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Preface

During the last years, scientific computing has become an important research
branch located between applied mathematics and applied sciences and engi-
neering. Nowadays, in numerical mathematics not only simple model problems
are treated, but modern and well-founded mathematical algorithms are ap-
plied to solve complex problems of real life applications. Such applications are
demanding for computational realization and need suitable and robust tools
for a flexible and efficient implementation. Modularity and abstract concepts
allow for an easy transfer of methods to different applications.

Inspired by and parallel to the investigation of real life applications, nu-
merical mathematics has built and improved many modern algorithms which
are now standard tools in scientific computing. Examples are adaptive meth-
ods, higher order discretizations, fast linear and non-linear iterative solvers,
multi-level algorithms, etc. These mathematical tools are able to reduce com-
puting times tremendously and for many applications a simulation can only
be realized in a reasonable time frame using such highly efficient algorithms.

A very flexible software is needed when working in both fields of scientific
computing and numerical mathematics. We developed the toolbox ALBERTA1

for meeting these requirements. Our intention in the design of ALBERTA is
threefold: First, it is a toolbox for fast and flexible implementation of efficient
software for real life applications, based on the modern algorithms mentioned
above. Secondly, in an interplay with mathematical analysis, ALBERTA is an
environment for improving existent, or developing new numerical methods.
And finally, it allows the direct integration of such new or improved methods
in existing simulation software.

Before having ALBERTA, we worked with a variety of solvers, each designed
for the solution of one single application. Most of them were based on data
structures specifically designed for one single application. A combination of
different solvers or exchanging modules between programs was hard to do.

1The original name of the toolbox was ALBERT. Due to copyright reasons, we
had to rename it and we have chosen ALBERTA.
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Facing these problems, we wanted to develop a general adaptive finite element
environment, open for implementing a large class of applications, where an
exchange of modules and a coupling of different solvers is easy to realize.

Such a toolbox has to be based on a solid concept which is still open for ex-
tensions as science develops. Such a solid concept can be derived from a math-
ematical abstraction of problem classes, numerical methods, and solvers. Our
mathematical view of numerical algorithms, especially finite element methods,
is based on our education and scientific research in the departments for applied
mathematics at the universities of Bonn and Freiburg. This view point has
greatly inspired the abstract concepts of ALBERTA as well as their practical
realization, reflected in the main data structures. The robustness and flexible
extensibility of our concept was approved in various applications from physics
and engineering, like computational fluid dynamics, structural mechanics, in-
dustrial crystal growth, etc. as well as by the validation of new mathematical
methods.

ALBERTA is a library with data structures and functions for adaptive fi-
nite element simulations in one, two, and three space dimension, written in the
programming language ANSI-C. Shortly after finishing the implementation of
the first version of ALBERTA and using it for first scientific applications, we
confronted students with it in a course about finite element methods. The
idea was to work on more interesting projects in the course and providing a
strong foundation for an upcoming diploma thesis. Using ALBERTA in edu-
cation then required a documentation of data structures and functions. The
numerical course tutorials were the basis for a description of the background
and concepts of adaptive finite elements.

The combination of the abstract and concrete description resulted in a
manual for ALBERTA and made it possible that it is now used world wide in
universities and research centers. The interest from other scientists motivated
a further polishing of the manual as well as the toolbox itself, and resulted in
this book.

These notes are organized as follows: In Chapter 1 we describe the con-
cepts of adaptive finite element methods and its ingredients like the domain
discretization, finite element basis functions and degrees of freedom, numeri-
cal integration via quadrature formulas for the assemblage of discrete systems,
and adaptive algorithms.

The second chapter is a tutorial for using ALBERTA without giving much
details about data structures and functions. The implementation of three
model problems is presented and explained. We start with the easy and
straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of a nonlinear
reaction-diffusion problem and the time dependent heat equation are more
involved and show the tools of ALBERTA for attacking more complex prob-
lems. The chapter is closed with a short introduction to the installation of the
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ALBERTA distribution enclosed to this book in a UNIX/Linux environment.
Visit the ALBERTA web site

http://www.alberta-fem.de/

for updates, more information, FAQ, contributions, pictures from different
projects, etc.

The realization of data structures and functions in ALBERTA is based on
the abstract concepts presented in Chapter 1. A detailed description of all
data structures and functions of ALBERTA is given in Chapter 3. The book
closes with separate lists of all data types, symbolic constants, functions, and
macros.

The cover picture of this book shows the ALBERTA logo, combined with
a locally refined cogwheel mesh [17], and the norm of the velocity from a
calculation of edge tones in a flute [4].

Starting first as a two-men-project, ALBERTA is evolving and now there
are more people maintaining and extending it. We are grateful for a lot of
substantial contributions coming from: Michael Fried, who was the first brave
man besides us to use ALBERT, Claus-Justus Heine, Daniel Köster, and Oliver
Kriessl. Daniel and Claus in particular set up the GNU configure tools for an
easy, platform-independent installation of the software.

We are indebted to the authors of the gltools, especially Jürgen Fuhrmann,
and also to the developers of GRAPE, especially Bernard Haasdonk, Robert
Klöfkorn, Mario Ohlberger, and Martin Rumpf.

We want to thank the Department of Mathematics at the University of
Maryland (USA), in particular Ricardo H. Nochetto, where part of the docu-
mentation was written during a visit of the second author. We appreciate the
invitation of the Isaac Newton Institute in Cambridge (UK) where we could
meet and work intensively on the revision of the manual for three weeks.

We thank our friends, distributed all over the world, who have pointed
out a lot of typos in the manual and suggested several improvements for
ALBERTA.

Last but not least, ALBERTA would not have come into being without
the stimulating atmosphere in the group in Freiburg, which was the perfect
environment for working on this project. We want to express our gratitude to
all former colleagues, especially Gerhard Dziuk.

Bremen and Augsburg, October 2004

Alfred Schmidt and Kunibert G. Siebert
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Introduction

Finite element methods provide a widely used tool for the solution of problems
with an underlying variational structure. Modern numerical analysis and im-
plementations for finite elements provide more and more tools for the efficient
solution of large-scale applications. Efficiency can be increased by using local
mesh adaption, by using higher order elements, where applicable, and by fast
solvers.

Adaptive procedures for the numerical solution of partial differential equa-
tions started in the late 70’s and are now standard tools in science and en-
gineering. Adaptive finite element methods are a meaningful approach for
handling multi scale phenomena and making realistic computations feasible,
specially in 3d.

There exists a vast variety of books about finite elements. Here, we only
want to mention the books by Ciarlet [25], and Brenner and Scott [23] as
the most prominent ones. The book by Brenner and Scott also contains an
introduction to multi-level methods.

The situation is completely different for books about adaptive finite ele-
ments. Only few books can be found with introductory material about the
mathematics of adaptive finite element methods, like the books by Verfürth
[73], and Ainsworth and Oden [2]. Material about more practical issues like
adaptive techniques and refinement procedures can for example be found in
[3, 5, 8, 44, 46].

Another basic ingredient for an adaptive finite element method is the a
posteriori error estimator which is main object of interest in the analysis
of adaptive methods. While a general theory exists for these estimators in
the case of linear and mildly nonlinear problems [10, 73], highly nonlinear
problems usually still need a special treatment, see [24, 33, 54, 55, 69] for
instance. There exist a lot of different approaches to (and a large number of
articles about) the derivation of error estimates, by residual techniques, dual
techniques, solution of local problems, hierarchical approaches, etc., a fairly
incomplete list of references is [1, 3, 7, 13, 21, 36, 52, 72].
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Although adaptive finite element methods in practice construct a sequence
of discrete solutions which converge to the true solution, this convergence
could only be proved recently for linear elliptic problem [50, 51, 52] and for
the nonlinear Laplacian [70], based on the fundamental paper [31]. For a mod-
ification of the convergent algorithm in [50], quasi-optimality of the adaptive
method was proved in [16] and [67].

During the last years there has been a great progress in designing finite
element software. It is not possible to mention all freely available packages.
Examples are [5, 11, 12, 49, 62], and an continuously updated list of other
available finite element codes and resources can for instance be found at

http://www.engr.usask.ca/~macphed/finite/fe_resources/.

Adaptive finite element methods and basic concepts of ALBERTA

Finite element methods calculate approximations to the true solution in some
finite dimensional function space. This space is built from local function spaces,
usually polynomials of low order, on elements of a partitioning of the domain
(the mesh). An adaptive method adjusts this mesh (or the local function
space, or both) to the solution of the problem. This adaptation is based on
information extracted from a posteriori error estimators.

The basic iteration of an adaptive finite element code for a stationary
problem is
• assemble and solve the discrete system;
• calculate the error estimate;
• adapt the mesh, when needed.
For time dependent problems, such an iteration is used in each time step, and
the step size of a time discretization may be subject to adaptivity, too.

The core part of every finite element program is the problem dependent
assembly and solution of the discretized problem. This holds for programs that
solve the discrete problem on a fixed mesh as well as for adaptive methods that
automatically adjust the underlying mesh to the actual problem and solution.
In the adaptive iteration, the assemblage and solution of a discrete system is
necessary after each mesh change. Additionally, this step is usually the most
time consuming part of that iteration.

A general finite element toolbox must provide flexibility in problems and
finite element spaces while on the other hand this core part can be performed
efficiently. Data structures are needed which allow an easy and efficient im-
plementation of the problem dependent parts and also allow to use adaptive
methods, mesh modification algorithms, and fast solvers for linear and nonlin-
ear discrete problems by calling library routines. On one hand, large flexibility
is needed in order to choose various kinds of finite element spaces, with higher
order elements or combinations of different spaces for mixed methods or sys-
tems. On the other hand, the solution of the resulting discrete systems may
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profit enormously from a simple vector–oriented storage of coefficient vectors
and matrices. This also allows the use of optimized solver and BLAS libraries.
Additionally, multilevel preconditioners and solvers may profit from hierarchy
information, leading to highly efficient solvers for the linear (sub–) problems.

ALBERTA [59, 60, 62] provides all those tools mentioned above for the ef-
ficient implementation and adaptive solution of general nonlinear problems in
two and three space dimensions. The design of the ALBERTA data structures
allows a dimension independent implementation of problem dependent parts.
The mesh adaptation is done by local refinement and coarsening of mesh
elements, while the same local function space is used on all mesh elements.

Starting point for the design of ALBERTA data structures is the abstract
concept of a finite element space defined (similar to the definition of a single
finite element by Ciarlet [25]) as a triple consisting of
• a collection of mesh elements ;
• a set of local basis functions on a single element, usually a restriction of
global basis functions to a single element;

• a connection of local and global basis functions giving global degrees of
freedom for a finite element function.

This directly leads to the definition of three main groups of data structures:
• data structures for geometric information storing the underlying mesh to-
gether with element coordinates, boundary type and geometry, etc.;

• data structures for finite element information providing values of local basis
functions and their derivatives;

• data structures for algebraic information linking geometric data and finite
element data.

Using these data structures, the finite element toolbox ALBERTA provides the
whole abstract framework like finite element spaces and adaptive strategies,
together with hierarchical meshes, routines for mesh adaptation, and the com-
plete administration of finite element spaces and the corresponding degrees of
freedom (DOFs) during mesh modifications. The underlying data structures
allow a flexible handling of such information. Furthermore, tools for numeri-
cal quadrature, matrix and load vector assembly as well as solvers for (linear)
problems, like conjugate gradient methods, are available.

A specific problem can be implemented and solved by providing just some
problem dependent routines for evaluation of the (linearized) differential op-
erator, data, nonlinear solver, and (local) error estimators, using all the tools
above mentioned from a library.

Both geometric and finite element information strongly depend on the
space dimension. Thus, mesh modification algorithms and basis functions are
implemented for one (1d), two (2d), and three (3d) dimensions separately
and are provided by the toolbox. Everything besides that can be formulated
in such a way that the dimension only enters as a parameter (like size of local
coordinate vectors, e.g.). For usual finite element applications this results in
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a dimension independent programming, where all dimension dependent parts
are hidden in a library. This allows a dimension independent programming of
applications to the greatest possible extent.

The remaining parts of the introduction give a short overview over the
main concepts, details are then given in Chapter 1.

The hierarchical mesh

The underlying mesh is a conforming triangulation of the computational do-
main into simplices, i.e. intervals (1d), triangles (2d), or tetrahedra (3d). The
simplicial mesh is generated by refinement of a given initial triangulation. Re-
fined parts of the mesh can be de–refined, but elements of the initial triangula-
tion (macro elements) must not be coarsened. The refinement and coarsening
routines construct a sequence of nested meshes with a hierarchical structure.
In ALBERTA, the recursive refinement by bisection is implemented, using the
notation of Kossaczký [44].

During refinement, new degrees of freedom are created. A single degree of
freedom is shared by all elements which belong to the support of the corre-
sponding finite element basis function (compare next paragraph). The mesh
refinement routines must create a new DOF only once and give access to
this DOF from all elements sharing it. Similarly, DOFs are handled during
coarsening. This is done in cooperation with the DOF administration tool,
see below.

The bisectioning refinement of elements leads naturally to nested meshes
with the hierarchical structure of binary trees, one tree for every element of
the initial triangulation. Every interior node of that tree has two pointers to
the two children; the leaf elements are part of the actual triangulation, which
is used to define the finite element space(s). The whole triangulation is a list
of given macro elements together with the associated binary trees. The hier-
archical structure allows the generation of most information by the hierarchy,
which reduces the amount of data to be stored. Some information is stored
on the (leaf) elements explicitly, other information is located at the macro
elements and is transfered to the leaf elements while traversing through the
binary tree. Element information about vertex coordinates, domain bound-
aries, and element adjacency can be computed easily and very fast from the
hierarchy, when needed. Data stored explicitly at tree elements can be reduced
to pointers to the two possible children and information about local DOFs (for
leaf elements). Furthermore, the hierarchical mesh structure directly leads to
multilevel information which can be used by multilevel preconditioners and
solvers.

Access to mesh elements is available solely via routines which traverse
the hierarchical trees; no direct access is possible. The traversal routines can
give access to all tree elements, only to leaf elements, or to all elements which
belong to a single hierarchy level (for a multilevel application, e.g.). In order to
perform operations on visited elements, the traversal routines call a subroutine
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which is given to them as a parameter. Only such element information which
is needed by the current operation is generated during the tree traversal.

Finite elements

The values of a finite element function or the values of its derivatives are
uniquely defined by the values of its DOFs and the values of the basis functions
or the derivatives of the basis functions connected with these DOFs. We follow
the concept of finite elements which are given on a single element S in local
coordinates: Finite element functions on an element S are defined by a finite
dimensional function space P̄ on a reference element S̄ and the (one to one)
mapping λS : S̄ → S from the reference element S̄ to the element S. In this
situation the non vanishing basis functions on an arbitrary element are given
by the set of basis functions of P̄ in local coordinates λS . Also, derivatives are
given by the derivatives of basis functions on P̄ and derivatives of λS .

Each local basis function on S is uniquely connected to a global degree
of freedom, which can be accessed from S via the DOF administration tool.
ALBERTA supports basis functions connected with DOFs, which are located
at vertices of elements, at edges, at faces (in 3d), or in the interior of elements.
DOFs at a vertex are shared by all elements which meet at this vertex, DOFs
at an edge or face are shared by all elements which contain this edge or
face, and DOFs inside an element are not shared with any other element.
The support of the basis function connected with a DOF is the patch of all
elements sharing this DOF.

For a very general approach, we only need a vector of the basis functions
(and its derivatives) on S̄ and a function for the communication with the
DOF administration tool in order to access the degrees of freedom connected
to local basis functions. By such information every finite element function
(and its derivatives) is uniquely described on every element of the mesh.

During mesh modifications, finite element functions must be transformed
to the new finite element space. For example, a discrete solution on the old
mesh yields a good initial guess for an iterative solver and a smaller number
of iterations for a solution of the discrete problem on the new mesh. Usu-
ally, these transformations can be realized by a sequence of local operations.
Local interpolations and restrictions during refinement and coarsening of ele-
ments depend on the function space P̄ and the refinement of S̄ only. Thus, the
subroutine for interpolation during an atomic mesh refinement is the efficient
implementation of the representation of coarse grid functions by fine grid func-
tions on S̄ and its refinement. A restriction during coarsening is implemented
using similar information.

Lagrange finite element spaces up to order four are currently implemented
in one, two, and three dimensions. This includes the communication with the
DOF administration as well as the interpolation and restriction routines.
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Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric infor-
mation of a triangulation. For general applications, it is necessary to handle
several different sets of degrees of freedom on the same triangulation. For
example, in mixed finite element methods for the Navier-Stokes problem, dif-
ferent polynomial degrees are used for discrete velocity and pressure functions.

During adaptive refinement and coarsening of a triangulation, not only
elements of the mesh are created and deleted, but also degrees of freedom
together with them. The geometry is handled dynamically in a hierarchical
binary tree structure, using pointers from parent elements to their children.
For data corresponding to DOFs, which are usually involved with matrix–
vector operations, simpler storage and access methods are more efficient. For
that reason every DOF is realized just as an integer index, which can easily be
used to access data from a vector or to build matrices that operate on vectors
of DOF data. This results in a very efficient access during matrix/vector
operations and in the possibility to use libraries for the solution of linear
systems with a sparse system matrix ([29], e.g.).

Using this realization of DOFs two major problems arise:
• During refinement of the mesh, new DOFs are added, and additional indices
are needed. The total range of used indices has to be enlarged. At the same
time, all vectors and matrices that use these DOF indices have to be adjusted
in size, too.

• During coarsening of the mesh, DOFs are deleted. In general, the deleted
DOF is not the one which corresponds to the largest integer index. Holes
with unused indices appear in the total range of used indices and one has to
keep track of all used and unused indices.

These problems are solved by a general DOF administration tool. During
refinement, it enlarges the ranges of indices, if no unused indices produced
by a previous coarsening are available. During coarsening, a book–keeping
about used and unused indices is done. In order to reestablish a contiguous
range of used indices, a compression of DOFs can be performed; all DOFs are
renumbered such that all unused indices are shifted to the end of the index
range, thus removing holes of unused indices. Additionally, all vectors and
matrices connected to these DOFs are adjusted correspondingly. After this
process, vectors do not contain holes anymore and standard operations like
BLAS1 routines can be applied and yield optimal performance.

In many cases, information stored in DOF vectors has to be adjusted
to the new distribution of DOFs during mesh refinement and coarsening.
Each DOF vector can provide pointers to subroutines that implements these
operations on data (which usually strongly depend on the corresponding finite
element basis). Providing such a pointer, a DOF vector will automatically be
transformed during mesh modifications.
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All tasks of the DOF administration are performed automatically during
refinement and coarsening for every kind and combination of finite elements
defined on the mesh.

Adaptive solution of the discrete problem

The aim of adaptive methods is the generation of a mesh which is adapted to
the problem such that a given criterion, like a tolerance for the estimated error
between exact and discrete solution, is fulfilled by the finite element solution
on this mesh. An optimal mesh should be as coarse as possible while meeting
the criterion, in order to save computing time and memory requirements. For
time dependent problems, such an adaptive method may include mesh changes
in each time step and control of time step sizes. The philosophy implemented in
ALBERTA is to change meshes successively by local refinement or coarsening,
based on error estimators or error indicators, which are computed a posteriori
from the discrete solution and given data on the current mesh.

Several adaptive strategies are proposed in the literature, that give criteria
which mesh elements should be marked for refinement. All strategies are based
on the idea of an equidistribution of the local error to all mesh elements.
Babuška and Rheinboldt [3] motivate that for stationary problems a mesh is
almost optimal when the local errors are approximately equal for all elements.
So, elements where the error indicator is large will be marked for refinement,
while elements with a small estimated indicator are left unchanged or are
marked for coarsening. In time dependent problems, the mesh is adapted
to the solution in every time step using a posteriori information like in the
stationary case. As a first mesh for the new time step we use the adaptive
mesh from the previous time step. Usually, only few iterations of the adaptive
procedure are then needed for the adaptation of the mesh for the new time
step. This may be accompanied by an adaptive control of time step sizes.

Given pointers to the problem dependent routines for assembling and so-
lution of the discrete problems, as well as an error estimator/indicator, the
adaptive method for finding a solution on a quasi–optimal mesh can be per-
formed as a black–box algorithm. The problem dependent routines are used
for the calculation of discrete solutions on the current mesh and (local) error
estimates. Here, the problem dependent routines heavily make use of library
tools for assembling system matrices and right hand sides for an arbitrary
finite element space, as well as tools for the solution of linear or nonlinear dis-
crete problems. On the other hand, any specialized algorithm may be added
if needed. The marking of mesh elements is based on general refinement and
coarsening strategies relying on the local error indicators. During the follow-
ing mesh modification step, DOF vectors are transformed automatically to
the new finite element spaces as described in the previous paragraphs.
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Dimension independent program development

Using black–box algorithms, the abstract definition of basis functions, quadra-
ture formulas and the DOF administration tool, only few parts of the finite
element code depend on the dimension. Usually, all dimension dependent parts
are hidden in the library. Hence, program development can be done in 1d or
2d, where execution is usually much faster and debugging is much easier (be-
cause of simple 1d and 2d visualization, e.g., which is much more involved
in 3d). With no (or maybe few) additional changes, the program will then
also work in 3d. This approach leads to a tremendous reduction of program
development time for 3d problems.

Notations. For a differentiable function f : Ω → R on a domain Ω ⊂ R
d,

d = 1, 2, 3, we set

∇f(x) = (f,x1(x), . . . , f,xd
(x)) =

(
∂

∂x1
f(x), . . . ,

∂

∂xd
f(x)

)

and

D2f(x) = (f,xkxl
)k,l=1,...d =

(
∂2

∂xkxl
f(x)

)
k,l=1,...d

.

For a vector valued, differentiable function f = (f1, . . . , fn) : Ω → R
n we

write

∇f(x) = (fi,x1(x), . . . , fi,xd
(x))i=1,...,n =

(
∂

∂x1
fi(x), . . . ,

∂

∂xd
fi(x)

)
i=1,...,n

and

D2f(x) = (fi,xkxl
) i=1,...,n

k,l=1,...d
=

(
∂2

∂xkxl
fi(x)

)
i=1,...,n
k,l=1,...d

.

By Lp(Ω), 1 ≤ p ≤ ∞, we denote the usual Lebesgue spaces with norms

‖f‖Lp(Ω) =
(∫

Ω

|f(x)|p dx

)1/p

for p < ∞

and

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)|.

The Sobolev space of functions u ∈ L2(Ω) with weak derivatives ∇u ∈ L2(Ω)
is denoted by H1(Ω) with semi norm

|u|H1(Ω) =
(∫

Ω

|∇u(x)|2 dx

)1/2

and norm

‖u‖H1(Ω) =
(
‖u‖2

L2(Ω) + |u|2H1(Ω)

)1/2

.
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Concepts and abstract algorithms

1.1 Mesh refinement and coarsening

In this section, we describe the basic algorithms for the local refinement and
coarsening of simplicial meshes in two and three dimensions. In 1d the grid
is built from intervals, in 2d from triangles, and in 3d from tetrahedra. We
restrict ourselves here to simplicial meshes, for several reasons:

1. A simplex is one of the most simple geometric types and complex domains
may be approximated by a set of simplices quite easily.

2. Simplicial meshes allow local refinement (see Fig. 1.1) without the need of
non–conforming meshes (hanging nodes), parametric elements, or mixture
of element types (which is the case for quadrilateral meshes, e.g., see Fig.
1.2).

3. Polynomials of any degree are easily represented on a simplex using local
(barycentric) coordinates.

Fig. 1.1. Global and local refinement of a triangular mesh.

First of all we start with the definition of a simplex, parametric simplex
and triangulation:

Definition 1.1 (Simplex).

a) Let a0, . . . , ad ∈ R
n be given such that a1 − a0, . . . , ad − a0 are linear in-

dependent vectors in R
n. The convex set
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Fig. 1.2. Local refinements of a rectangular mesh: with hanging nodes, conforming
closure using bisected rectangles, and conforming closure using triangles. Using a
conforming closure with rectangles, a local refinement has always global effects up
to the boundary.

S = conv hull{a0, . . . , ad}
is called a d–simplex in R

n. For k < d let

S′ = conv hull{a′
0, . . . , a

′
k} ⊂ ∂S

be a k–simplex with a′
0, . . . , a

′
k ∈ {a0, . . . , ad}. Then S′ is called a k–sub–

simplex of S. A 0–sub–simplex is called vertex, a 1–sub–simplex edge and
a 2–sub–simplex face.

b) The standard simplex in R
d is defined by

Ŝ = conv hull {â0 = 0, â1 = e1, . . . , âd = ed} ,

where ei are the unit vectors in R
d.

c) Let FS : Ŝ → S ⊂ R
n be an invertible, differentiable mapping. Then S

is called a parametric d–simplex in R
n. The k–sub–simplices S′ of S are

given by the images of the k–sub–simplices Ŝ′ of Ŝ. Thus, the vertices
a0, . . . , ad of S are the points FS(â0), . . . , FS(âd).

d) For a d–simplex S, we define

hS := diam(S) and ρS := sup{2r; Br ⊂ S is a d–ball of radius r},
the diameter and inball–diameter of S.

Remark 1.2. Every d–simplex S in R
n is a parametric simplex. Defining the

matrix AS ∈ R
n×d by

AS =

⎡
⎢⎢⎣

...
...

a1 − a0 · · · ad − a0

...
...

⎤
⎥⎥⎦ ,

the parameterization FS : Ŝ → S is given by

FS(x̂) = AS x̂ + a0. (1.1)

Since FS is affine linear it is differentiable. It is easy to check that FS : Ŝ → S
is invertible and that FS(âi) = ai, i = 0, . . . , d holds.



1.1 Mesh refinement and coarsening 11

Definition 1.3 (Triangulation).

a) Let S be a set of (parametric) d–simplices and define

Ω = interior
⋃

S∈S
S ⊂ R

n.

We call S a conforming triangulation of Ω, iff for two simplices S1, S2 ∈ S
with S1 �= S2 the intersection S1∩S2 is either empty or a complete k–sub–
simplex of both S1 and S2 for some 0 ≤ k < d.

b) Let Sk, k ≥ 0, be a sequence of conforming triangulations. This sequence
is called (shape) regular, iff

sup
k∈N0

max
S∈Sk

max
x̂∈Ŝ

cond(DF t
S(x̂) · DFS(x̂)) < ∞ (1.2)

holds, where DFS is the Jacobian of FS and cond(A) = ‖A‖‖A−1‖ denotes
the condition number.

Remark 1.4. For a sequence Sk, k ≥ 0, of non–parametric triangulations the
regularity condition (1.2) is equivalent to the condition

sup
k∈N0

max
S∈Sk

hS

ρS
< ∞.

In order to construct a sequence of triangulations, we consider the following
situation: An initial (coarse) triangulation S0 of the domain is given. We call it
macro triangulation. It may be generated by hand or by some mesh generation
algorithm ([63, 65]).

Some (or all) of the simplices are marked for refinement, depending on
some error estimator or indicator. The marked simplices are then refined, i.e.
they are cut into smaller ones. After several refinements, some other simplices
may be marked for coarsening. Coarsening tries to unite several simplices
marked for coarsening into a bigger simplex. A successive refinement and
coarsening will produce a sequence of triangulations S0,S1, . . . . The refine-
ment of single simplices that we describe in the next section produces for
every simplex of the macro triangulation only a finite and small number of
similarity classes for the resulting elements. The coarsening is more or less
the inverse process of refinement. This leads to a finite number of similarity
classes for all simplices in the whole sequence of triangulations.

The refinement of non–parametric and parametric simplices is the same
topological operation and can be performed in the same way. The actual chil-
dren’s shape of parametric elements additionally involves the children’s pa-
rameterization. In the following we describe the refinement and coarsening for
triangulations consisting of non–parametric elements. The refinement of para-
metric triangulations can be done in the same way, additionally using given
parameterizations. Regularity for the constructed sequence can be obtained



12 1 Concepts and abstract algorithms

with special properties of the parameterizations for parametric elements and
the finite number of similarity classes for simplices.

Marking criteria and marking strategies for refinement and coarsening are
subject of Section 1.5.

1.1.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. The
discussion about and description of these algorithms mainly centers around
refinement in 2d and 3d since refinement in 1d is straight forward.

One example is regular refinement (“red refinement”), which divides every
triangle into four similar triangles, see Fig. 1.3. The corresponding refinement
algorithm in three dimensions cuts every tetrahedron into eight tetrahedra,
and only a small number of similarity classes occur during successive refine-
ments, see [14, 15]. Unfortunately, hanging nodes arise during local regular
refinement. To remove them and create a conforming mesh, in two dimensions
some triangles have to be bisected (“green closure”). In three dimensions, sev-
eral types of irregular refinement are needed for the green closure. This creates
more similarity classes, even in two dimensions. Additionally, these bisected
elements have to be removed before a further refinement of the mesh, in order
to keep the triangulations shape regular.

Fig. 1.3. Global and local regular refinement of triangles and conforming closure
by bisection.

Another possibility is to use bisection of simplices only. For every element
(triangle or tetrahedron) one of its edges is marked as the refinement edge, and
the element is refined into two elements by cutting this edge at its midpoint.
There are several possibilities to choose such a refinement edge for a simplex,
one example is to use the longest edge; Mitchell [48] compared different ap-
proaches. We focus on an algorithm where the choice of refinement edges on
the macro triangulation prescribes the refinement edges for all simplices that
are created during mesh refinement. This makes sure that shape regularity of
the triangulations is conserved.

In two dimensions we use the newest vertex bisection (in Mitchell’s nota-
tion) and in three dimensions the bisection procedure of Kossaczký described
in [44]. We use the convention, that all vertices of an element are given fixed
local indices. Valid indices are 0, 1, for vertices of an interval, 0, 1, and 2 for
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vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron. Now, the
refinement edge for an element is fixed to be the edge between the vertices
with local indices 0 and 1. Here we use the convention that in 1d the element
itself is called “refinement edge”.

During refinement, the new vertex numbers, and thereby the refinement
edges, for the newly created child simplices are prescribed by the refinement
algorithm. For both children elements, the index of the newly generated vertex
at the midpoint of this edge has the highest local index (2 resp. 3 for triangles
and tetrahedra). These numbers are shown in Fig. 1.4 for 1d and 2d, and in
Fig. 1.5 for 3d. In 1d and 2d this numbering is the same for all refinement
levels. In 3d, one has to make some special arrangements: the numbering of the
second child’s vertices does depend on the type of the element. There exist
three different element types 0, 1, and 2. The type of the elements on the
macro triangulation can be prescribed (usually type 0 tetrahedron). The type
of the refined tetrahedra is recursively given by the definition that the type
of a child element is ((parent’s type + 1) modulo 3). In Fig. 1.5 we used the
following convention: for the index set {1,2,2} on child[1] of a tetrahedron
of type 0 we use the index 1 and for a tetrahedron of type 1 and 2 the index
2. Fig. 1.6 shows successive refinements of a type 0 tetrahedron, producing
tetrahedra of types 1, 2, and 0 again.

child[0] child[1]

0 1

1 00 1 0 1

2

child[0] child[1]

0

1

1

02 2

child[0] child[1]

Fig. 1.4. Numbering of nodes on parent and children for intervals and triangles.
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3

child[0]

child[1]

10

child[0]

0

{2,1,1}

3

2 {1,2,2}

child[1]

Fig. 1.5. Numbering of nodes on parent and children for tetrahedra.

By the above algorithm the refinements of simplices are totally determined
by the local vertex numbering on the macro triangulation, plus a prescribed
type for every macro element in three dimensions. Furthermore, a successive
refinement of every macro element only produces a small number of similarity
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Fig. 1.6. Successive refinements of a type 0 tetrahedron.

classes. In case of the “generic” triangulation of a (unit) square in 2d and
cube in 3d into two triangles resp. six tetrahedra (see Fig. 1.7 for a single
triangle and tetrahedron from such a triangulation – all other elements are
generated by rotation and reflection), the numbering and the definition of the
refinement edge during refinement of the elements guarantee that always the
longest edge will be the refinement edge and will be bisected, see Fig. 1.8.

The refinement of a given triangulation now uses the bisection of single
elements and can be performed either iteratively or recursively. In 1d, bisec-
tion only involves the element which is subject to refinement and thus is a
completely local operation. Both variants of refining a given triangulation are
the same. In 2d and 3d, bisection of a single element usually involves other
elements, resulting in two different algorithms.

For tetrahedra, the first description of such a refinement procedure was
given by Bänsch using the iterative variant [8]. It abandons the requirement
of one to one inter–element adjacencies during the refinement process and thus
needs the intermediate handling of hanging nodes. Two recursive algorithms,
which do not create such hanging nodes and are therefore easier to implement,
are published by Kossaczký [44] and Maubach [46]. For a special class of
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macro triangulations, they result in exactly the same tetrahedral meshes as
the iterative algorithm.

In order to keep the mesh conforming during refinement, the bisection
of an edge is allowed only when such an edge is the refinement edge for all
elements which share this edge. Bisection of an edge and thus of all elements
around the edge is the atomic refinement operation, and no other refinement
operation is allowed. See Figs. 1.9 and 1.10 for the two and three–dimensional
situations.

(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

(1,0)(0,0)

(0,1)

0

1

2
0

1

2

3

Fig. 1.7. Generic elements in two and three dimensions.

(1,0)(0,0)

(0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

Fig. 1.8. Refined generic elements in two and three dimensions.

Fig. 1.9. Atomic refinement operation in two dimensions. The common edge is the
refinement edge for both triangles.

If an element has to be refined, we have to collect all elements at its
refinement edge. In two dimensions this is either the neighbour opposite this
edge or there is no other element in the case that the refinement edge belongs
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Fig. 1.10. Atomic refinement operation in three dimensions. The common edge is
the refinement edge for all tetrahedra sharing this edge.

to the boundary. In three dimensions we have to loop around the edge and
collect all neighbours at this edge. If for all collected neighbours the common
edge is the refinement edge too, we can refine the whole patch at the same
time by inserting one new vertex in the midpoint of the common refinement
edge and bisecting every element of the patch. The resulting triangulation
then is a conforming one.

But sometimes the refinement edge of a neighbour is not the common edge.
Such a neighbour is not compatibly divisible and we have to perform first the
atomic refinement operation at the neighbour’s refinement edge. In 2d the
child of such a neighbour at the common edge is then compatibly divisible; in
3d such a neighbour has to be bisected at most three times and the resulting
tetrahedron at the common edge is then compatibly divisible. The recursive
refinement algorithm now reads

Algorithm 1.5 (Recursive refinement of one simplex).

subroutine recursive refine(S, S)
do

A := {S′ ∈ S; S′ is not compatibly divisible with S}
for all S′ ∈ A do

recursive refine(S′, S);
end for
A := {S′ ∈ S; S′ is not compatibly divisible with S}

until A = ∅
A := {S′ ∈ S; S′ is element at the refinement edge of S}
for all S′ ∈ A

bisect S′ into S′
0 and S′

1

S := S\{S′} ∪ {S′
0, S

′
1}

end for

In Fig. 1.11 we show a two–dimensional situation where recursion is
needed. For all triangles, the longest edge is the refinement edge. Let us as-
sume that triangles A and B are marked for refinement. Triangle A can be
refined at once, as its refinement edge is a boundary edge. For refinement of
triangle B, we have to recursively refine triangles C and D. Again, triangle
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D can be directly refined, so recursion terminates there. This is shown in the
second part of the figure. Back in triangle C, this can now be refined together
with its neighbour. After this, also triangle B can be refined together with its
neighbour.

C
D
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������
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������
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�����
�����A

B

Fig. 1.11. Recursive refinement in two dimensions. Triangles A and B are initially
marked for refinement.

The refinement of a given triangulation S where some or all elements are
marked for refinement is then performed by

Algorithm 1.6 (Recursive refinement algorithm).

subroutine refine(S)
for all S ∈ S do

if S is marked for refinement
recursive refine(S, S)

end if
end for

Since we use recursion, we have to guarantee that recursions terminates.
Kossaczký [44] and Mitchell [48] proved

Theorem 1.7 (Termination and Shape Regularity). The recursive re-
finement algorithm using bisection of single elements fulfills

1. The recursion terminates if the macro triangulation satisfies certain cri-
teria.

2. We obtain shape regularity for all elements at all levels.

Remark 1.8.

1. A first observation is, that simplices initially not marked for refinement
are bisected, enforced by the refinement of a marked simplex. This is a
necessity to obtain a conforming triangulation, also for the regular refine-
ment.

2. It is possible to mark an element for more than one bisection. The natural
choice is to mark a d–simplex S for d bisections. After d refinement steps
all original edges of S are bisected. A simplex S is refined k times by
refining the children S1 and S2 k− 1 times right after the refinement of S.
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3. The recursion does not terminate for an arbitrary choice of refinement
edges on the macro triangulation. In two dimensions, such a situation
is shown in Fig. 1.12. The selected refinement edges of the triangles are
shown by dashed lines. One can easily see, that there are no patches for the
atomic refinement operation. This triangulation can only be refined if other
choices of refinement edges are made, or by a non–recursive algorithm.

Fig. 1.12. A macro triangulation where recursion does not stop.

4. In two dimensions, for every macro triangulation it is possible to choose
the refinement edges in such a way that the recursion terminates (selecting
the ‘longest edge’). In three dimensions the situation is more complicated.
But there is a maybe refined grid such that refinement edges can be chosen
in such a way that recursion terminates [44].

1.1.2 Coarsening algorithm for simplicial meshes

The coarsening algorithm is more or less the inverse of the refinement algo-
rithm. The basic idea is to collect all those elements that were created during
the refinement at same time, i.e. the parents of these elements build a com-
patible refinement patch. The elements must only be coarsened if all involved
elements are marked for coarsening and are of finest level locally, i.e. no ele-
ment is refined further. The actual coarsening again can be performed in an
atomic coarsening operation without the handling of hanging nodes. Infor-
mation is passed from all elements onto the parents and the whole patch is
coarsened at the same time by removing the vertex in the parent’s common
refinement edge (see Figs. 1.13 and 1.14 for the atomic coarsening operation
in 2d and 3d). This coarsening operation is completely local in 1d.

During refinement, the bisection of an element can enforce the refinement
of an unmarked element in order to keep the mesh conforming. During coars-
ening, an element must only be coarsened if all elements involved in this
operation are marked for coarsening. This is the main difference between re-
finement and coarsening. In an adaptive method this guarantees that elements
with a large local error indicator marked for refinement are refined and no ele-
ment is coarsened where the local error indicator is not small enough (compare
Section 1.5.3).
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Fig. 1.13. Atomic coarsening operation in two dimensions.

Fig. 1.14. Atomic coarsening operation in three dimensions.

Since the coarsening process is the inverse of the refinement, refinement
edges on parent elements are again at their original position. Thus, further
refinement is possible with a terminating recursion and shape regularity for
all resulting elements.

Algorithm 1.9 (Local coarsening).

subroutine coarsen element(S, S)
A := {S′ ∈ S; S′ must not be coarsened with S}
if A = ∅

for all child pairs S′
0, S

′
1 at common coarsening edge do

coarse S′
0 and S′

1 into the parent S′

S := S\{S′
0, S

′
1} ∪ {S′}

end for
end if

The following routine coarsens as many elements as possible of a given trian-
gulation S:

Algorithm 1.10 (Coarsening algorithm).

subroutine coarsen(S)
for all S ∈ S do

if S is marked for coarsening
coarsen element(S, S)

end if
end for

Remark 1.11. Also in the coarsening procedure an element can be marked
for several coarsening steps. Usually, the coarsening markers for all patch
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elements are cleared if a patch must not be coarsened. If the patch must not
be coarsened because one patch element is not of locally finest level but may
coarsened more than once, elements stay marked for coarsening. A coarsening
of the finer elements can result in a patch which may then be coarsened.

1.1.3 Operations during refinement and coarsening

The refinement and coarsening of elements can be split into four major steps,
which are now described in detail.

Topological refinement and coarsening

The actual bisection of an element is performed as follows: the simplex is
cut into two children by inserting a new vertex at the refinement edge. All
objects like this new vertex, or a new edge (in 2d and 3d), or face (in 3d) have
only to be created once on the refinement patch. For example, all elements
share the new vertex and two children triangles share a common edge. The
refinement edge is divided into two smaller ones which have to be adjusted
to the respective children. In 3d all faces inside the patch are bisected into
two smaller ones and this creates an additional edge for each face. All these
objects can be shared by several elements and have to be assigned to them.
If neighbour information is stored, one has to update such information for
elements inside the patch as well as for neighbours at the patch’s boundary.

In the coarsening process the vertex which is shared by all elements is
removed, edges and faces are rejoined and assigned to the respective parent
simplices. Neighbour information has to be reinstalled inside the patch and
with patch neighbours.

Administration of degrees of freedoms

Single DOFs can be assigned to a vertex, edge, or face and such a DOF
is shared by all simplices meeting at the vertex, edge, or face respectively.
Finally, there may be DOFs on the element itself, which are not shared with
any other simplex. At each object there may be a single DOF or several DOFs,
even for several finite element spaces.

During refinement new DOFs are created. For each newly created object
(vertex, edge, face, center) we have to create the exact amount of DOFs,
if DOFs are assigned to the object. For example we have to create vertex
DOFs at the midpoint of the refinement edge, if DOFs are assigned to a
vertex. Again, DOFs must only be created once for each object and have to
be assigned to all simplices having this object in common.

Additionally, all vectors and matrices using these DOFs have automatically
to be adjusted in size.


