
|   |             | 4.2.3                        | Organis    | sms                                                           | 98                   |
|   |             | 4.2.4                        | Co-Cul     | ture Production Strategy                                      | 100                  |
|   |             | 4.2.5                        | Biocom     | patibility and Rate of Drug Release                           | 100                  |
|   | 4.3         |                              | ial Cellul |                                                               | 100                  |
|   |             | 4.3.1                        | Product    |                                                               | 101                  |
|   |             | 4.3.2                        | Applica    |                                                               | 101                  |
|   | 4.4         | •                            |            | or Polylactide                                                | 102                  |
|   | 4.5         |                              | ycolic Ac  |                                                               | 102                  |
|   | 4.6         |                              |            | of the Local and World Scenario of Bioplastics                | 103                  |
|   | 4.7         | Summ                         | nary       |                                                               | 103                  |
|   | Refe        | rences                       |            |                                                               | 104                  |

| App  | Biodegradable and Bioabsorbable Materials for Osteosynthesis Applications: State-of-the-Art and Future Perspectives |                                                              |     |
|------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|
|      |                                                                                                                     | rolina Cifuentes, Rosario Benavente, Marcela Lieblich        |     |
|      | -                                                                                                                   | uis González-Carrasco                                        |     |
| 5.1  |                                                                                                                     | luction                                                      | 109 |
| 5.2  |                                                                                                                     | of-the-Art                                                   | 111 |
|      | 5.2.1                                                                                                               | Poly(α-Hydroxyacids) as Biodegradable Materials              |     |
|      |                                                                                                                     | for Osteosynthesis Implants                                  | 111 |
|      | 5.2.2                                                                                                               | Mechanical Properties of Polylactic Acid                     | 113 |
|      |                                                                                                                     | Degradation of Polylactic Acid                               | 114 |
|      | 5.2.4                                                                                                               | 1 / /                                                        | 117 |
| 5.3  |                                                                                                                     | e Perspectives                                               | 117 |
|      | 5.3.1                                                                                                               | O                                                            | 118 |
|      |                                                                                                                     | 5.3.1.1 Magnesium as a Biodegradable Material for            |     |
|      |                                                                                                                     | Osteosynthesis Implants                                      | 118 |
|      |                                                                                                                     | 5.3.1.2 Mechanical Properties of Mg and its Alloys           | 119 |
|      |                                                                                                                     | 5.3.1.3 Degradation of Mg and its Alloys                     | 120 |
|      |                                                                                                                     | 5.3.1.4 Biocompatibility of Mg and its Alloys                | 123 |
|      | 5.3.2                                                                                                               | 7 0 1                                                        | 125 |
|      |                                                                                                                     | 5.3.2.1 Mechanical Properties of Polymer/Mg Composites       | 128 |
|      |                                                                                                                     | 5.3.2.2 Degradation of Polymer/Mg Composites                 | 129 |
|      |                                                                                                                     | 5.3.2.3 Biocompatibility of Polymer/Mg Composites            | 130 |
| 5.4  | Concl                                                                                                               | usions                                                       | 131 |
| Refe | erences                                                                                                             |                                                              | 132 |
| Bio  | degrada                                                                                                             | able Polymers in Tissue Engineering                          | 145 |
| Silv | ia Ioan                                                                                                             | and Luminita Ioana Buruiana                                  |     |
| 6.1  | Introd                                                                                                              | luction                                                      | 145 |
| 6.2  | Biode                                                                                                               | gradable Materials for Bone Tissue Engineering               | 146 |
| 6.3  | Bioco                                                                                                               | mpatibility and Biodegradation of Polymer Networks           | 147 |
|      | 6.3.1                                                                                                               | Parameters Influencing the Host Response                     | 152 |
|      | 6.3.2                                                                                                               | Host Response to Biomaterials                                | 152 |
|      | 6.3.3                                                                                                               | Materials Selected for Implantable Devices                   | 152 |
|      | 6.3.4                                                                                                               | Implantable Medical Devices                                  | 153 |
| 6.4  | Bioma                                                                                                               | aterial Reaction to Foreign Bodies                           | 153 |
| 6.5  | Design                                                                                                              | n of Immunomodulatory Biomaterials                           | 154 |
| 6.6  |                                                                                                                     | cations Potential of Polyurethanes in Engineering Tissues    | 154 |
|      | 6.6.1                                                                                                               | Biodegradation of Poly(urethane)s                            | 157 |
|      | 6.6.2                                                                                                               | Biodegradable Polyurethane Scaffolds for Regeneration        |     |
|      |                                                                                                                     | and Tissue Repair                                            | 158 |
|      | 6.6.3                                                                                                               | Tissue In-growth After Implantation of the                   |     |
|      | 2.0.0                                                                                                               | Polyurethane Scaffold                                        | 158 |
|      | 6.6.4                                                                                                               | <i>In Vivo</i> Cytokine-Associated Responses to Biomaterials | 158 |
|      | 6.6.5                                                                                                               | Thermostable, Biodegradable, and Biocompatible               | 100 |
|      | 3.0.0                                                                                                               | Hyperbranched Polyurethane/Ag Nanocomposites                 | 159 |
|      | 666                                                                                                                 | Polyurethane Composite Scaffolds Containing Bioglass         | 160 |

# x Contents

|   | 6.7  | Applica   | ation Potential of Polycarbonates                           | 160  |
|---|------|-----------|-------------------------------------------------------------|------|
|   |      | 6.7.1     | Biocompatible Polycarbonates                                | 160  |
|   |      | 6.7.2     | ÷                                                           | 161  |
|   |      | 6.7.3     | Polycarbonates for Tissue Scaffold                          | 163  |
|   |      | 6.7.4     | Polycarbonate Biomaterials for Tissue and                   |      |
|   |      |           | Organ Regeneration                                          | 163  |
|   | 6.8  | Poly(ar   | nido Amine)                                                 | 164  |
|   |      | 6.8.1     | Gene Transfer via Hydrolytic Cationic Ester Polymers        | 164  |
|   |      | 6.8.2     | Poly(amido Amine)-Based Multilayered Thin Films for         |      |
|   |      |           | Surface-Mediated Cell Transfection                          | 165  |
|   |      | 6.8.3     | Diagnostic Imaging of Pathologic Tissue in Cerebral         |      |
|   |      |           | Ischemic Zones                                              | 165  |
|   |      | 6.8.4     | Amine-Modified Polyesters as Biodegradable Gene             |      |
|   |      |           | Delivery Systems                                            | 166  |
|   |      | 6.8.5     | Reduction-Sensitive Polymers and Bioconjugates for          |      |
|   |      |           | Biomedical Applications                                     | 167  |
|   |      | 6.8.6     | Macromolecular Vehicles for the Intracellular and           |      |
|   |      | D.1.      | Controlled Delivery of Bioactive Molecules                  | 167  |
|   | 6.9  | •         | er Amine                                                    | 168  |
|   |      | 6.9.1     | Lactic Acid-Based Poly(ester Amide)                         | 168  |
|   |      | 6.9.2     | 7                                                           | 168  |
|   |      |           | Functionalized Poly(ester Amide)s                           | 170  |
|   |      | 6.9.4     | ,                                                           | 171  |
|   | 6.10 | Dolymy    | Magnetic Resonance Imaging rrole-Based Conducting Polymers  | 171  |
|   | 0.10 | 6.10.1    | Polypyrrole Compounds as Conductive Nerve Conduits          | 172  |
|   |      | 6.10.2    | Polypyrrole for Neural Tissue Applications                  | 173  |
|   |      | 6.10.3    | Electro-Conductive Conjugated Polymers in                   | 175  |
|   |      | 0.10.0    | Neural Stem Cell Differentiation                            | 174  |
|   |      | 6.10.4    | Electroactive Tissue Scaffolds for Biomimetic Tissue        | 174  |
|   |      | 6.10.5    | Modulation of Hemocompatibility and                         | -, - |
|   |      |           | Inflammatory Responses                                      | 174  |
|   |      | 6.10.6    | Keratinocytes Culture on Polypyrrole Films                  | 175  |
|   | 6.11 |           | ks and Future Directions                                    | 175  |
|   | Ackr | nowledgn  |                                                             | 176  |
|   |      | rences    |                                                             | 176  |
| 7 | Com  | posites F | Based on Hydroxyapatite and Biodegradable Polylactide       | 183  |
|   | Pau  | Turon, L  | uís J. del Valle, Carlos Alemán and Jordi Puiggalí          |      |
|   | 7.1  | Introduc  |                                                             | 183  |
|   | 7.2  | Bone Tis  | ssues and Mineralization Processes                          | 184  |
|   |      | 7.2.1 S   | Structure of Bone                                           | 184  |
|   |      | 7.2.2     | Components of Bone                                          | 185  |
|   |      | 7.2.3 E   | Bone Mineralization                                         | 186  |
|   | 7.3  | Polylacti | ide and its Copolymers                                      | 187  |
|   | 7.4  |           | Phosphate Cements Reinforced with Polylactide Fibers        | 188  |
|   | 7.5  | Nanocoi   | mposites of Polylactide and Hydroxyapatite: Coupling Agents | 189  |

|   | 7.6  | PLA,     | /HAp Sca    | ffolds for Tissue-Engineering Applications         | 191 |
|---|------|----------|-------------|----------------------------------------------------|-----|
|   |      | 7.6.1    |             | IAp Scaffolds from Phase Separation Techniques     | 192 |
|   |      | 7.6.2    | PLA/H       | IAp Scaffolds from Electrospinning Techniques      | 193 |
|   |      | 7.6.3    | PLA/H       | IAp Scaffolds from Nonconventional Techniques      | 197 |
|   | 7.7  | Scaff    | olds Cons   | stituted by Ternary Mixtures Including PLA and HAp | 198 |
|   | 7.8  | Bioa     | ctive Mole  | ecules Loaded in PLA/HAp Scaffolds                 | 200 |
|   | 7.9  | Hydı     | ogels Inc   | orporating PLA/HAp                                 | 204 |
|   | 7.10 | Cond     | clusions    |                                                    | 206 |
|   | Refe | rences   |             |                                                    | 207 |
| 8 | Biod | legrada  | ıble Com    | posites: Properties and Uses                       | 215 |
|   | Dan  | iel Beld | chior Roc   | ha and Derval dos Santos Rosa                      |     |
|   | 8.1  |          | luction     |                                                    | 215 |
|   | 8.2  | Biode    | gradable 1  | Polymers Applied in Composites                     | 217 |
|   | 8.3  | Comp     | osites Usi  | ing Matrices by Biomass Polymers                   | 220 |
|   |      | 8.3.1    | Compos      | sites from Starch                                  | 220 |
|   |      | 8.3.2    | Compos      | sites from Chitosan                                | 224 |
|   |      | 8.3.3    | Compos      | sites from Cellulose                               | 227 |
|   | 8.4  | Comp     | osites Usi  | ing Matrices by Biopolymers Synthesized            |     |
|   |      | from 1   | Monomer     | rs                                                 | 230 |
|   |      | 8.4.1    | Compos      | sites from Poly(lactic Acid)                       | 230 |
|   |      | 8.4.2    | Compos      | sites from Poly(ε-Caprolactone)                    | 233 |
|   |      | 8.4.3    | Compos      | sites from Poly(butylene adipate-co-terephthalate) | 236 |
|   | 8.5  | Comp     | osites Usi  | ing Matrices by Biopolymers                        |     |
|   |      | Produ    | ced by M    | icroorganism                                       | 239 |
|   |      | 8.5.1    | Compos      | sites from Poly(3-hydroxybutyrate) and Copolymers  | 239 |
|   | 8.6  | Concl    | usion       |                                                    | 241 |
|   | Ackı | nowled   | gments      |                                                    | 242 |
|   |      | rences   |             |                                                    | 243 |
| 9 | Deve | elopme   | ent of Me   | mbranes from Biobased Materials                    |     |
|   | and  | Their A  | Application | ons                                                | 251 |
|   | K.C. | Khulb    | e and T.    | Matsuura                                           |     |
|   | 9.1  | Introd   | luction     |                                                    | 251 |
|   | 9.2  | Memb     | ranes fro   | m Biopolymer or Biomaterials                       | 253 |
|   |      | 9.2.1    | Alginic     | Acid (Algin or Alginate)                           | 253 |
|   |      | 9.2.2    | Chitin a    | and Chitosan                                       | 255 |
|   |      | 9.2.3    | Cellulos    | se                                                 | 264 |
|   |      | 9.2.4    | Polyami     | ide                                                | 268 |
|   |      | 9.2.5    | Polyhyd     | roxyalkanoates                                     | 268 |
|   |      | 9.2.6    | Polylact    | ic Acid                                            | 269 |
|   |      | 9.2.7    | Other B     | iomaterials                                        | 270 |
|   |      |          | 9.2.7.1     | C60 (Fullerene)                                    | 270 |
|   |      |          |             | Marine Algie                                       | 271 |
|   |      |          |             | Ferulic Acid                                       | 271 |
|   |      |          | 9.2.7.4     | Polyethylene                                       | 272 |

|    |                                                    | Ģ               | 9.2.7.5  | Lignin                                            | 272 |  |  |
|----|----------------------------------------------------|-----------------|----------|---------------------------------------------------|-----|--|--|
|    |                                                    | Ģ               | 9.2.7.6  | Biodegradable Polyvinyl Alcohol/Biopolymer Blends | 273 |  |  |
|    | 9.3                                                | Summar          | y        |                                                   | 274 |  |  |
|    | Refer                                              | ences           |          |                                                   | 275 |  |  |
| 10 | Gree                                               | n Biodeg        | gradabl  | e Composites Based on Natural Fibers              | 283 |  |  |
|    | Maga                                               | lalena V        | Vróbel-I | Kwiatkowska, Mateusz Kropiwnicki                  |     |  |  |
|    | and \                                              | Waldemo         | ar Rymo  | owicz                                             |     |  |  |
|    | 10.1                                               | Introdu         | ıction   |                                                   | 283 |  |  |
|    |                                                    |                 |          | omposition                                        | 284 |  |  |
|    | 10.3                                               | Fiber N         |          |                                                   | 285 |  |  |
|    | 10.4                                               | -               |          | sed on Different Plant Fibers                     | 289 |  |  |
|    |                                                    | 10.4.1          | -        | osites Based on Stem Fibers                       | 290 |  |  |
|    |                                                    |                 |          | .1 Hemp                                           | 290 |  |  |
|    |                                                    |                 |          | .2 Kenaf                                          | 290 |  |  |
|    |                                                    | 10.10           |          | .3 Flax                                           | 290 |  |  |
|    |                                                    |                 |          | ibers as Reinforcement of Composites              | 292 |  |  |
|    |                                                    |                 |          | osites Based on Seed Fibers                       | 292 |  |  |
|    | 10.5                                               |                 |          | osites Reinforced with Fruit Fibers               | 293 |  |  |
|    | 10.5                                               |                 |          | spectives of Composites                           | 293 |  |  |
|    |                                                    | Conclu<br>ences | sions    |                                                   | 295 |  |  |
|    | Keier                                              | ences           |          |                                                   | 295 |  |  |
| 11 | •                                                  | _               |          | All-Cellulose Composites                          | 303 |  |  |
|    |                                                    | izio Sara       |          |                                                   |     |  |  |
|    |                                                    | Introdu         |          |                                                   | 303 |  |  |
|    |                                                    |                 |          | d Composites                                      | 305 |  |  |
|    | 11.3                                               |                 |          | Composites                                        | 306 |  |  |
|    |                                                    |                 |          | erivatized All-Cellulose Composites               | 306 |  |  |
|    | 11.4                                               |                 |          | atized All-Cellulose Composites                   | 314 |  |  |
|    | 11.4                                               |                 | sions ar | nd Future Challenges                              | 315 |  |  |
|    | Refer                                              | ences           |          |                                                   | 316 |  |  |
| 12 | Natural Fiber Composites with Bioderivative and/or |                 |          |                                                   |     |  |  |
|    | Degradable Polymers 32                             |                 |          |                                                   |     |  |  |
|    |                                                    |                 |          | nd Joanna Ryszkowska                              |     |  |  |
|    | 12.1                                               | Introdu         |          |                                                   | 323 |  |  |
|    | 12.2                                               | 1.1000          |          |                                                   | 325 |  |  |
|    | 12.3                                               |                 |          | e Manufacture of Composites                       | 326 |  |  |
|    | 12.4                                               |                 |          | odology of Plant Component and Composites         | 328 |  |  |
|    |                                                    | 12.4.1          |          | Component                                         | 328 |  |  |
|    |                                                    |                 | 12.4.1   | •                                                 | 328 |  |  |
|    |                                                    | 10 4 2          | 12.4.1   | •                                                 | 328 |  |  |
|    |                                                    | 12.4.2          |          | rch Methodology of Composites                     | 329 |  |  |
|    |                                                    |                 | 12.4.2   | , 1                                               | 329 |  |  |
|    |                                                    |                 | 12.4.2   | 1                                                 | 220 |  |  |
|    |                                                    |                 |          | Scanning Electron Microscopy                      | 329 |  |  |

|    |       |           |             | Computer Microtomography                       | 329 |
|----|-------|-----------|-------------|------------------------------------------------|-----|
|    |       |           | 12.4.2.4    | Impact Testing of Composite Materials          | 329 |
|    |       |           | 12.4.2.5    |                                                |     |
|    |       |           |             | in the Static Tensile Test                     | 330 |
|    |       |           | 12.4.2.6    | Description of Materials' Structure Using      |     |
|    |       |           |             | Differential Scanning Calorimetry              | 330 |
|    |       |           | 12.4.2.7    | Features of Processes of Filler and Composite  |     |
|    |       |           |             | Degradation Based on Thermogravimetric         |     |
|    |       |           |             | Analysis Results                               | 331 |
|    |       |           | 12.4.2.8    | ·                                              |     |
|    |       |           |             | and Absorb Water                               | 331 |
|    |       |           | 12.4.2.9    | Analysis of Composites' Resistance to Humidity |     |
|    |       |           |             | in Cyclical Conditions                         | 331 |
|    | 12.5  | Test Res  | sults       | •                                              | 332 |
|    |       | 12.5.1    | Plant Co    | mponent                                        | 332 |
|    |       |           | 12.5.1.1    | Geometry of Particle Size                      | 332 |
|    |       |           | 12.5.1.2    | · · · · · · · · · · · · · · · · · · ·          | 333 |
|    |       | 12.5.2    | Composi     | ite Materials                                  | 334 |
|    |       |           | 12.5.2.1    | Density Test                                   | 334 |
|    |       |           | 12.5.2.2    |                                                |     |
|    |       |           |             | Using Scanning Electron Microscopy             | 335 |
|    |       |           | 12.5.2.3    | Analysis of Material Structure via Computer    |     |
|    |       |           |             | Microtomography                                | 336 |
|    |       |           | 12.5.2.4    | U 1 1                                          | 339 |
|    |       |           | 12.5.2.5    |                                                |     |
|    |       |           |             | in the Static Tensile Test                     | 340 |
|    |       |           | 12.5.2.6    | Evaluation of Material Structure with the      |     |
|    |       |           |             | Use of Differential Scanning Calorimetry       | 342 |
|    |       |           | 12.5.2.7    | Features of the Composites Degradation         |     |
|    |       |           |             | Processes Based on the Results of              |     |
|    |       |           |             | Thermogravimetric Analysis                     | 344 |
|    |       |           | 12.5.2.8    | Evaluation of the Composites' Capacity to      |     |
|    |       |           |             | Swell and Absorb Water                         | 347 |
|    |       |           | 12.5.2.9    | Analysis of the Composites' Resistance to      |     |
|    |       |           |             | Humidity Under Cyclical Conditions             | 348 |
|    | 12.6  | Compa     | rison of th | ne Properties of Composites with Different     |     |
|    |       | Types o   | f Polymer   | Matrices                                       | 350 |
|    | 12.7  | Summa     | ry and Co   | onclusive Statements                           | 351 |
|    | Ackn  | owledgm   | ents        |                                                | 352 |
|    |       | ences     |             |                                                | 352 |
| 13 | Synth | netic Bio | degradabl   | le Polymers for Bone Tissue Engineering        | 355 |
|    |       |           |             | ng Xie, Juan Yan and Jian Zhong                |     |
|    | 13.1  | Introdu   |             | -                                              | 355 |
|    | 13.2  | Synthet   | ic Biodegi  | radable Polymers                               | 356 |
|    |       | 13.2.1    | •           | d Aliphatic Polyesters                         | 357 |
|    |       |           |             | ·                                              |     |

12.4.2.3 Analysis of Materials' Microstructure via

|    |               | 13.2.2                                                            | Polyprop   | ylene Fumarate                                                                                                      | 359        |  |  |
|----|---------------|-------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|------------|--|--|
|    |               | 13.2.3                                                            | Polyanhy   | vdrides                                                                                                             | 360        |  |  |
|    |               | 13.2.4                                                            | Poly(orth  | noesters)                                                                                                           | 360        |  |  |
|    |               | 13.2.5                                                            | •          | osphazene)                                                                                                          | 361        |  |  |
|    |               | 13.2.6                                                            |            | ner, Polymer Blend/Composite                                                                                        | 362        |  |  |
|    | 13.3          | Physico                                                           |            | l Characterizations of Polymeric Scaffolds                                                                          | 363        |  |  |
|    |               | 13.3.1                                                            |            | •                                                                                                                   | 363        |  |  |
|    |               |                                                                   |            | and Pore Size                                                                                                       | 364        |  |  |
|    |               |                                                                   | Biocomp    |                                                                                                                     | 364        |  |  |
|    |               |                                                                   | Biodegra   | •                                                                                                                   | 364        |  |  |
|    |               |                                                                   |            | cal Properties                                                                                                      | 365        |  |  |
|    |               |                                                                   | Osteoind   |                                                                                                                     | 365        |  |  |
|    | 13.4          |                                                                   |            | inical Needs of Bone Tissue Engineering                                                                             | 365        |  |  |
|    |               |                                                                   |            | ngineering                                                                                                          | 365        |  |  |
|    |               |                                                                   |            | Needs in Bone Tissue Engineering                                                                                    | 366        |  |  |
|    | 13.5          |                                                                   |            | nthetic Biodegradable Polymers in                                                                                   |            |  |  |
|    |               |                                                                   | issue Engi | · · · · · · · · · · · · · · · · · · ·                                                                               | 367        |  |  |
|    | 13.6          | Summa                                                             | •          | O                                                                                                                   | 369        |  |  |
|    |               | owledgn                                                           | •          |                                                                                                                     | 370        |  |  |
|    | Refer         | _                                                                 |            |                                                                                                                     | 370        |  |  |
| 14 | Build         | ling-up l                                                         | Electroact | en Biodegradable Platforms for<br>ive Composite Materials: An Overview<br>in, Aline Grein-Iankovski, Marcio Vidotti | 377        |  |  |
|    |               |                                                                   | Riegel-Vi  |                                                                                                                     |            |  |  |
|    |               | I Introduction                                                    |            |                                                                                                                     |            |  |  |
|    | 14.2          | Main Chemical and Physical Chemical Properties of the             |            |                                                                                                                     |            |  |  |
|    |               | Polysaccharides Used in the Synthesis of Electroactive Composites |            |                                                                                                                     |            |  |  |
|    |               | 14.2.1 Structure                                                  |            |                                                                                                                     |            |  |  |
|    |               | 1 1,2,1                                                           | 14.2.1.1   |                                                                                                                     | 380        |  |  |
|    |               |                                                                   |            | and Carrageenan                                                                                                     | 380        |  |  |
|    |               |                                                                   | 14.2.2.2   | Polysaccharides from Exoskeletons of                                                                                |            |  |  |
|    |               |                                                                   | 1 1.2.2.2  | Arthropods: Chitin and Chitosan                                                                                     | 384        |  |  |
|    |               |                                                                   | 14.2.2.3   | •                                                                                                                   | 001        |  |  |
|    |               |                                                                   | 11121210   | Hyaluronic Acid, Chondroitin Sulfate,                                                                               |            |  |  |
|    |               |                                                                   |            | and Heparin                                                                                                         | 385        |  |  |
|    |               |                                                                   | 14.2.2.4   | Some Plant Polysaccharides: Starch, Cellulose,                                                                      |            |  |  |
|    |               |                                                                   |            | and Gum Arabic                                                                                                      | 387        |  |  |
|    |               | 14.2.2                                                            | Relevant   | Physical-Chemical Properties                                                                                        | 391        |  |  |
|    | 14.3          |                                                                   | active Mat | •                                                                                                                   | 394        |  |  |
|    |               | 14.3.1                                                            | Basic Co   |                                                                                                                     | 397        |  |  |
|    |               | 14.3.2                                                            |            | ing Polymers                                                                                                        | 398        |  |  |
|    |               | 14.3.3                                                            |            | l Synthesis of Conducting Nanoparticles                                                                             |            |  |  |
|    |               |                                                                   |            | ous Media                                                                                                           | 400        |  |  |
|    | 14.4          | Spectro                                                           | -          | aracterization of Colloidal Gum Arabic/Polyaniline                                                                  |            |  |  |
|    |               |                                                                   |            | Poly(3,4-Ethylenedioxythiophene)                                                                                    | 401        |  |  |
|    |               |                                                                   |            |                                                                                                                     |            |  |  |
|    | 14.5          |                                                                   |            | · · · · · · · · · · · · · · · · · · ·                                                                               | 406        |  |  |
|    | 14.5<br>Refer | Polysac                                                           |            | Conducting Polymer: Final overview                                                                                  | 406<br>409 |  |  |

| 15 | Biod                          | egradabl                                                                       | le Polymer Blends and Composites from Seaweeds        | 419        |  |  |  |  |
|----|-------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|------------|--|--|--|--|
|    | Yolaı                         | nda Freil                                                                      | le-Pelegrín and Tomás J. Madera-Santana               |            |  |  |  |  |
|    | 15.1                          | 1 Introduction                                                                 |                                                       |            |  |  |  |  |
|    | 15.2                          | Seawee                                                                         | ed Resources: World Scenario                          |            |  |  |  |  |
|    |                               | 15.2.1                                                                         | Classification of Seaweed                             | 420        |  |  |  |  |
|    |                               | 15.2.2                                                                         | Commercial Seaweeds: Uses and Applications            | 420        |  |  |  |  |
|    |                               | 15.2.3                                                                         | Wild and Cultured Seaweed as Feedstock for            |            |  |  |  |  |
|    |                               |                                                                                | Biodegradable Polymers                                | 422        |  |  |  |  |
|    | 15.3                          | Seawee                                                                         | d Polymers with Potential Materials Applications      | 422        |  |  |  |  |
|    |                               | 15.3.1                                                                         | Sulfated Galactans Derived from Red Seaweeds:         |            |  |  |  |  |
|    |                               |                                                                                | Agar and Carrageenans                                 | 422        |  |  |  |  |
|    |                               | 15.3.2                                                                         | Polymer Derived from Brown Seaweeds:                  |            |  |  |  |  |
|    |                               |                                                                                | Alginates and Fucoidan                                | 424        |  |  |  |  |
|    |                               | 15.3.3                                                                         | Polymers Derived from Green Seaweeds: Ulvan           | 425        |  |  |  |  |
|    | 15.4                          | Potenti                                                                        | al Biopolymer Blends and Composites from Seaweeds     | 426        |  |  |  |  |
|    |                               | 15.4.1                                                                         | Biopolymer Blends Based on Agar and                   |            |  |  |  |  |
|    |                               |                                                                                | Others Phycocolloids                                  | 426        |  |  |  |  |
|    |                               | 15.4.2                                                                         | Biopolymer Composites Based on Agar and               |            |  |  |  |  |
|    |                               |                                                                                | Others Phycocolloids                                  | 430        |  |  |  |  |
|    |                               | 15.4.3                                                                         | Perspectives and Novel Applications of                |            |  |  |  |  |
|    |                               |                                                                                | Biopolymers from Seaweeds                             | 433        |  |  |  |  |
|    | Refer                         | ences                                                                          |                                                       | 433        |  |  |  |  |
| 16 | Rioce                         | omposite                                                                       | a Scaffolds Darivad from Danawahla Dasourcas          |            |  |  |  |  |
| 10 |                               | Biocomposite Scaffolds Derived from Renewable Resources for Bone Tissue Repair |                                                       |            |  |  |  |  |
|    | S. Dhivya and N. Selvamurugan |                                                                                |                                                       |            |  |  |  |  |
|    |                               | 1 Introduction                                                                 |                                                       |            |  |  |  |  |
|    | 16.2                          |                                                                                |                                                       |            |  |  |  |  |
|    | 10.2                          | •                                                                              | Chitosan                                              | 440<br>440 |  |  |  |  |
|    |                               |                                                                                | Alginate                                              | 442        |  |  |  |  |
|    |                               |                                                                                | Bacterial Cellulose                                   | 444        |  |  |  |  |
|    |                               |                                                                                |                                                       | 444        |  |  |  |  |
|    |                               |                                                                                | Lignocellulose<br>Hyaluronic Acid                     | 449        |  |  |  |  |
|    |                               |                                                                                | Fucoidan                                              | 449        |  |  |  |  |
|    |                               |                                                                                |                                                       |            |  |  |  |  |
|    |                               |                                                                                | Ulvan<br>Pullulan                                     | 453        |  |  |  |  |
|    |                               | 16.2.8                                                                         |                                                       | 454        |  |  |  |  |
|    | 162                           | 16.2.9                                                                         | Acemannan                                             | 455        |  |  |  |  |
|    | 16.3                          | •                                                                              | aminoglycans                                          | 455        |  |  |  |  |
|    | 16.4                          |                                                                                | n-Based Polymers                                      | 459        |  |  |  |  |
|    |                               | 16.4.1                                                                         | Silk                                                  | 459        |  |  |  |  |
|    | 165                           | 16.4.2                                                                         | Collagen and Gelatin                                  | 460        |  |  |  |  |
|    | 16.5                          | Polyest                                                                        |                                                       | 463        |  |  |  |  |
|    | 166                           | 16.5.1                                                                         | Polyurethanes                                         | 463        |  |  |  |  |
|    | 16.6                          |                                                                                | droxyalkanoates                                       | 465        |  |  |  |  |
|    |                               | 16.6.1                                                                         | Poly(3-Hydroxybutyric Acid-co-3-hydroxyvaleric Acid), |            |  |  |  |  |
|    |                               |                                                                                | Polyhydroxyl Butyrate and Poly(3-Hydroxybutyrate-co-  |            |  |  |  |  |
|    |                               |                                                                                | 3-hydroxyhexanoate)                                   | 465        |  |  |  |  |
|    | 16.7                          | Others                                                                         |                                                       | 466        |  |  |  |  |

## xvi Contents

|     | 16.8  | Conclu    | sions and F   | uture Direction                                                    | 467        |
|-----|-------|-----------|---------------|--------------------------------------------------------------------|------------|
|     | Ackn  | owledgn   | nent          |                                                                    | 468        |
|     |       | eviations |               |                                                                    | 468        |
|     | Refer | ences     |               |                                                                    | 470        |
| 17  | Pecti | n-Based   | Composite     | es                                                                 | 487        |
|     | Veroi | nika Bát  | ori, Dan Ål   | keson, Akram Zamani                                                |            |
|     | and I | Mohamn    | nad J. Tahe   | rzadeh                                                             |            |
|     | 17.1  | Introdu   | ıction        |                                                                    | 487        |
|     | 17.2  | Pectin    |               |                                                                    | 488        |
|     |       | 17.2.1    | Properties    | and Structure of Pectin                                            | 489        |
|     |       |           | 17.2.1.1      | Structure of Pectin                                                | 489        |
|     |       |           | 17.2.1.2      | Properties of Pectin                                               | 491        |
|     |       |           | 17.2.1.3      | Bioactivity of Pectin                                              | 493        |
|     | 17.3  | Biosyn    | thesis of Pec | tin Polymers during Cell Differentiation                           | 495        |
|     | 17.4  |           | tion of Pect  |                                                                    | 495        |
|     |       |           | Extraction    |                                                                    | 496        |
|     |       |           | Designer l    |                                                                    | 498        |
|     |       |           |               | ons and Markets                                                    | 499        |
|     | 17.5  |           | Based Bioco   | <u> </u>                                                           | 499        |
|     |       | 17.5.1    | Definition    |                                                                    | 499        |
|     |       |           | 17.5.1.1      | 7                                                                  | 500        |
|     |       | 15.50     | D (' D        | Composite Materials                                                | 500        |
|     |       |           |               | sed Biocomposites                                                  | 501        |
|     |       | 17.5.3    |               | ons, Applied Materials, and Methods in                             | F0.4       |
|     |       |           |               | sed Composites                                                     | 504        |
|     |       |           | 17.5.3.1      | $\epsilon$                                                         | 504        |
|     |       |           |               | Wound Healing Application to Bone Hemorrhage                       | 508<br>508 |
|     |       |           |               | Drug Delivery Applications                                         | 509        |
|     |       |           |               | Copper Removal from Aqueous Solutions                              | 509        |
|     |       |           |               | Environmental Remediation                                          | 510        |
|     |       |           | 17.5.3.7      |                                                                    | 510        |
|     |       |           | 17.5.3.8      | Active Packaging                                                   | 511        |
|     |       |           | 17.5.3.9      |                                                                    | 311        |
|     |       |           | 27101015      | Improved Mechanical and Thermal Properties                         | 511        |
|     |       |           | 17.5.3.10     | Casing Film for Sausages                                           | 512        |
|     |       |           | 17.5.3.11     | Sensors for Determining Different Substances                       |            |
|     |       |           |               | (Electrochemical Method)                                           | 512        |
|     | 17.6  | Conclu    | sions         | ,                                                                  | 513        |
|     | Refer | ences     |               |                                                                    | 513        |
| 1.0 | D     | 1         |               | 1 C                                                                |            |
| 18  |       |           |               | ductive Composites Based on for Regenerative Medicine Applications | 519        |
|     |       | _         | ·=            | Fortunati, Luigi Torre and Josè Maria Kenny                        |            |
|     | 18.1  | Introdi   |               | . 10. minus, Luige 10110 unu jose munu Kellily                     | 519        |
|     | 18.2  |           | rative Medi   | cine                                                               | 520        |
|     | 10.2  | regene    | 171CU1        | VIIIV                                                              | 320        |

|    |       |                            |                       | Contents                                          | xvii       |
|----|-------|----------------------------|-----------------------|---------------------------------------------------|------------|
|    | 18.3  | Biodegi                    | radable Poly          | ymers                                             | 521        |
|    | 18.4  |                            | ctive Nanos           |                                                   | 524        |
|    |       | 18.4.1                     | Carbon N              | anotubes                                          | 525        |
|    |       | 18.4.2                     | Graphene              |                                                   | 525        |
|    | 18.5  |                            |                       | posite Approach                                   | 526        |
|    |       | 18.5.1                     | Processing            | g Technology                                      | 527        |
|    |       | 18.5.2                     | Technique             | es Used in Estimating Conductive Properties       | 528        |
|    |       |                            | 18.5.2.1              | Electrical Properties                             | 528        |
|    |       |                            | 18.5.2.2              | Dielectrical Properties                           | 531        |
|    |       | 18.5.3                     |                       | al Applications                                   | 533        |
|    | 18.6  |                            | sions and F           | uture Perspectives                                | 535        |
|    | Refer | ences                      |                       |                                                   | 536        |
| 19 | •     |                            |                       | d Their Biomedical Applications                   | 543        |
|    |       | _                          |                       | Thinagaran, JY. Chee,                             |            |
|    |       | <i>irugan a</i><br>Introdu | nd K. Sude            | sn                                                | 543        |
|    |       |                            |                       | oolic Pathway of PHA Production                   | 545        |
|    |       |                            | roduction fi          | •                                                 | 548        |
|    |       |                            | roduction fi          | · ·                                               | 554        |
|    | 19.5  |                            |                       | pplication of PHAs as Biomaterials                | 566        |
|    | 17.0  | -                          | -                     | ed Monofilament Sutures/Fibers                    | 569        |
|    |       |                            | PHA-Base              |                                                   | 570        |
|    |       | 19.5.3                     |                       | rospheres and Nanoparticles                       | 571        |
|    | 19.6  |                            | Perspective           | -                                                 | 573        |
|    |       | owledgm                    |                       |                                                   | 574        |
|    | Refer |                            |                       |                                                   | 574        |
| 20 | Biod  | egradabl                   | e Soy Prote           | ein Isolate/Poly(Vinyl Alcohol) Packaging Films   | 587        |
|    | Jun-I | Feng Su                    |                       |                                                   |            |
|    | 20.1  | Introdu                    |                       |                                                   | 587        |
|    | 20.2  | Experir                    |                       |                                                   | 589        |
|    |       | 20.2.1                     | Materials             |                                                   | 589        |
|    |       | 20.2.2                     | -                     | on of SPI/PVA Blend Films                         | 589        |
|    |       | 20.2.3                     | Character             |                                                   | 590        |
|    |       |                            | 20.2.3.1              | 1 0                                               | 590        |
|    |       |                            | 20.2.3.2              | ,                                                 | 590        |
|    |       |                            | 20.2.3.3              | Fourier Transform Infrared Spectra Analysis       | 590        |
|    |       |                            | 20.2.3.4              | Mechanical Properties                             | 590        |
|    |       |                            | 20.2.3.5              | Differential Scanning Calorimetry                 | 591        |
|    |       |                            | 20.2.3.6              | Thermogravimetric Analysis                        | 591        |
|    |       |                            | 20.2.3.7              | •                                                 | 591<br>501 |
|    |       |                            | 20.2.3.8              | Heat-Sealing Process                              | 591<br>502 |
|    |       |                            | 20.2.3.9<br>20.2.3.10 | Peel Strength Tests Tancila Tests of Heat Sealing | 592<br>592 |
|    |       |                            | 20.2.3.10             | Tensile Tests of Heat Sealing Moisture Sorption   | 592        |
|    |       |                            | 40.4.3.11             | montaic on phon                                   | 5)5        |

|     |       |            | 20.2.3.12   | Contact Angle Determination                  | 594 |
|-----|-------|------------|-------------|----------------------------------------------|-----|
|     |       |            | 20.2.3.13   | Water Vapor Permeability                     | 595 |
|     |       |            | 20.2.3.14   | Aerobic Biodegradation Tests                 | 596 |
|     |       |            | 20.2.3.15   | Weight Loss and Surface Morphologies         |     |
|     |       |            |             | Characterization                             | 597 |
|     |       |            | 20.2.3.16   | Statistical Analysis                         | 597 |
|     | 20.3  | Results a  | and Discus  | sion                                         | 597 |
|     |       | 20.3.1     | Surface N   | Morphologies of Films                        | 597 |
|     |       | 20.3.2     | Compatil    | bility of SPI/PVA Blends                     | 598 |
|     |       | 20.3.3     | FTIR An     | alysis                                       | 601 |
|     |       | 20.3.4     | Mechanio    | cal Properties of Films                      | 603 |
|     |       | 20.3.5     |             | Stability of Films                           | 604 |
|     |       | 20.3.6     |             | Heat-Sealing Temperature on Peel Strength    | 606 |
|     |       | 20.3.7     |             | Heat-Sealing Temperature on Tensile Strength | 608 |
|     |       | 20.3.8     |             | rption Isotherms                             | 609 |
|     |       | 20.3.9     |             | eim-Anderson-DeBoer Model Fitting            | 610 |
|     |       | 20.3.10    |             | Angle Measurements                           | 614 |
|     |       | 20.3.11    | WVP of 1    |                                              | 617 |
|     |       | 20.3.12    |             | Biodegradation of SPI/PVA Films              | 618 |
|     |       | 20.3.13    | •           | oss and Surface Morphologies of Films during |     |
|     |       |            | Biodegra    | dation                                       | 619 |
|     | 20.4  | Conclusi   | ion         |                                              | 620 |
|     | Refer | ences      |             |                                              | 621 |
| 21  |       | •          | •           | ased Polymeric Materials in                  |     |
|     | Natu  | ral Enviro | onments     |                                              | 625 |
|     | Sudh  | akar Mun   | iiyasamy a  | and Maya Jacob John                          |     |
|     | 21.1  | Introduc   | ction       |                                              | 625 |
|     | 21.2  | Biobasec   | ł Polymers  | from Renewable Resources                     | 629 |
|     |       | 21.2.1     | Extraction  | of Biopolymers from Biomass                  | 630 |
|     |       |            |             | Polymers Derived from Biobased Monomer       | 631 |
|     |       | 21.2.3     | Biobased I  | Polymers from Bacterial Synthesis            | 632 |
|     | 21.3  |            |             | Compostable Polymeric Materials from         |     |
|     |       |            | ole Resourc |                                              | 632 |
|     |       |            |             | and Concept                                  | 633 |
|     |       |            | -           | ation Standard Test Methods                  | 635 |
|     | 21.4  |            |             | gradation Studies of Biobased Polymers in    |     |
|     |       |            |             | nental Conditions                            | 640 |
|     | 21.5  | _          |             | echanisms of Biobased Polymeric Materials    | 645 |
|     | 21.6  |            | ing Remar   | ks                                           | 648 |
|     | Refer | ences      |             |                                              | 649 |
| Ind | ex    |            |             |                                              | 655 |

The concept of green chemistry and sustainable development policy impose on industry and technology to switch raw material base from the petroleum to renewable resources. Remarkable attention has been paid to the environmental-friendly, green, and sustainable materials for a number of applications during the past few years. Indeed, the rapidly diminishing global petroleum resources, along with awareness of global environmental problems, have promoted the way to switch toward renewable resourcesbased materials. In this regard, biobased renewable materials can form the basis for a variety of eco-efficient, sustainable products that can capture and compete markets presently dominated by products based solely on petroleum-based raw materials. The nature provides a wide range of the raw materials that can be converted into a polymeric matrix/adhesive/reinforcement applicable in composites formulation. Different kinds of polymers (renewable/nonrenewable) and polymer composite materials have been emerging rapidly as the prospective substitute to the ceramic or metal materials, due to their advantages over conventional materials. In brief, polymers are macromolecular groups collectively recognized as polymers due to the presence of repeating blocks of covalently linked atomic arrangement in the formation of these molecules. The repetitive atomic arrangements forming the macromolecules by forming covalent links are the building block or constituent monomers. As the covalent bond formation between monomer units is the essence of polymer formation, polymers are organic or carbon compounds of either biological or synthetic origin. The phenomenon or process of polymerization enables to create diverse forms of macromolecules with varied structural and functional properties and applications. On the other hand, composite materials, or composites, are one of the main improvements in material technology in recent years. In the materials science field, a composite is a multiphase material consisting of two or more physically distinct components, a matrix (or a continuous phase) and at least one dispersed (filler or reinforcement) phase. The dispersed phase, responsible for enhancing one or more properties of matrix, can be categorized according to particle dimensions that comprise platelet, ellipsoids, spheres, and fibers. These particles can be inorganic or organic origin and possess rigid or flexible properties.

The most important resources for renewable raw materials originate from nature such as wood, starch, proteins, and oils from plants. Therefore, renewable raw materials lead to the benefit of processing in industries owing to the short period of replenishment cycle resulting in the continuous-flow production. Moreover, the production cost can be reduced by using natural raw materials instead of chemical raw materials. The waste and residues from agriculture and industry have also been used as an alternative renewable resources for producing energy and raw materials such as chemicals,

cellulose, carbon, and silica. For polymer composites applications, an intensifying focus has been directed toward the use of renewable materials. Biobased polymers are one of the most attractive candidates in renewable raw materials for use as organic-reinforcing fillers such as flex, hemp, pine needles, coir, jute, kenaf, sisal, rice husk, ramie, palm, and banana fibers, which exhibited excellence enhancement in mechanical and thermal properties. For green polymer composites composed of inorganic-reinforcing fillers, renewable resources-based polymers have been used as matrix materials.

Significant research efforts all around the globe are continuing to explore and improve the properties of renewable polymers-based materials. Researchers are collectively focusing their efforts to use the inherent advantages of renewable polymers for miscellaneous applications. To ensure a sustainable future, the use of biobased materials containing a high content of derivatives from renewable biomass is the best solution.

This volume of the book series 'Handbook of Composites from Renewable Materials' is solely focused on the 'Biodegradable Materials'. Some of the important topics include but not limited to rice husk and its composites; biodegradable composites based on thermoplastic starch and talc nanoparticles; recent progress in biocomposites of biodegradable polymer; microbial polyesters: production and market; biodegradable and bioabsorbable materials for osteosynthesis applications; biodegradable polymers in tissue engineering; composites based on hydroxyapatite and biodegradable polylactide; biodegradable composites; development of membranes from biobased materials and their applications; green biodegradable composites based on natural fibers; fully biodegradable all-cellulose composites; natural fiber composites with bioderivative and/ or degradable polymers; synthetic biodegradable polymers for bone tissue engineering; polysaccharides as green biodegradable platforms for building up electroactive composite materials; biodegradable polymer blends and composites from seaweeds; biocomposites scaffolds derived from renewable resources for bone tissue repair; pectin-based composites; recent advances in conductive composites based on biodegradable polymers for regenerative medicine applications; biosynthesis of PHAs and their biomedical applications; biodegradable soy protein isolate/poly(vinyl alcohol) packaging films; and biodegradability of biobased polymeric materials in natural environment.

Several critical issues and suggestions for future work are comprehensively discussed in this volume with the hope that the book will provide a deep insight into the state of the art of 'Biodegradation' of the renewable materials. We would like to thank the Publisher and Martin Scrivener for the invaluable help in the organization of the editing process. Finally, we would like to thank our parents for their continuous encouragement and support.

Vijay Kumar Thakur, Ph.D. University of Cranfield, U.K.

Manju Kumari Thakur, M.Sc., M.Phil., Ph.D. Himachal Pradesh University, Shimla, India

Michael R. Kessler, Ph.D., P.E. Washington State University, U.S.A.

# Rice Husk and its Composites: Effects of Rice Husk Loading, Size, Coupling Agents, and Surface Treatment on Composites' Mechanical, Physical, and Functional Properties

A. Bilal, R.J.T. Lin\* and K. Jayaraman

Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand

#### **Abstract**

Among the many natural fibers used as reinforcements/fillers in the manufacture of natural fiber composite materials, rice husk (RH) has not been attracting the deserved attention despite its significant annual yield of tens of million tons due to the huge worldwide rice-consuming population. This chapter presents an introduction to natural fibers and their composites with an emphasis on RH and its use in the manufacture of composite materials. A thorough review has been carried out on the manufacturing of RH composites with various polymers and manufacturing processes. The effects of RH loading, size, surface treatment, and the use of coupling agents on mechanical, physical, and functional properties of RH composites have been discussed in detail. Although RH has also been used in the form of ash in manufacturing different composites, this chapter only focuses on RH used in its natural form and its resulting composites.

*Keywords:* Rice husk, coupling agents, surface treatment, composites manufacturing, mechanical, physical and functional properties

#### 1.1 Introduction

By definition, natural fibers are fibers which are not artificial or manmade (Ticoalu *et al.*, 2010). Natural fibers can be plant based such as wood, sisal, flax, hemp, jute, kenaf, and ramie or animal based, e.g., wool, avian feather, and silk or mineral based such as basalt and asbestos. They have been used as reinforcements with a variety of materials for over 3000 years (Taj *et al.*, 2007) and have demonstrated immense potential to replace synthetic fibers, such as glass and carbon fibers, because of their ecofriendly and biodegradable characteristics.

<sup>\*</sup>Corresponding author: rj.lin@auckland.ac.nz

There is a large variation in the properties of natural fibers, which is affected by several factors such as fiber's place of growth, cultivation conditions, growth time, moisture content, and form (yarn, woven, twine, chopped, and felt) (O'Donnell *et al.*, 2004; Ochi, 2008; Pickering *et al.*, 2007). Table 1.1 shows various plant-based natural fibers and their regions or countries of origin.

The mechanical and physical properties of natural fibers are greatly affected by their chemical composition and structure (Taj et al., 2007). The majority of plant-based natural fibers have cellulose, hemicellulose, and lignin as their main constituents along with pectin and waxes (John & Thomas, 2008). The reinforcing ability of natural fibers depends on cellulose and its crystallinity (Bledzki & Gassan, 1999, John & Thomas, 2008), whereas biodegradation, micro-absorption, and thermal degradation of natural fibers depend on hemicelluloses (Taj et al., 2007), which is hydrophilic in nature (John & Thomas, 2008). On the other hand, lignin which is hydrophobic in nature plays a critical role in protecting the cellulose/hemicellulose from severe environmental conditions such as water (Thakur & Thakur, 2014), and is thermally stable but prone to UV degradation (Olesen & Plackett, 1999); pectin gives plants flexibility, while waxes consist of various types of alcohols (John & Thomas, 2008). Each of these constituents of natural fibers plays an important role in determining the overall properties of natural fibrous materials (Thakur et al., 2014b).

These fibers are chemically active and decompose thermo-chemically between 150 °C and 500 °C (cellulose between 275 °C and 350 °C; hemicellulose mainly between 150 °C and 350 °C; and lignin between 250 and 500 °C) (Kim  $et\ al.$ , 2004).

The relative percentages of cellulose, hemicellulose, and lignin vary for different fibers (John & Thomas, 2008). Table 1.2 shows the chemical composition of some natural fibers.

| Table 1.1 | Fibers and th | eir origin ( | Tai et al | 2007; Kii | n <i>et al.</i> , 2007). |
|-----------|---------------|--------------|-----------|-----------|--------------------------|
|           |               |              |           |           |                          |

| Fibers                        | Regions/countries of origin                                    |  |
|-------------------------------|----------------------------------------------------------------|--|
| Flax                          | Borneo                                                         |  |
| Hemp Former Yugoslavia, China |                                                                |  |
| Sun hemp                      | Nigeria, Guyana, Sierra Leone, India                           |  |
| Ramie                         | Honduras, Mauritius                                            |  |
| Jute                          | India, Egypt, Guyana, Jamaica, Ghana, Malawi, Sudan, Tanzania  |  |
| Kenaf                         | Iraq, Tanzania, Jamaica, South Africa, Cuba, Togo              |  |
| Roselle                       | Borneo, Guyana, Malaysia, Sri Lanka, Togo, Indonesia, Tanzania |  |
| Sisal                         | East Africa, Bahamas, Antigua, Kenya, Tanzania, India          |  |
| Abaca                         | Malaysia, Uganda, Philippines, Bolivia                         |  |
| Coir                          | India, Sri Lanka, Philippines, Malaysia                        |  |
| Rice husk                     | Asia, Pacific rim, North America                               |  |

| Fiber  | Cellulose<br>(wt%) | Hemicellulose<br>(wt%) | Lignin<br>(wt%) | Pectin<br>(wt%) | Wax<br>(wt%) | Moisture content<br>(wt%) |
|--------|--------------------|------------------------|-----------------|-----------------|--------------|---------------------------|
| Wood   | 40-50              | 15-25                  | 15-30           | _               | 1            | 8–16                      |
| Jute   | 61-71.5            | 13.6-20.4              | 12-13           | 0.4             | 0.5          | 12.6                      |
| Hemp   | 70.2-74.4          | 17.9-22.4              | 3.7-5.7         | 0.9             | 0.8          | 10                        |
| Kenaf  | 31-39              | 21.5                   | 15-19           | _               | -            | -                         |
| Flax   | 71                 | 18.6-20.6              | 2.2             | 2.3             | 1.7          | 10                        |
| Sisal  | 67-78              | 10-14.2                | 8-11            | 10              | 2.0          | 11                        |
| Coir   | 36-43              | 10-20                  | 41-45           | 3-4             | _            | 8                         |
| Bamboo | 26-49              | 15–27.7                | 21-31           | _               | _            | -                         |

**Table 1.2** Chemical composition of some natural fibers (Malkapuram et al., 2009).

Generally, an increase in the cellulose content increases tensile strength and Young's modulus of fibers, whereas stiffness also depends on the micro-fibrillar angle. Fibers are rigid, inflexible, and have high tensile strength if the micro-fibrils have an orientation parallel to the fiber axis. If the micro-fibrils are oriented in a direction spiral to the fiber axis, the fibers are more ductile (John & Thomas, 2008). This variation of material properties does cause some concerns about the use of such materials in the more advanced and critical applications such as composite components for automobiles, infrastructure, aeronautical, and aerospace industries.

Agricultural wastes such as RH, wheat straw, rice straw, and corn stalks also come under the category of natural fibers. Researchers are now increasingly looking toward these by-products for manufacturing composite materials (Panthapulakkal et al., 2005b; Nourbakhsh & Ashori, 2010; Ghofrani et al., 2012). The use of these agricultural by-products provides a great opportunity to start a natural fiber industry in those countries which have little or no wood resources (Ashori & Nourbakhsh, 2009). The chemical components and contents of these materials are similar to those of wood and they can be used in the form of fibers or particles (Yang et al., 2004; Yang et al., 2006b). With the comparatively large quantity of agro-wastes from annual crops, Table 1.3, there is a potential that wood can be substituted by these alternative materials (Ashori & Nourbakhsh, 2009). These agro-residues are normally used as animal feed or household fuel and a large proportion is burned for disposal, which adds to environmental pollution (Ashori & Nourbakhsh, 2009). These agricultural waste fibers can be formed into chips or particles similar to wood (Yang et al., 2003), and their exploration and utilization will contribute to rural agricultural-based economies in a positive way (Sain & Panthapulakkal, 2006).

# 1.2 Natural Fiber-Reinforced Polymer Composites

Composite materials consist of two or more ingredients in which one component acts as the matrix material and the other as the reinforcement (Pappu *et al.*, 2015) and their

#### 4 HANDBOOK OF COMPOSITES FROM RENEWABLE MATERIALS-VOLUME 5

| Table 1.3 Annual | production of natur | ral fibers and sources | (Taj et al., 2007). |
|------------------|---------------------|------------------------|---------------------|
|                  |                     |                        |                     |

| Fiber source   | World<br>production<br>10³ tons | Origin | Fiber source   | World<br>production<br>10³ tons | Origin      |
|----------------|---------------------------------|--------|----------------|---------------------------------|-------------|
| Abaca          | 70                              | Leaf   | Nettles        | Abundant                        | Stem        |
| Bamboo         | 10,000                          | Stem   | Oil palm fruit | Abundant                        | Fruit       |
| Banana         | 200                             | Stem   | Palm rah       | -                               | Stem        |
| Broom          | Abundant                        | Stem   | Ramie          | 100                             | Stem        |
| Coir           | 100                             | Fruit  | Roselle        | 250                             | Stem        |
| Cotton lint    | 18,500                          | Stem   | Rice husk      | Abundant                        | Fruit/grain |
| Elephant grass | Abundant                        | Stem   | Rice straw     | Abundant                        | Stem        |
| Flax           | 810                             | Stem   | Sisal          | 380                             | Stem        |
| Hemp           | 215                             |        | Sun hemp       | 70                              | Stem        |
| Jute           | 2,500                           |        | Wheat straw    | Abundant                        |             |
| Kenaf          | 770                             |        | Wood           | 1,75,000                        |             |
| Linseed        | Abundant                        | Fruit  |                |                                 |             |

overall properties depend on the individual characteristics of the polymer matrix and the reinforcement (Thakur *et al.*, 2014a).

Although research on natural fiber-reinforced polymer composites (NFRCs) began in 1908 (John & Thomas, 2008), it has not received much attention until from about three decades ago (Westman *et al.*, 2010). Nowadays, both the academic and industrial sectors are showing a significantly increased interest in the use of NFRCs due to their low cost, environmental friendliness, lightweight, biodegradable, and nonabrasive nature (Rozman *et al.*, 2000). Moreover, they have high electrical resistance, good acoustic insulating properties, low energy consumption, less dermal and respiratory irritation, good chemical and corrosion resistance, and are safe to handle (Ticoalu *et al.*, 2010; Taj *et al.*, 2007; John & Thomas, 2008; Malkapuram *et al.*, 2009; Ashori, 2008; Mavani *et al.*, 2007).

With the reported advantages of NFRCs and the growing awareness on the depletion of petroleum-based resources as well as global environmental issues, the demand of NFRCs has predicted to grow 15–20% annually with a growth rate of 15–20% in automotive applications (Malkapuram *et al.*, 2009), and 50% or more in building and construction applications. North America is known as the leading region of NFRC applications in the building and construction sectors with mainly wood fiber-based composites, whereas Europe is the leading region of NFRC applications in the automotive industries with mostly nonwood fiber-based composites (Lucintel, 2011). Of course, there are other NFRC applications emerging in the other regions of the globe. The earlier forecast for the NFRC market was with a compound annual growth rate

(CAGR) of 10% to reach \$3.8B by 2016 (Lucintel, 2011); interestingly, it has shown that RH is emerging as an alternative for wood fibers in the applications of the building and construction sectors.

Despite the promising forecast, NFRCs do have some inherent issues which need to be addressed properly before their full potential can be realized for widespread industrial applications in various sectors. Along with the nature of the fibers, the properties of the resulting composites are also influenced by the type of polymer matrix used and the amount and dimensions of the fiber. One of the critical issues is the weak adhesion and poor interfacial bond strength between natural fibers and the matrix (Lee et al., 2004; Hristov et al., 2004), and formation of aggregates during their processing (Taj et al., 2007; Ashori, 2008), leading to inferior mechanical properties. Natural fibers are polar and hydrophilic in nature and polymer matrix is nonpolar and hydrophobic, which form the heterogeneous systems for NFRCs. Surface tension as well as polarity of matrix and the fibers should be the same in order to have good interfacial adhesion in NFRCs (Mwaikambo & Ansell, 2002), and a suitable adhesion is required between the matrix and the filling material in order to improve mechanical properties of the composites (Yang et al., 2004).

Due to the hydrophilicity of natural fibers, NFRCs could absorb water when used in moist conditions which leads to the poor compatibility between fibers and hydrophobic polymer matrices (Yang *et al.*, 2006a). The water absorption (WA) is due to the hydrogen bond developed between the hydroxyl groups (OH) in the natural fibers and water molecules present in the environment. Therefore, it is essential to prevent such moisture infiltration so that swelling and/or permanent damage can be avoided for effective usage of these cellulosic composites in wet conditions (Ishak *et al.*, 2001).

In order to enhance the performance of NFRCs, the compatibility between hydrophilic fibers and hydrophobic polymers can also be improved by using coupling agents and/or surface modification of fibers. These measures can create efficient interfacial bond strength between the fibers and the polymer matrices so that the effective load transfer can be achieved when NFRCs are subjected to loading during applications.

Coupling agents, who have both the hydrophilic and hydrophobic properties necessary to bond well with the fiber and the polymer matrix, make polymers more reactive toward the surface of the natural fiber (Panthapulakkal *et al.*, 2005b; Ershad-Langroudi *et al.*, 2008; Ahmad Fuad *et al.*, 1993; Stark & Rowlands, 2003; Toro *et al.*, 2005; Park *et al.*, 2004; Sombatsompop *et al.*, 2005). They chemically link with the hydrophilic fiber on one side and the hydrophobic polymer chain on the other to facilitate the wetting of polymer surrounding the fibers. The interfacial region between the fiber and the matrix has two types of interaction, i.e., primary and secondary bonding represented by covalent bonding and hydrogen bonding, respectively (Rozman *et al.*, 2005a; Rozman *et al.*, 2003).

# 1.3 Rice Husk and its Composites

Rice is a source of primary food for the majority of the population worldwide. Around 20 wt% of paddy received is husk which is separated from the rice grain during milling process (Chand *et al.*, 2010); therefore, rice husk (RH) is abundantly available

in significant quantity. The annual production of rice in 2012 was approximately 718 million tons according to the Food and Agriculture Organization of the United Nations (FAO, 2012). RH is biodegradable, abundant, cost effective, lightweight, easily available, reduces the density of the finished product, has no residues or toxic byproducts, is environmentally friendly, low density, and recyclable (Yang *et al.*, 2004; Yang *et al.*, 2006a; Ibrahim and Kuek, 2011; Rahman *et al.*, 2010a; Premalal *et al.*, 2002).

RH is mainly used as fuel, fertilizer in agriculture, landfill, and animal bedding (Kim & Eom, 2001; Park *et al.*, 2003; Mano, 2002), but the majority of RH is burnt for disposal because of its resistance to decomposition in the ground, and its difficulty to digest and low nutritional value for animals (Piva *et al.*, 2004). In the past few years, researchers have looked into the possibility of using RH, which is mostly an unwanted material, for making composite materials (Razavi-Nouri *et al.*, 2006).

Similar to other natural fibers, RH has cellulose, hemicelluloses and lignin as its main constituents (George and Ghose, 1983), noticeably it also contains significant amount of silica (20 wt%), which is present on its outer surface in the form of siliconcellulose membrane (Yoshida, 1962). RH has a cellulose content (35 wt%) similar to that of wood (Martí-Ferrer *et al.*, 2006; Rosa *et al.*, 2009b) but has lower contents of lignin (20 wt%) and hemicellulose (25 wt%) than those found in most other natural fibers including wood. Since the thermal degradation of RH occurs due to the degradation of hemicellulose and lignin (Kim *et al.*, 2004), a similar mechanism to that of wood, the lower content of lignin and hemicellulose allows RH-filled polymers to be processed at higher temperatures as compared to wood polymer composites. While wood has thermal stability issues at temperatures over just 200 °C, RH degrades and decomposes at temperatures around 250 °C which enables the manufacturing of RH composites to be performed at higher temperatures up to 250 °C (Martí-Ferrer *et al.*, 2006) without concern of losing material properties.

RH as reinforcement/filler in polymer-based composite materials has proven to be a good option, provided there is good compatibility between RH and base polymer matrix (Chand *et al.*, 2010). Like other plant-based natural fibers, RH is hydrophilic and its use with hydrophobic thermoplastics results in poor compatibility and adhesion between the counter parts (Panthapulakkal *et al.*, 2005a; Dhakal *et al.*, 2007; Sain & Kokta, 1993; Lai *et al.*, 2003; Kazayawoko *et al.*, 1999; Sain *et al.*, 1993; Li & Matuana, 2003). One of the reasons for poor adhesion is the presence of silica, which is present in the form of a silicon–cellulose membrane on the outer surface of RH (Vasishth, 1974). Removal of silica and other surface impurities can result in a better adhesion between the fiber and the matrix and in turn improve properties of composites (Sain & Panthapulakkal, 2006). Fiber matrix adhesion can also be improved by introducing coupling agents (Panthapulakkal *et al.*, 2005a; Dhakal *et al.*, 2007; Kazayawoko *et al.*, 1999, Lai *et al.*, 2003; Sain *et al.*, 1993; Sain & Kokta, 1993).

RH is also more resistant to WA and fungal decomposition because it contains 20 wt% amorphous silica in combination with 30 wt% of a phenyl propanoid structural polymer called lignin (Rahman *et al.*, 2010b). As mentioned earlier, common NFRCs have a major disadvantage of WA mainly due to diffusion or infiltration (Czél & Kanyok, 2007). In the case of RH, the percentage of cellulose is very low and the waxes contained also make it comparatively less prone to water uptake.

Composites made from RH have better dimensional stability under moist conditions, good termite resistance, and high resistance to biological attack as compared to wood-based materials (Kim *et al.*, 2007). These RH composites have reasonable strength and stiffness, no residues or toxic by-products when burnt, are recyclable, and low  ${\rm CO_2}$  emissions when compared with inorganic-filler-reinforced polymer composites (Kim *et al.*, 2007; Yang *et al.*, 2006a; Razavi-Nouri *et al.*, 2006; Kim *et al.*, 2005).

Flammability is another problem faced by natural fiber composites. Synthetic polymers are petroleum based and are highly flammable. Various flame-retardant materials such as halogen and phosphorus-based compounds can be used with polymers to improve flame retardancy, but these flame retardants have a negative impact on the environment and raise health concerns as well (Zhao *et al.*, 2009). RH could prove to be a good flame-retardant material in composites as it contains silica as one of the main constituents. Silica is mainly responsible for the improved flame retardancy by providing thermal shielding and diffusion barrier effects during the combustion process (Zhao *et al.*, 2009; Arora *et al.*, 2012).

RH has been used both in thermoplastics and thermosets. The following subsections discuss a wide range of research undertaken in the area of RH composites. The main focus of discussion is the type of polymers and manufacturing processes involved in the manufacture of RH composites. The effects of RH loading and coupling agents on mechanical, physical and functional properties of RH composites are also discussed.

## 1.3.1 Polymers Used in the Manufacturing of RH Composites

Over the past two decades, although both thermoplastics and thermosets have been used as matrices in manufacturing of RH composites, yet thermoplastic polymers have been the primary candidate for RH composites. Among the commonly available thermoplastic resins, PE and PP of different densities (i.e., low, medium, and high) have been used the most. On one hand, PE is primarily used as an exterior building component. Low-density polyethylene (LDPE) has properties such as fluidity, flexibility, transparency, and a glossy surface and has been used mainly as a food packing material in the forms of sheet and film; whereas, high-density polyethylene (HDPE) has toughness, stiffness, solvent resistance, and electrical insulation and is mainly used as an insulating material for electric wire and for producing various types of containers (Yang et al., 2007b). The manufacturing of composites with RH as reinforcement and PE (low, medium, and high densities) as polymer matrix has been carried out by quite a number of researchers (Yang et al., 2007b; Kim et al., 2004; Panthapulakkal et al., 2005b; Ghofrani et al., 2012; Yang et al., 2006a; Rahman et al., 2010a; Panthapulakkal et al., 2005a; Rahman et al., 2010b; Zhao et al., 2009; Khalf & Ward, 2010; Najafi & Khademi-Eslam, 2011; Fávaro et al., 2010; Syafri et al., 2011; Rahman et al., 2011; Bilal et al., 2014a-c).

On the other hand, PP is one of the most widely used packaging materials (George et al., 2007). It is also commonly used in the automotive industry and recently has been studied for use as building profiles (Razavi-Nouri et al., 2006). Similar to PE, composites manufactured with PP (low, medium, and high densities) and RH has also been widely researched (Kim et al., 2007; Kim et al., 2004; Ashori & Nourbakhsh, 2009; Yang et al., 2004; Yang et al., 2006a,b; Ishak et al., 2001; Ershad-Langroudi et al., 2008;

| Manufacturing process | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection<br>molding  | Kim et al., 2007; Ashori & Nourbakhsh, 2009; Yang et al., 2004; Yang et al., 2006b; Yang et al., 2006a; Ishak et al., 2001; Ershad-Langroudi et al., 2008; Rahman et al., 2010a; Razavi-Nouri et al., 2006; Rahman et al., 2010b; Czél & Kanyok, 2007; Yang et al., 2007b; Fávaro et al., 2010; Rahman et al., 2011; Bilal et al., 2014b; Bilal et al., 2014c; Bilal et al., 2014a; Yang et al., 2007a; He et al., 2011; Yussuf et al., 2010, de Carvalho et al., 2011; Nourbakhsh et al., 2014 |
| Compression molding   | Chand <i>et al.</i> , 2010; Premalal <i>et al.</i> , 2002; Rosa <i>et al.</i> , 2009b; Zhao <i>et al.</i> , 2009; Syafri <i>et al.</i> , 2011; Rosa <i>et al.</i> , 2009a; Santiagoo <i>et al.</i> , 2011                                                                                                                                                                                                                                                                                       |
| Extrusion             | Aminullah <i>et al.</i> , 2010; Wang <i>et al.</i> , 2014; Panthapulakkal <i>et al.</i> , 2005a; Panthapulakkal <i>et al.</i> , 2005b                                                                                                                                                                                                                                                                                                                                                           |
| Hot press             | Ghofrani <i>et al.</i> , 2012; Rozman <i>et al.</i> , 2000; Rozman <i>et al.</i> , 2005a; Rozman <i>et al.</i> , 2003; Khalf & Ward, 2010; Najafi & Khademi-Eslam, 2011; Nordyana <i>et al.</i> , 2013; Zuhaira <i>et al.</i> , 2013; Zurina <i>et al.</i> , 2004; El Sayed <i>et al.</i> , 2012; Ndazi <i>et al.</i> , 2007; Rozman <i>et al.</i> , 2005b; Bakar & Muhammed, 2011                                                                                                              |
| Others                | Arora <i>et al.</i> , 2012; Sheriff <i>et al.</i> , 2009; Ahmad <i>et al.</i> , 2007; Hua <i>et al.</i> , 2011; Sharma & Chand, 2013                                                                                                                                                                                                                                                                                                                                                            |

**Table 1.4** Manufacturing processes used in the manufacture of RH composites.

Premalal et al., 2002; Razavi-Nouri et al., 2006; Rosa et al., 2009a,b; Czél & Kanyok, 2007; Santiagoo et al., 2011; El Sayed et al., 2012; Aminullah et al., 2010; Yang et al., 2007a; He et al., 2011).

Apart from PE and PP, phenol formaldehyde (PF) (Bhatnagar, 1994; Ndazi et al., 2007), polyurethane (PU) (Sheriff et al., 2009; Rozman et al., 2003), polyester (Rozman et al., 2005a; Ahmad et al., 2007, Rozman et al., 2005b), polymer lactic acid (PLA) (Yussuf et al., 2010, Hua et al., 2011), polyvinylchloride (PVC) (Chand et al., 2010), polyvinyl alcohol (PVA) (Arora et al., 2012), polystyrene (Rozman et al., 2000), urea formaldehyde (UF) (Bakar & Muhammed, 2011), and epoxy (Ibrahim & Kuek, 2011) have also been used to manufacture composites with RH.

Injection molding, compression molding, extrusion, and hot press are the most commonly used techniques to manufacture RH-reinforced composite materials. The manufacturing of composites with different manufacturing processes using RH is shown in Table 1.4.

## Effects of RH Loading on the Properties of RH Composites

RH has been used with different percentages for the manufacturing of composites, as shown in Table 1.5. The effect of RH loading on mechanical, physical, and functional properties has been widely investigated.