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Preface

This book is designed for students, researchers and practitioners who want to
be introduced to modern statistical tools applied in finance and insurance. It
is the result of a joint effort of the Center for Economic Research (CentER),
Center for Applied Statistics and Economics (C.A.S.E.) and Hugo Steinhaus
Center for Stochastic Methods (HSC). All three institutions brought in their
specific profiles and created with this book a wide-angle view on and solutions
to up-to-date practical problems.

The text is comprehensible for a graduate student in financial engineering as
well as for an inexperienced newcomer to quantitative finance and insurance
who wants to get a grip on advanced statistical tools applied in these fields. An
experienced reader with a bright knowledge of financial and actuarial mathe-
matics will probably skip some sections but will hopefully enjoy the various
computational tools. Finally, a practitioner might be familiar with some of
the methods. However, the statistical techniques related to modern financial
products, like MBS or CAT bonds, will certainly attract him.

“Statistical Tools for Finance and Insurance” consists naturally of two main
parts. Each part contains chapters with high focus on practical applications.
The book starts with an introduction to stable distributions, which are the stan-
dard model for heavy tailed phenomena. Their numerical implementation is
thoroughly discussed and applications to finance are given. The second chapter
presents the ideas of extreme value and copula analysis as applied to multivari-
ate financial data. This topic is extended in the subsequent chapter which
deals with tail dependence, a concept describing the limiting proportion that
one margin exceeds a certain threshold given that the other margin has already
exceeded that threshold. The fourth chapter reviews the market in catastro-
phe insurance risk, which emerged in order to facilitate the direct transfer of
reinsurance risk associated with natural catastrophes from corporations, insur-
ers, and reinsurers to capital market investors. The next contribution employs
functional data analysis for the estimation of smooth implied volatility sur-



16 Preface

faces. These surfaces are a result of using an oversimplified market benchmark
model — the Black-Scholes formula — to real data. An attractive approach to
overcome this problem is discussed in chapter six, where implied trinomial trees
are applied to modeling implied volatilities and the corresponding state-price
densities. An alternative route to tackling the implied volatility smile has led
researchers to develop stochastic volatility models. The relative simplicity and
the direct link of model parameters to the market makes Heston’s model very
attractive to front office users. Its application to FX option markets is cov-
ered in chapter seven. The following chapter shows how the computational
complexity of stochastic volatility models can be overcome with the help of
the Fast Fourier Transform. In chapter nine the valuation of Mortgage Backed
Securities is discussed. The optimal prepayment policy is obtained via optimal
stopping techniques. It is followed by a very innovative topic of predicting cor-
porate bankruptcy with Support Vector Machines. Chapter eleven presents a
novel approach to money-demand modeling using fuzzy clustering techniques.
The first part of the book closes with productivity analysis for cost and fron-
tier estimation. The nonparametric Data Envelopment Analysis is applied to
efficiency issues of insurance agencies.

The insurance part of the book starts with a chapter on loss distributions. The
basic models for claim severities are introduced and their statistical properties
are thoroughly explained. In chapter fourteen, the methods of simulating and
visualizing the risk process are discussed. This topic is followed by an overview
of the approaches to approximating the ruin probability of an insurer. Both
finite and infinite time approximations are presented. Some of these methods
are extended in chapters sixteen and seventeen, where classical and anomalous
diffusion approximations to ruin probability are discussed and extended to
cases when the risk process exhibits good and bad periods. The last three
chapters are related to one of the most important aspects of the insurance
business — premium calculation. Chapter eighteen introduces the basic concepts
including the pure risk premium and various safety loadings under different
loss distributions. Calculation of a joint premium for a portfolio of insurance
policies in the individual and collective risk models is discussed as well. The
inclusion of deductibles into premium calculation is the topic of the following
contribution. The last chapter of the insurance part deals with setting the
appropriate level of insurance premium within a broader context of business
decisions, including risk transfer through reinsurance and the rate of return on
capital required to ensure solvability.

Our e-book offers a complete PDF version of this text and the corresponding
HTML files with links to algorithms and quantlets. The reader of this book
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may therefore easily reconfigure and recalculate all the presented examples
and methods via the enclosed XploRe Quantlet Server (XQS), which is also
available from www.xplore-stat.de and www.quantlet.com. A tutorial chapter
explaining how to setup and use XQS can be found in the third and final part
of the book.

We gratefully acknowledge the support of Deutsche Forschungsgemeinschaft
(SFB 373 Quantifikation und Simulation Okonomischer Prozesse, SFB 649
Okonomisches Risiko) and Komitet Badaii Naukowych (PBZ-KBN 016,/P03/99
Mathematical models in analysis of financial instruments and markets in
Poland). A book of this kind would not have been possible without the help
of many friends, colleagues, and students. For the technical production of the
e-book platform and quantlets we would like to thank Zdenék Hlavka, Sigbert
Klinke, Heiko Lehmann, Adam Misiorek, Piotr Uniejewski, Qingwei Wang, and
Rodrigo Witzel. Special thanks for careful proofreading and supervision of the
insurance part go to Krzysztof Burnecki.

Pavel Cizek, Wolfgang Hirdle, and Rafal Weron
Tilburg, Berlin, and Wroctaw, February 2005
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1 Stable Distributions

Szymon Borak, Wolfgang Hardle, and Rafat Weron

1.1 Introduction

Many of the concepts in theoretical and empirical finance developed over the
past decades — including the classical portfolio theory, the Black-Scholes-Merton
option pricing model and the RiskMetrics variance-covariance approach to
Value at Risk (VaR) — rest upon the assumption that asset returns follow
a normal distribution. However, it has been long known that asset returns
are not normally distributed. Rather, the empirical observations exhibit fat
tails. This heavy tailed or leptokurtic character of the distribution of price
changes has been repeatedly observed in various markets and may be quan-
titatively measured by the kurtosis in excess of 3, a value obtained for the
normal distribution (Bouchaud and Potters, 2000; Carr et al., 2002; Guillaume
et al., 1997; Mantegna and Stanley, 1995; Rachev, 2003; Weron, 2004).

It is often argued that financial asset returns are the cumulative outcome of a
vast number of pieces of information and individual decisions arriving almost
continuously in time (McCulloch, 1996; Rachev and Mittnik, 2000). As such,
since the pioneering work of Louis Bachelier in 1900, they have been modeled
by the Gaussian distribution. The strongest statistical argument for it is based
on the Central Limit Theorem, which states that the sum of a large number of
independent, identically distributed variables from a finite-variance distribution
will tend to be normally distributed. However, as we have already mentioned,
financial asset returns usually have heavier tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965) pro-
posed the stable distribution as an alternative model. Although there are other
heavy-tailed alternatives to the Gaussian law — like Student’s ¢, hyperbolic, nor-
mal inverse Gaussian, or truncated stable — there is at least one good reason
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for modeling financial variables using stable distributions. Namely, they are
supported by the generalized Central Limit Theorem, which states that sta-
ble laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables.

Since stable distributions can accommodate the fat tails and asymmetry, they
often give a very good fit to empirical data. In particular, they are valuable
models for data sets covering extreme events, like market crashes or natural
catastrophes. Even though they are not universal, they are a useful tool in
the hands of an analyst working in finance or insurance. Hence, we devote
this chapter to a thorough presentation of the computational aspects related
to stable laws. In Section 1.2 we review the analytical concepts and basic
characteristics. In the following two sections we discuss practical simulation and
estimation approaches. Finally, in Section 1.5 we present financial applications
of stable laws.

1.2 Definitions and Basic Characteristics

Stable laws — also called a-stable, stable Paretian or Lévy stable — were in-
troduced by Levy (1925) during his investigations of the behavior of sums of
independent random variables. A sum of two independent random variables
having an a-stable distribution with index « is again a-stable with the same
index «. This invariance property, however, does not hold for different a’s.

The a-stable distribution requires four parameters for complete description:
an index of stability a € (0,2] also called the tail index, tail exponent or
characteristic exponent, a skewness parameter 3 € [—1,1], a scale parameter
o > 0 and a location parameter pu € R. The tail exponent o determines the
rate at which the tails of the distribution taper off, see the left panel in Figure
1.1. When a = 2, the Gaussian distribution results. When a < 2, the variance
is infinite and the tails are asymptotically equivalent to a Pareto law, i.e. they
exhibit a power-law behavior. More precisely, using a central limit theorem
type argument it can be shown that (Janicki and Weron, 1994; Samorodnitsky
and Taqqu, 1994):

(1.1)

limg oo 2P(X > z) = Co(1 + B)0®,
lim, 0o 2%P(X < —2) = Co (1 + B)0®,
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Dependence on alpha Tails of stable laws

log(PDF(x))
log(1-CDF(x))

-1

-10

T T T T T T T
-10 -5 0 5 10 0 1 2

Figure 1.1: Left panel: A semilog plot of symmetric (3 = p = 0) a-stable
probability density functions (pdfs) for @ = 2 (black solid line), 1.8
(red dotted line), 1.5 (blue dashed line) and 1 (green long-dashed
line). The Gaussian (o = 2) density forms a parabola and is the
only a-stable density with exponential tails. Right panel: Right
tails of symmetric a-stable cumulative distribution functions (cdfs)
for a = 2 (black solid line), 1.95 (red dotted line), 1.8 (blue dashed
line) and 1.5 (green long-dashed line) on a double logarithmic paper.
For o < 2 the tails form straight lines with slope —a.
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where: .

e 1
Co = (2/ x= sin(m)da:) = —TI'(a)sin .
0 ™ 2

The convergence to a power-law tail varies for different o’s and, as can be seen
in the right panel of Figure 1.1, is slower for larger values of the tail index.
Moreover, the tails of a-stable distribution functions exhibit a crossover from
an approximate power decay with exponent o > 2 to the true tail with exponent
«. This phenomenon is more visible for large a’s (Weron, 2001).

When « > 1, the mean of the distribution exists and is equal to p. In general,
the pth moment of a stable random variable is finite if and only if p < a. When
the skewness parameter 3 is positive, the distribution is skewed to the right,
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Dependence on beta Gaussian, Cauchy, and Levy distributions
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Figure 1.2: Left panel: Stable pdfs for a = 1.2 and 8 = 0 (black solid line), 0.5
(red dotted line), 0.8 (blue dashed line) and 1 (green long-dashed
line). Right panel: Closed form formulas for densities are known
only for three distributions — Gaussian (o = 2; black solid line),
Cauchy (a = 1; red dotted line) and Levy (o = 0.5,8 = 1; blue
dashed line). The latter is a totally skewed distribution, i.e. its
support is Ry. In general, for « < 1 and 8 = 1 (—1) the distribution
is totally skewed to the right (left).
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i.e. the right tail is thicker, see the left panel of Figure 1.2. When it is negative,
it is skewed to the left. When (3 = 0, the distribution is symmetric about p. As
« approaches 2, 3 loses its effect and the distribution approaches the Gaussian
distribution regardless of 3. The last two parameters, ¢ and u, are the usual
scale and location parameters, i.e. ¢ determines the width and p the shift of
the mode (the peak) of the density. For o = 1 and p = 0 the distribution is
called standard stable.

1.2.1 Characteristic Function Representation

Due to the lack of closed form formulas for densities for all but three dis-
tributions (see the right panel in Figure 1.2), the a-stable law can be most
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S parameterization SO parameterization
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Figure 1.3: Comparison of S and SY parameterizations: a-stable pdfs for 8 =
0.5 and a = 0.5 (black solid line), 0.75 (red dotted line), 1 (blue
short-dashed line), 1.25 (green dashed line) and 1.5 (cyan long-
dashed line).
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conveniently described by its characteristic function ¢(t) — the inverse Fourier
transform of the probability density function. However, there are multiple pa-
rameterizations for a-stable laws and much confusion has been caused by these
different representations, see Figure 1.3. The variety of formulas is caused by
a combination of historical evolution and the numerous problems that have
been analyzed using specialized forms of the stable distributions. The most
popular parameterization of the characteristic function of X ~ S, (o, S, 1),
i.e. an a-stable random variable with parameters «, o, (3, and p, is given by
(Samorodnitsky and Taqqu, 1994; Weron, 2004):

—o[t|*{1 —ifsign(t) tan T} +ipt, o F#1,
In¢(t) = (1.2)
—ot|{1 + iBsign(t)2 In [t|} + iut, a=1
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For numerical purposes, it is often advisable to use Nolan’s (1997) parameter-
ization:

—o®[t|*{1 + ifsign(t) tan Z2[(o]t])' = — 1]} +ipot, a #1,
In ¢0 (t) =
—o|t|{1 + iBsign(t) 2 In(o|t|)} + inot, a=1.
(1.3)
The S (0, 3, 110) parameterization is a variant of Zolotariev’s (M)-parameteri-
zation (Zolotarev, 1986), with the characteristic function and hence the density
and the distribution function jointly continuous in all four parameters, see the
right panel in Figure 1.3. In particular, percentiles and convergence to the
power-law tail vary in a continuous way as « and (8 vary. The location parame-
ters of the two representations are related by p = pg — o tan %5* for a # 1 and
W= po — ﬂa% Ino for a = 1. Note also, that the traditional scale parameter
o¢ of the Gaussian distribution defined by:

S SN N €t s
1600 = {5 .

is not the same as o in formulas (1.2) or (1.3). Namely, o¢ = v/20.

1.2.2 Stable Density and Distribution Functions

The lack of closed form formulas for most stable densities and distribution
functions has negative consequences. For example, during maximum likeli-
hood estimation computationally burdensome numerical approximations have
to be used. There generally are two approaches to this problem. Either the
fast Fourier transform (FFT) has to be applied to the characteristic function
(Mittnik, Doganoglu, and Chenyao, 1999) or direct numerical integration has
to be utilized (Nolan, 1997, 1999).

For data points falling between the equally spaced FFT grid nodes an inter-
polation technique has to be used. Taking a larger number of grid points in-
creases accuracy, however, at the expense of higher computational burden. The
FFT based approach is faster for large samples, whereas the direct integration
method favors small data sets since it can be computed at any arbitrarily cho-
sen point. Mittnik, Doganoglu, and Chenyao (1999) report that for N = 213
the FFT based method is faster for samples exceeding 100 observations and
slower for smaller data sets. Moreover, the FFT based approach is less uni-
versal — it is efficient only for large a’s and only for pdf calculations. When
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computing the cdf the density must be numerically integrated. In contrast, in
the direct integration method Zolotarev’s (1986) formulas either for the density
or the distribution function are numerically integrated.

Set ( = —(tan 2. Then the density f(z;«, ) of a standard a-stable random
variable in representatlon SV ie. X ~ S%(1,8,0), can be expressed as (note,
that Zolotarev (1986, Section 2.2) used yet another parametrization):

when a # 1 and z > (:

f(z;a,8) = Sﬁ;l|/‘V0aﬂem{ (x =)=V (6;, ) } db),
(1.5)

when o # 1 and = = (:

(1 + 1) cos(€)

f(x;a,ﬁ)z 7T(1+<2)i

)

when o # 1 and z < (:
f(fL',Oé,ﬁ) = f(—.’II;Oé, _ﬁ)7
when a = 1:

ge # L5 VL e (-~ FVO:L8) [, g0,

f(z;1,8) =
m(14+x2)? ﬁ = O7

where

- Larctan(—(), a#1

a %7 a=1,

and

1 COS ﬁ 9

(COS Oéf) ot (sin a(&i@)) Cos{agc-:s(z = } «@ # 1,
V(0;a,8) =

() e (el a0

The distribution F(z; «, 3) of a standard a-stable random variable in represen-
tation SO can be expressed as:
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e when o # 1 and z > (:

F(z;a,0) = c1(a, B8) + w/_i exp{—(x — ()ﬁV(G;a,ﬁ)}dﬂ,

™

where

e when o # 1 and z < (:

F(I’,O[’ﬁ) =1 *F(*I’;OQ 7/8)7
e when o = 1:

%f_% exp {—e_%V(H; 1,5)}d9, 3> 0,
F(x;1,8) = %—&—%arctana:, 8 =0,

17F($7177/6)7 ﬂ<0

Formula (1.5) requires numerical integration of the function g(-) exp{—g(-)},
where g(6;z,a, 3) = (x — )31V (6; a, 3). The integrand is 0 at —¢, increases
monotonically to a maximum of % at point 6* for which g(6*;z,a,03) = 1,
and then decreases monotonically to 0 at 5 (Nolan, 1997). However, in some
cases the integrand becomes very peaked and numerical algorithms can miss
the spike and underestimate the integral. To avoid this problem we need to
find the argument #* of the peak numerically and compute the integral as a

us

sum of two integrals: one from —¢ to 6* and the other from 6* to 7.

1.3 Simulation of a-stable Variables

The complexity of the problem of simulating sequences of a-stable random
variables results from the fact that there are no analytic expressions for the
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inverse F~1 of the cumulative distribution function. The first breakthrough
was made by Kanter (1975), who gave a direct method for simulating S, (1,1, 0)
random variables, for & < 1. It turned out that this method could be easily
adapted to the general case. Chambers, Mallows, and Stuck (1976) were the
first to give the formulas.

The algorithm for constructing a standard stable random variable X ~ S, (1, 3,0),
in representation (1.2), is the following (Weron, 1996):
e generate a random variable V' uniformly distributed on (-7, %) and an

independent exponential random variable W with mean 1;

e for a # 1 compute:

sin{o(V + Bag)} [cos{V — a(V + B, 5)} ]~/
X = SO( 5 . : * ’ ) (16)
’ {cos(V)}1/a w
where
Buy = arctan(0 tan %),
!
B 9 5 E 1/(2a) .
Sap = {1—|—ﬂ tan (2)} ;
e for a = 1 compute:
2 ™ ZWcosV
X =— - —fBln | +——— . 1.
7r{(Q—FﬁV)tanV Bn<g+ﬂv>} (1.7)

Given the formulas for simulation of a standard a-stable random variable, we
can easily simulate a stable random variable for all admissible values of the
parameters «, o, § and g using the following property: if X ~ S, (1, 3,0) then

oX + p, a#l,
Y = (1.8)
oX—&—%ﬂolna—i—u, a=1,

is So (o, B, ). It is interesting to note that for & = 2 (and 8 = 0) the Chambers-
Mallows-Stuck method reduces to the well known Box-Muller algorithm for
generating Gaussian random variables (Janicki and Weron, 1994). Although
many other approaches have been proposed in the literature, this method is
regarded as the fastest and the most accurate (Weron, 2004).



