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Preface

The concept of green chemistry and sustainable development policy impose on industry 
and technology to switch raw material base from the petroleum to renewable resources. 
Remarkable attention has been paid to the environmental-friendly, green, and sus-
tainable materials for a number of applications during the past few years. Indeed, the 
rapidly diminishing global petroleum resources, along with awareness of global envi-
ronmental problems, have promoted the way to switch toward renewable resources-
based materials. In this regard, biobased renewable materials can form the basis for 
a variety of eco-efficient, sustainable products that can capture and compete markets 
presently dominated by products based solely on petroleum-based raw materials. The 
nature provides a wide range of the raw materials that can be converted into a poly-
meric matrix/adhesive/reinforcement applicable in composites formulation. Different 
kinds of polymers (renewable/nonrenewable) and polymer composite materials have 
been emerging rapidly as the prospective substitute to the ceramic or metal materials, 
due to their advantages over conventional materials. In brief, polymers are macromo-
lecular groups collectively recognized as polymers due to the presence of repeating 
blocks of covalently linked atomic arrangement in the formation of these molecules. 
The repetitive atomic arrangements forming the macromolecules by forming covalent 
links are the building block or constituent monomers. As the covalent bond formation 
between monomer units is the essence of polymer formation, polymers are organic or 
carbon compounds of either biological or synthetic origin. The phenomenon or process 
of polymerization enables to create diverse forms of macromolecules with varied struc-
tural and functional properties and applications. On the other hand, composite materi-
als, or composites, are one of the main improvements in material technology in recent 
years. In the materials science field, a composite is a multiphase material consisting of 
two or more physically distinct components, a matrix (or a continuous phase) and at 
least one dispersed (filler or reinforcement) phase. The dispersed phase, responsible for 
enhancing one or more properties of matrix, can be categorized according to particle 
dimensions that comprise platelet, ellipsoids, spheres, and fibers. These particles can be 
inorganic or organic origin and possess rigid or flexible properties.

The most important resources for renewable raw materials originate from nature 
such as wood, starch, proteins, and oils from plants. Therefore, renewable raw materials 
lead to the benefit of processing in industries owing to the short period of replenish-
ment cycle resulting in the continuous-flow production. Moreover, the production cost 
can be reduced by using natural raw materials instead of chemical raw materials. The 
waste and residues from agriculture and industry have also been used as an alterna-
tive renewable resources for producing energy and raw materials such as chemicals, 
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cellulose, carbon, and silica. For polymer composites applications, an intensifying focus 
has been directed toward the use of renewable materials. Biobased polymers are one of 
the most attractive candidates in renewable raw materials for use as organic-reinforcing 
fillers such as flex, hemp, pine needles, coir, jute, kenaf, sisal, rice husk, ramie, palm, 
and banana fibers, which exhibited excellence enhancement in mechanical and thermal 
properties. For green polymer composites composed of inorganic-reinforcing fillers, 
renewable resources-based polymers have been used as matrix materials.

Significant research efforts all around the globe are continuing to explore and 
improve the properties of renewable polymers-based materials. Researchers are col-
lectively focusing their efforts to use the inherent advantages of renewable polymers for 
miscellaneous applications. To ensure a sustainable future, the use of biobased materi-
als containing a high content of derivatives from renewable biomass is the best solution.

This volume of the book series ‘Handbook of Composites from Renewable Materials’ 
is solely focused on the ‘Biodegradable Materials’. Some of the important topics include 
but not limited to rice husk and its composites; biodegradable composites based on 
thermoplastic starch and talc nanoparticles; recent progress in biocomposites of bio-
degradable polymer; microbial polyesters: production and market; biodegradable and 
bioabsorbable materials for osteosynthesis applications; biodegradable polymers in tis-
sue engineering; composites based on hydroxyapatite and biodegradable polylactide; 
biodegradable composites; development of membranes from biobased materials and 
their applications; green biodegradable composites based on natural fibers; fully bio-
degradable all-cellulose composites; natural fiber composites with bioderivative and/
or degradable polymers; synthetic biodegradable polymers for bone tissue engineer-
ing; polysaccharides as green biodegradable platforms for building up electroactive 
composite materials; biodegradable polymer blends and composites from seaweeds; 
biocomposites scaffolds derived from renewable resources for bone tissue repair; pec-
tin-based composites; recent advances in conductive composites based on biodegrad-
able polymers for regenerative medicine applications; biosynthesis of PHAs and their 
biomedical applications; biodegradable soy protein isolate/poly(vinyl alcohol) packag-
ing films; and biodegradability of biobased polymeric materials in natural environment. 

Several critical issues and suggestions for future work are comprehensively discussed 
in this volume with the hope that the book will provide a deep insight into the state 
of the art of ‘Biodegradation’ of the renewable materials. We would like to thank the 
Publisher and Martin Scrivener for the invaluable help in the organization of the edit-
ing process. Finally, we would like to thank our parents for their continuous encourage-
ment and support.

Vijay Kumar Thakur, Ph.D.
University of Cranfield, U.K.

Manju Kumari Thakur, M.Sc., M.Phil., Ph.D.
Himachal Pradesh University, Shimla, India
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Rice Husk and its Composites: Effects of Rice 
Husk Loading, Size, Coupling Agents, and 

Surface Treatment on Composites’ Mechanical, 
Physical, and Functional Properties

A. Bilal, R.J.T. Lin* and K. Jayaraman

Centre for Advanced Composite Materials, Department of Mechanical 
Engineering, University of Auckland, Auckland, New Zealand

Abstract
Among the many natural fibers used as reinforcements/fillers in the manufacture of natural 
fiber composite materials, rice husk (RH) has not been attracting the deserved attention despite 
its significant annual yield of tens of million tons due to the huge worldwide rice-consuming 
population. This chapter presents an introduction to natural fibers and their composites 
with an emphasis on RH and its use in the manufacture of composite materials. A thorough 
review has been carried out on the manufacturing of RH composites with various polymers 
and manufacturing processes. The effects of RH loading, size, surface treatment, and the use 
of coupling agents on mechanical, physical, and functional properties of RH composites have 
been discussed in detail. Although RH has also been used in the form of ash in manufacturing 
different composites, this chapter only focuses on RH used in its natural form and its resulting 
composites.

Keywords:  Rice husk, coupling agents, surface treatment, composites manufacturing, 
mechanical, physical and functional properties

1.1 � Introduction

By definition, natural fibers are fibers which are not artificial or manmade (Ticoalu 
et al., 2010). Natural fibers can be plant based such as wood, sisal, flax, hemp, jute, 
kenaf, and ramie or animal based, e.g., wool, avian feather, and silk or mineral based 
such as basalt and asbestos. They have been used as reinforcements with a variety of 
materials for over 3000 years (Taj et al., 2007) and have demonstrated immense poten-
tial to replace synthetic fibers, such as glass and carbon fibers, because of their eco-
friendly and biodegradable characteristics.
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There is a large variation in the properties of natural fibers, which is affected by sev-
eral factors such as fiber’s place of growth, cultivation conditions, growth time, mois-
ture content, and form (yarn, woven, twine, chopped, and felt) (O’Donnell et al., 2004; 
Ochi, 2008; Pickering et al., 2007). Table 1.1 shows various plant-based natural fibers 
and their regions or countries of origin.

The mechanical and physical properties of natural fibers are greatly affected by 
their chemical composition and structure (Taj et al., 2007). The majority of plant-
based natural fibers have cellulose, hemicellulose, and lignin as their main constitu-
ents along with pectin and waxes (John & Thomas, 2008). The reinforcing ability 
of natural fibers depends on cellulose and its crystallinity (Bledzki & Gassan, 1999, 
John & Thomas, 2008), whereas biodegradation, micro-absorption, and thermal 
degradation of natural fibers depend on hemicelluloses (Taj et al., 2007), which is 
hydrophilic in nature (John & Thomas, 2008). On the other hand, lignin which is 
hydrophobic in nature plays a critical role in protecting the cellulose/hemicellulose 
from severe environmental conditions such as water (Thakur & Thakur, 2014), and 
is thermally stable but prone to UV degradation (Olesen & Plackett, 1999); pec-
tin gives plants flexibility, while waxes consist of various types of alcohols (John 
& Thomas, 2008). Each of these constituents of natural fibers plays an important 
role in determining the overall properties of natural fibrous materials (Thakur et al., 
2014b).

These fibers are chemically active and decompose thermo-chemically between 
150 °C and 500 °C (cellulose between 275 °C and 350 °C; hemicellulose mainly between 
150 °C and 350 °C; and lignin between 250 and 500 °C) (Kim et al., 2004).

The relative percentages of cellulose, hemicellulose, and lignin vary for different 
fibers (John & Thomas, 2008). Table 1.2 shows the chemical composition of some 
natural fibers.

Table 1.1  Fibers and their origin (Taj et al., 2007; Kim et al., 2007).

Fibers Regions/countries of origin

Flax Borneo

Hemp Former Yugoslavia, China

Sun hemp Nigeria, Guyana, Sierra Leone, India

Ramie Honduras, Mauritius

Jute India, Egypt, Guyana, Jamaica, Ghana, Malawi, Sudan, Tanzania

Kenaf Iraq, Tanzania, Jamaica, South Africa, Cuba, Togo

Roselle Borneo, Guyana, Malaysia, Sri Lanka, Togo, Indonesia, Tanzania

Sisal East Africa, Bahamas, Antigua, Kenya, Tanzania, India

Abaca Malaysia, Uganda, Philippines, Bolivia

Coir India, Sri Lanka, Philippines, Malaysia

Rice husk Asia, Pacific rim, North America
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Generally, an increase in the cellulose content increases tensile strength and Young’s 
modulus of fibers, whereas stiffness also depends on the micro-fibrillar angle. Fibers are 
rigid, inflexible, and have high tensile strength if the micro-fibrils have an orientation 
parallel to the fiber axis. If the micro-fibrils are oriented in a direction spiral to the fiber 
axis, the fibers are more ductile (John & Thomas, 2008). This variation of material prop-
erties does cause some concerns about the use of such materials in the more advanced 
and critical applications such as composite components for automobiles, infrastruc-
ture, aeronautical, and aerospace industries.

Agricultural wastes such as RH, wheat straw, rice straw, and corn stalks also come 
under the category of natural fibers. Researchers are now increasingly looking toward 
these by-products for manufacturing composite materials (Panthapulakkal et al., 
2005b; Nourbakhsh & Ashori, 2010; Ghofrani et al., 2012). The use of these agricul-
tural by-products provides a great opportunity to start a natural fiber industry in those 
countries which have little or no wood resources (Ashori & Nourbakhsh, 2009). The 
chemical components and contents of these materials are similar to those of wood and 
they can be used in the form of fibers or particles (Yang et al., 2004; Yang et al., 2006b). 
With the comparatively large quantity of agro-wastes from annual crops, Table 1.3, 
there is a potential that wood can be substituted by these alternative materials (Ashori 
& Nourbakhsh, 2009). These agro-residues are normally used as animal feed or house-
hold fuel and a large proportion is burned for disposal, which adds to environmental 
pollution (Ashori & Nourbakhsh, 2009). These agricultural waste fibers can be formed 
into chips or particles similar to wood (Yang et al., 2003), and their exploration and 
utilization will contribute to rural agricultural-based economies in a positive way (Sain 
& Panthapulakkal, 2006).

1.2 � Natural Fiber-Reinforced Polymer Composites

Composite materials consist of two or more ingredients in which one component acts 
as the matrix material and the other as the reinforcement (Pappu et al., 2015) and their 

Table 1.2  Chemical composition of some natural fibers (Malkapuram et al., 2009).

Fiber
Cellulose 

(wt%)
Hemicellulose 

(wt%)
Lignin 
(wt%)

Pectin 
(wt%)

Wax 
(wt%)

Moisture content 
(wt%)

Wood 40–50 15–25 15–30 – – 8–16

Jute 61–71.5 13.6–20.4 12–13 0.4 0.5 12.6

Hemp 70.2–74.4 17.9–22.4 3.7–5.7 0.9 0.8 10

Kenaf 31–39 21.5 15–19 – – –

Flax 71 18.6–20.6 2.2 2.3 1.7 10

Sisal 67–78 10–14.2 8–11 10 2.0 11

Coir 36–43 10–20 41–45 3–4 – 8

Bamboo 26–49 15–27.7 21–31 – – –
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overall properties depend on the individual characteristics of the polymer matrix and 
the reinforcement (Thakur et al., 2014a).

Although research on natural fiber-reinforced polymer composites (NFRCs) began 
in 1908 (John & Thomas, 2008), it has not received much attention until from about 
three decades ago (Westman et al., 2010). Nowadays, both the academic and industrial 
sectors are showing a significantly increased interest in the use of NFRCs due to their 
low cost, environmental friendliness, lightweight, biodegradable, and nonabrasive 
nature (Rozman et al., 2000). Moreover, they have high electrical resistance, good 
acoustic insulating properties, low energy consumption, less dermal and respiratory 
irritation, good chemical and corrosion resistance, and are safe to handle (Ticoalu et al., 
2010; Taj et al., 2007; John & Thomas, 2008; Malkapuram et al., 2009; Ashori, 2008; 
Mavani et al., 2007).

With the reported advantages of NFRCs and the growing awareness on the depletion 
of petroleum-based resources as well as global environmental issues, the demand 
of NFRCs has predicted to grow 15–20% annually with a growth rate of 15–20% in 
automotive applications (Malkapuram et al., 2009), and 50% or more in building and 
construction applications. North America is known as the leading region of NFRC 
applications in the building and construction sectors with mainly wood fiber-based 
composites, whereas Europe is the leading region of NFRC applications in the auto-
motive industries with mostly nonwood fiber-based composites (Lucintel, 2011). Of 
course, there are other NFRC applications emerging in the other regions of the globe. 
The earlier forecast for the NFRC market was with a compound annual growth rate 

Table 1.3  Annual production of natural fibers and sources (Taj et al., 2007).

Fiber source

World 
production 
103 tons Origin Fiber source

World 
production 
103 tons Origin

Abaca 70 Leaf Nettles Abundant Stem

Bamboo 10,000 Stem Oil palm fruit Abundant Fruit

Banana 200 Stem Palm rah – Stem

Broom Abundant Stem Ramie 100 Stem

Coir 100 Fruit Roselle 250 Stem

Cotton lint 18,500 Stem Rice husk Abundant Fruit/grain

Elephant grass Abundant Stem Rice straw Abundant Stem

Flax 810 Stem Sisal 380 Stem

Hemp 215 Sun hemp 70 Stem

Jute 2,500 Wheat straw Abundant

Kenaf 770 Wood 1,75,000

Linseed Abundant Fruit
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(CAGR) of 10% to reach $3.8B by 2016 (Lucintel, 2011); interestingly, it has shown that 
RH is emerging as an alternative for wood fibers in the applications of the building and 
construction sectors.

Despite the promising forecast, NFRCs do have some inherent issues which need to 
be addressed properly before their full potential can be realized for widespread indus-
trial applications in various sectors. Along with the nature of the fibers, the properties 
of the resulting composites are also influenced by the type of polymer matrix used and 
the amount and dimensions of the fiber. One of the critical issues is the weak adhe-
sion and poor interfacial bond strength between natural fibers and the matrix (Lee 
et al., 2004; Hristov et al., 2004), and formation of aggregates during their processing 
(Taj et al., 2007; Ashori, 2008), leading to inferior mechanical properties. Natural fibers 
are polar and hydrophilic in nature and polymer matrix is nonpolar and hydrophobic, 
which form the heterogeneous systems for NFRCs. Surface tension as well as polarity 
of matrix and the fibers should be the same in order to have good interfacial adhesion 
in NFRCs (Mwaikambo & Ansell, 2002), and a suitable adhesion is required between 
the matrix and the filling material in order to improve mechanical properties of the 
composites (Yang et al., 2004).

Due to the hydrophilicity of natural fibers, NFRCs could absorb water when used 
in moist conditions which leads to the poor compatibility between fibers and hydro-
phobic polymer matrices (Yang et al., 2006a). The water absorption (WA) is due to the 
hydrogen bond developed between the hydroxyl groups (OH) in the natural fibers and 
water molecules present in the environment. Therefore, it is essential to prevent such 
moisture infiltration so that swelling and/or permanent damage can be avoided for 
effective usage of these cellulosic composites in wet conditions (Ishak et al., 2001).

In order to enhance the performance of NFRCs, the compatibility between hydro-
philic fibers and hydrophobic polymers can also be improved by using coupling agents 
and/or surface modification of fibers. These measures can create efficient interfacial 
bond strength between the fibers and the polymer matrices so that the effective load 
transfer can be achieved when NFRCs are subjected to loading during applications.

Coupling agents, who have both the hydrophilic and hydrophobic properties neces-
sary to bond well with the fiber and the polymer matrix, make polymers more reactive 
toward the surface of the natural fiber (Panthapulakkal et al., 2005b; Ershad-Langroudi 
et al., 2008; Ahmad Fuad et al., 1993; Stark & Rowlands, 2003; Toro et al., 2005; Park 
et al., 2004; Sombatsompop et al., 2005). They chemically link with the hydrophilic fiber 
on one side and the hydrophobic polymer chain on the other to facilitate the wetting 
of polymer surrounding the fibers. The interfacial region between the fiber and the 
matrix has two types of interaction, i.e., primary and secondary bonding represented by 
covalent bonding and hydrogen bonding, respectively (Rozman et al., 2005a; Rozman 
et al., 2003).

1.3 � Rice Husk and its Composites

Rice is a source of primary food for the majority of the population worldwide. Around 
20 wt% of paddy received is husk which is separated from the rice grain during mill-
ing process (Chand et al., 2010); therefore, rice husk (RH) is abundantly available 
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in significant quantity. The annual production of rice in 2012 was approximately 
718 million tons according to the Food and Agriculture Organization of the United 
Nations (FAO, 2012). RH is biodegradable, abundant, cost effective, lightweight, eas-
ily available, reduces the density of the finished product, has no residues or toxic by-
products, is environmentally friendly, low density, and recyclable (Yang et al., 2004; 
Yang et al., 2006a; Ibrahim and Kuek, 2011; Rahman et al., 2010a; Premalal et al., 2002).

RH is mainly used as fuel, fertilizer in agriculture, landfill, and animal bedding (Kim 
& Eom, 2001; Park et al., 2003; Mano, 2002), but the majority of RH is burnt for dis-
posal because of its resistance to decomposition in the ground, and its difficulty to 
digest and low nutritional value for animals (Piva et al., 2004). In the past few years, 
researchers have looked into the possibility of using RH, which is mostly an unwanted 
material, for making composite materials (Razavi-Nouri et al., 2006).

Similar to other natural fibers, RH has cellulose, hemicelluloses and lignin as its 
main constituents (George and Ghose, 1983), noticeably it also contains significant 
amount of silica (20 wt%), which is present on its outer surface in the form of silicon–
cellulose membrane (Yoshida, 1962). RH has a cellulose content (35 wt%) similar to 
that of wood (Martí-Ferrer et al., 2006; Rosa et al., 2009b) but has lower contents of 
lignin (20 wt%) and hemicellulose (25 wt%) than those found in most other natural 
fibers including wood. Since the thermal degradation of RH occurs due to the degra-
dation of hemicellulose and lignin (Kim et al., 2004), a similar mechanism to that of 
wood, the lower content of lignin and hemicellulose allows RH-filled polymers to be 
processed at higher temperatures as compared to wood polymer composites. While 
wood has thermal stability issues at temperatures over just 200 °C, RH degrades and 
decomposes at temperatures around 250 °C which enables the manufacturing of RH 
composites to be performed at higher temperatures up to 250 °C (Martí-Ferrer et al., 
2006) without concern of losing material properties.

RH as reinforcement/filler in polymer-based composite materials has proven to be 
a good option, provided there is good compatibility between RH and base polymer 
matrix (Chand et al., 2010). Like other plant-based natural fibers, RH is hydrophilic 
and its use with hydrophobic thermoplastics results in poor compatibility and adhe-
sion between the counter parts (Panthapulakkal et al., 2005a; Dhakal et al., 2007; Sain 
& Kokta, 1993; Lai et al., 2003; Kazayawoko et al., 1999; Sain et al., 1993; Li & Matuana, 
2003). One of the reasons for poor adhesion is the presence of silica, which is present 
in the form of a silicon–cellulose membrane on the outer surface of RH (Vasishth, 
1974). Removal of silica and other surface impurities can result in a better adhesion 
between the fiber and the matrix and in turn improve properties of composites (Sain 
& Panthapulakkal, 2006). Fiber matrix adhesion can also be improved by introducing 
coupling agents (Panthapulakkal et al., 2005a; Dhakal et al., 2007; Kazayawoko et al., 
1999, Lai et al., 2003; Sain et al., 1993; Sain & Kokta, 1993).

RH is also more resistant to WA and fungal decomposition because it contains 
20 wt% amorphous silica in combination with 30 wt% of a phenyl propanoid struc-
tural polymer called lignin (Rahman et al., 2010b). As mentioned earlier, common 
NFRCs have a major disadvantage of WA mainly due to diffusion or infiltration (Czél & 
Kanyok, 2007). In the case of RH, the percentage of cellulose is very low and the waxes 
contained also make it comparatively less prone to water uptake.
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Composites made from RH have better dimensional stability under moist condi-
tions, good termite resistance, and high resistance to biological attack as compared to 
wood-based materials (Kim et al., 2007). These RH composites have reasonable strength 
and stiffness, no residues or toxic by-products when burnt, are recyclable, and low CO2 
emissions when compared with inorganic-filler-reinforced polymer composites (Kim 
et al., 2007; Yang et al., 2006a; Razavi-Nouri et al., 2006; Kim et al., 2005).

Flammability is another problem faced by natural fiber composites. Synthetic poly-
mers are petroleum based and are highly flammable. Various flame-retardant materials 
such as halogen and phosphorus-based compounds can be used with polymers to 
improve flame retardancy, but these flame retardants have a negative impact on the 
environment and raise health concerns as well (Zhao et al., 2009). RH could prove 
to be a good flame-retardant material in composites as it contains silica as one of 
the main constituents. Silica is mainly responsible for the improved flame retardancy 
by providing thermal shielding and diffusion barrier effects during the combustion 
process (Zhao et al., 2009; Arora et al., 2012).

RH has been used both in thermoplastics and thermosets. The following subsec-
tions discuss a wide range of research undertaken in the area of RH composites. The 
main focus of discussion is the type of polymers and manufacturing processes involved 
in the manufacture of RH composites. The effects of RH loading and coupling agents 
on mechanical, physical and functional properties of RH composites are also discussed.

1.3.1 � Polymers Used in the Manufacturing of RH Composites

Over the past two decades, although both thermoplastics and thermosets have been 
used as matrices in manufacturing of RH composites, yet thermoplastic polymers 
have been the primary candidate for RH composites. Among the commonly available 
thermoplastic resins, PE and PP of different densities (i.e., low, medium, and high) 
have been used the most. On one hand, PE is primarily used as an exterior building 
component. Low-density polyethylene (LDPE) has properties such as fluidity, flexibil-
ity, transparency, and a glossy surface and has been used mainly as a food packing 
material in the forms of sheet and film; whereas, high-density polyethylene (HDPE) 
has toughness, stiffness, solvent resistance, and electrical insulation and is mainly used 
as an insulating material for electric wire and for producing various types of containers 
(Yang et al., 2007b). The manufacturing of composites with RH as reinforcement and 
PE (low, medium, and high densities) as polymer matrix has been carried out by quite 
a number of researchers (Yang et al., 2007b; Kim et al., 2004; Panthapulakkal et al., 
2005b; Ghofrani et al., 2012; Yang et al., 2006a; Rahman et al., 2010a; Panthapulakkal 
et al., 2005a; Rahman et al., 2010b; Zhao et al., 2009; Khalf & Ward, 2010; Najafi & 
Khademi-Eslam, 2011; Fávaro et al., 2010; Syafri et al., 2011; Rahman et al., 2011; Bilal 
et al., 2014a-c).

On the other hand, PP is one of the most widely used packaging materials (George 
et al., 2007). It is also commonly used in the automotive industry and recently has been 
studied for use as building profiles (Razavi-Nouri et al., 2006). Similar to PE, compos-
ites manufactured with PP (low, medium, and high densities) and RH has also been 
widely researched (Kim et al., 2007; Kim et al., 2004; Ashori & Nourbakhsh, 2009; 
Yang et al., 2004; Yang et al., 2006a,b; Ishak et al., 2001; Ershad-Langroudi et al., 2008; 
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Premalal et al., 2002; Razavi-Nouri et al., 2006; Rosa et al., 2009a,b; Czél & Kanyok, 
2007; Santiagoo et al., 2011; El Sayed et al., 2012; Aminullah et al., 2010; Yang et al., 
2007a; He et al., 2011).

Apart from PE and PP, phenol formaldehyde (PF) (Bhatnagar, 1994; Ndazi et al., 
2007), polyurethane (PU) (Sheriff et al., 2009; Rozman et al., 2003), polyester (Rozman 
et al., 2005a; Ahmad et al., 2007, Rozman et al., 2005b), polymer lactic acid (PLA) 
(Yussuf et al., 2010, Hua et al., 2011), polyvinylchloride (PVC) (Chand et al., 2010), 
polyvinyl alcohol (PVA) (Arora et al., 2012), polystyrene (Rozman et al., 2000), urea 
formaldehyde (UF) (Bakar & Muhammed, 2011), and epoxy (Ibrahim & Kuek, 2011) 
have also been used to manufacture composites with RH.

Injection molding, compression molding, extrusion, and hot press are the most com-
monly used techniques to manufacture RH-reinforced composite materials. The manu-
facturing of composites with different manufacturing processes using RH is shown in 
Table 1.4.

1.3.2 � Effects of RH Loading on the Properties of RH Composites

RH has been used with different percentages for the manufacturing of composites, as 
shown in Table 1.5. The effect of RH loading on mechanical, physical, and functional 
properties has been widely investigated.

Table 1.4  Manufacturing processes used in the manufacture of RH composites.

Manufacturing 
process Reference

Injection 
molding

Kim et al., 2007; Ashori & Nourbakhsh, 2009; Yang et al., 2004; 
Yang et al., 2006b; Yang et al., 2006a; Ishak et al., 2001; Ershad-
Langroudi et al., 2008; Rahman et al., 2010a; Razavi-Nouri et al., 
2006; Rahman et al., 2010b; Czél & Kanyok, 2007; Yang et al., 2007b; 
Fávaro et al., 2010; Rahman et al., 2011; Bilal et al., 2014b; Bilal et al., 
2014c; Bilal et al., 2014a; Yang et al., 2007a; He et al., 2011; Yussuf 
et al., 2010, de Carvalho et al., 2011; Nourbakhsh et al., 2014

Compression 
molding

Chand et al., 2010; Premalal et al., 2002; Rosa et al., 2009b; Zhao et al., 
2009; Syafri et al., 2011; Rosa et al., 2009a; Santiagoo et al., 2011

Extrusion Aminullah et al., 2010; Wang et al., 2014; Panthapulakkal et al., 2005a; 
Panthapulakkal et al., 2005b

Hot press Ghofrani et al., 2012; Rozman et al., 2000; Rozman et al., 2005a; 
Rozman et al., 2003; Khalf & Ward, 2010; Najafi & Khademi-Eslam, 
2011; Nordyana et al., 2013; Zuhaira et al., 2013; Zurina et al., 2004; 
El Sayed et al., 2012; Ndazi et al., 2007; Rozman et al., 2005b; Bakar 
& Muhammed, 2011

Others Arora et al., 2012; Sheriff et al., 2009; Ahmad et al., 2007; Hua et al., 
2011; Sharma & Chand, 2013


