Statistics for Biology and Health

Series Editors W. Wong, M. Gail, K. Krickeberg, A. Tsiatis, J. Samet Robert Gentleman Vincent J. Carey Wolfgang Huber Rafael A. Irizarry Sandrine Dudoit

Editors

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

With 128 Illustrations

Editors

Robert Gentleman Program in Computational Biology Division of Public Health Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N, M2-B876 PO Box 19024 Seattle, Washington 98109-1024 USA rgentlem@fhcrc.org

Wolfgang Huber European Bioinformatics Institute European Molecular Biology Laboratory Cambridge, CB10 1SD UK huber@ebi.ac.uk Rafael A. Irizarry Department of Biostatistics Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street Baltimore, MD 21205 USA rafa@jhu.edu

Vincent J. Carey

Channing Laboratory

Harvard Medical School

stvjc@channing.harvard.edu

Brigham and Women's Hospital

181 Longwood Ave Boston MA 02115 USA

Series Editors Wing Wong Department of Statistics Stanford University Stanford, CA 94305 USA

A. Tsiatis Department of Statistics North Carolina State University Raleigh, NC 27695 USA M. Gail National Cancer Institute Rockville, MD 20892 USA

J. Samet Department of Epidemiology School of Public Health Johns Hopkins University 615 Wolfe Street Baltimore, MD 21205 USA Sandrine Dudoit Division of Biostatistics School of Public Health University of California, Berkeley 140 Earl Warren Hall, #7360 Berkeley, CA 94720-7360 USA sandrine@stat.berkeley.edu

K. Krickeberg Le Chätelet F-63270 Manglieu France

Library of Congress Control Number: 2005923843

ISBN-10: 0-387-25146-4 Printed on acid-free paper. ISBN-13: 978-0387-25146-2

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in China. (EVB)

987654321

springeronline.com

Preface

During the past few years, there have been enormous advances in genomics and molecular biology, which carry the promise of understanding the functioning of whole genomes in a systematic manner. The challenge of interpreting the vast amounts of data from microarrays and other high throughput technologies has led to the development of new tools in the fields of computational biology and bioinformatics, and opened exciting new connections to areas such as chemometrics, exploratory data analysis, statistics, machine learning, and graph theory.

The Bioconductor project is an open source and open development software project for the analysis and comprehension of genomic data. It is rooted in the open source statistical computing environment R. This book's coverage is broad and ranges across most of the key capabilities of the Bioconductor project. Thanks to the hard work and dedication of many developers, a responsive and enthusiastic user community has formed. Although this book is self-contained with respect to the data processing and data analytic tasks covered, readers of this book are advised to acquaint themselves with other aspects of the project by touring the project web site www.bioconductor.org.

This book represents an innovative approach to publishing about scientific software. We made a commitment at the outset to have a fully *computable book*. Tables, figures, and other outputs are dynamically generated directly from the experimental data. Through the companion web site, www.bioconductor.org/mogr, readers have full access to the source code and necessary supporting libraries and hence will be able to see how every plot and statistic was computed. They will be able to reproduce those calculations on their own computers and should be able to extend most of those computations to address their own needs.

Acknowledgments

This book, like so many projects in bioinformatics and computational biology, is a large collaborative effort. The editors would like to thank the chapter authors for their dedication and their efforts in producing widely used software, and also in producing well-written descriptions of how to use that software.

We would like to thank the developers of R, without whom there would be no Bioconductor project. Many of these developers have provided additional help and engaged in discussions about software development and design. We would like to thank the many Bioconductor developers and users who have helped us to find bugs, think differently about problems, and whose enthusiasm has made the long hours somewhat more bearable.

We would also like to thank Dorit Arlt, Michael Boutros, Sabina Chiaretti, James MacDonald, Meher Majety, Annemarie Poustka, Jerome Ritz, Mamatha Sauermann, Holger Sültmann, Stefan Wiemann, and Seth Falcon, who have contributed in many different ways to the production of this monograph. Much of the preliminary work on the MLInterfaces package, described in Chapter 16, was carried out by Jess Mar, Department of Biostatistics, Harvard School of Public Health. Ms Mar's efforts were supported in part by a grant from Insightful Corporation.

The Bioconductor project is supported by grant 1R33 HG002708 from the NIH as well as by institutional funds at both the Dana Farber Cancer Institute and the Fred Hutchinson Cancer Research Center. W.H. received project-related funding from the German Ministry for Education and Research through National Genome Research Network (NGFN) grant FKZ 01GR0450.

Seattle Boston Cambridge (UK) Baltimore Berkeley Robert Gentleman Vincent Carey Wolfgang Huber Rafael Irizarry Sandrine Dudoit February 2005 xviii Contributors

J. Gentry, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA

F. Hahne, Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, FRG

L. Harris, Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA

T. Hothorn, Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, FRG

W. Huber, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK

J. Ibrahim, Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA

J. D. Iglehart, Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA

R. A. Irizarry, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

X. Li, Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA

X. Lu, Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA

A. Miron, Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA

A. C. Paquet, Department of Biostatistics, University of California, San Francisco, CA, USA

K. S. Pollard, Center for Biomolecular Science and Engineering, University of California, Santa Cruz, USA

D. Scholtens, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA

Q. Shi, Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA

Contents

Ι	Pre	eprocessing data from genomic experiments	1
1	Prep	processing Overview	3
	W. I	Huber, R. A. Irizarry, and R. Gentleman	
	1.1	Introduction	3
	1.2	Tasks	4
		1.2.1 Prerequisites	5
		1.2.2 Stepwise and integrated approaches	5
	1.3	Data structures	6
		1.3.1 Data sources	6
		1.3.2 Facilities in R and Bioconductor	7
	1.4	Statistical background	8
		1.4.1 An error model \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	9
		1.4.2 The variance-bias trade-off $\ldots \ldots \ldots \ldots \ldots$	11
		1.4.3 Sensitivity and specificity of probes	11
	1.5	Conclusion	12
2	Prep B M	processing High-density Oligonucleotide Arrays	13
	21	Introduction	13
	2.2	Importing and accessing probe-level data	15
		2.2.1 Importing	15
		2.2.2 Examining probe-level data	15
	2.3	Background adjustment and normalization	18
	-	2.3.1 Background adjustment	18
		2.3.2 Normalization	20
		2.3.3 vsn	24
	2.4	Summarization	25
		$2.4.1 \text{expresso} \dots \dots$	25
		$2.4.2$ threestep \ldots	26
		2.4.3 RMA	27
		2.4.4 GCRMA	27
		2.4.5 affypdnn	28
		v -	

viii	Contents	
------	----------	--

	2.5	Assessing preprocessing methods	29
		2.5.1 Carrying out the assessment	30
	2.6	Conclusion	32
3	Qual	lity Assessment of Affymetrix GeneChip Data	33
	B. M.	Bolstad, F. Collin, J. Brettschneider, K. Simpson, L. Cope,	
	R. A.	Irizarry, and T. P. Speed	
	3.1	Introduction	33
	3.2	Exploratory data analysis	34
		3.2.1 Multi-array approaches	35
	3.3	Affymetrix quality assessment metrics	37
	3.4	RNA degradation	38
	3.5	Probe level models	41
		3.5.1 Quality diagnostics using PLM	42
	3.6	Conclusion	47
4	Prep	processing Two-Color Spotted Arrays	49
	Y. H.	Yang and A.C. Paquet	
	4.1	Introduction	49
	4.2	Two-color spotted microarrays	50
		4.2.1 Illustrative data	50
	4.3	Importing and accessing probe-level data	51
		$4.3.1 \text{Importing} \dots \dots$	51
		4.3.2 Reading target information	52
		4.3.3 Reading probe-related information	53
		4.3.4 Reading probe and background intensities	54
		4.3.5 Data structure: the $marrayRaw$ class	54
		4.3.6 Accessing the data \ldots \ldots \ldots \ldots \ldots \ldots \ldots	56
		$4.3.7 \text{Subsetting} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	56
	4.4	Quality assessment	57
		4.4.1 Diagnostic plots	57
		4.4.2 Spatial plots of spot statistics - image	59
		4.4.3 Boxplots of spot statistics - boxplot	60
		4.4.4 Scatter-plots of spot statistics - plot	61
	4.5	Normalization	62
		4.5.1 Two-channel normalization	63
		4.5.2 Separate-channel normalization	64
	4.6	Case study	67
5	Cell-	Based Assays	71
	W. H	luber and F. Hahne	
	5.1	Scope	71
	5.2	Experimental technologies	71
		5.2.1 Expression assays	72
		5.2.2 Loss of function assays	72

111

	5.2.3	Monitoring the response
5.3	Readi	ng data
	5.3.1	Plate reader data
	5.3.2	Further directions in normalization
	5.3.3	FCS format
5.4	Qualit	y assessment and visualization
	5.4.1	Visualization at the level of individual cells
	5.4.2	Visualization at the level of microtiter plates
	5.4.3	Brushing with Rggobi
5.5	Detect	tion of effectors
	5.5.1	Discrete Response
	5.5.2	Continuous response
		1
5 SEI X. I A. N	5.5.3 L DI-TO Li, R. Ge Miron	Outlook
SEI X. I	5.5.3 L DI-TO Li, R. Ge	Outlook
5 SEI X. I A. M 6.1	5.5.3 L DI-TO Li, R. Ge Miron Introd	Outlook . . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction .
5 SEI X. I A. M 6.1 6.2	5.5.3 L DI-TO Li, R. Ge Miron Introd Baseli	Outlook Image: Constraint of the sector
5 SEI X. I A. N 6.1 6.2 6.3	5.5.3 L DI-TO Li, R. Ge Miron Introd Baseli Peak	Outlook Image: Constraint of the sector
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 L DI-TO .i, R. Ge Miron Introd Baseli Peak o Proces	Outlook Image: Constraint of the sector
5 SEI X. I A. N 6.1 6.2 6.3 6.4	5.5.3 L DI-TO Li, R. Ge Viron Introd Baseli Peak o Proces 6.4.1	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction . ne subtraction . letection . ssing a set of calibration spectra . Apply baseline subtraction to a set of spectra .
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 L DI-TO Li, R. Ge Miron Introd Baseli Peak o Proces 6.4.1 6.4.2	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction . ne subtraction . detection . ssing a set of calibration spectra . Apply baseline subtraction to a set of spectra . Normalize spectra .
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 LDI-TO Li, R. Ge Miron Introd Baseli Peak o Proces 6.4.1 6.4.2 6.4.3	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction . ne subtraction . detection . ssing a set of calibration spectra . Apply baseline subtraction to a set of spectra . Normalize spectra . Cutoff selection .
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 LDI-TO Li, R. Ge Miron Introd Baseli Peak 6 Proces 6.4.1 6.4.2 6.4.3 6.4.4	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction ne subtraction letection ssing a set of calibration spectra Apply baseline subtraction to a set of spectra Normalize spectra Cutoff selection Identify peaks
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 LDI-TO Li, R. Ge Miron Introd Baseli Peak o Proces 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction ne subtraction detection ssing a set of calibration spectra Apply baseline subtraction to a set of spectra Normalize spectra Cutoff selection Identify peaks Quality assessment
 SEI X. I A. N 6.1 6.2 6.3 6.4 	5.5.3 LDI-TO Li, R. Ge Miron Introd Baseli Peak o Proces 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction ne subtraction detection ssing a set of calibration spectra Apply baseline subtraction to a set of spectra Normalize spectra Cutoff selection Identify peaks Quality assessment Get proto-biomarkers
5 SEI X. I A. N 6.1 6.2 6.3 6.4	5.5.3 LDI-TO Li, R. Ge Miron Introd Baseli Peak o Proces 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 An ex	Outlook . F Mass Spectrometry Protein Data ntleman, X. Lu, Q. Shi, J. D. Iglehart, L. Harris, and uction ne subtraction detection ssing a set of calibration spectra Apply baseline subtraction to a set of spectra Normalize spectra Cutoff selection Identify peaks Quality assessment Get proto-biomarkers

II Meta-data: biological annotation and visualization

7	Meta	a-data Resources and Tools in Bioconductor	113
	R. G	entleman, V. J. Carey, and J. Zhang	
	7.1	Introduction	113
	7.2	External annotation resources	115
	7.3	Bioconductor annotation concepts: curated persistent	
		packages and Web services	116
		7.3.1 Annotating a platform: HG-U95Av2	117
		7.3.2 An Example	118
		7.3.3 Annotating a genome	119
	7.4	The annotate package	119
	7.5	Software tools for working with Gene Ontology (GO)	120

x Contents

		7.5.1 Basics of working with the GO package	121
		7.5.2 Navigating the hierarchy	122
		7.5.3 Searching for terms	122
		7.5.4 Annotation of GO terms to LocusLink sequences:	
		evidence codes	123
		7.5.5 The GO graph associated with a term	125
	7.6	Pathway annotation packages: KEGG and cMAP	125
		7.6.1 KEGG	126
		7.6.2 cMAP	127
		7.6.3 A Case Study	129
	7.7	Cross-organism annotation: the homology packages	130
	7.8	Annotation from other sources	132
	7.9	Discussion	133
8	Quer	rying On-line Resources	135
	V. J.	Carey, D. Temple Lang, J. Gentry, J. Zhang, and R.	
	Gent	leman	
	8.1	The Tools	135
		8.1.1 Entrez	137
		8.1.2 Entrez examples	137
	8.2	PubMed	138
		8.2.1 Accessing PubMed information	139
		8.2.2 Generating HTML output for your abstracts	141
	8.3	KEGG via SOAP	142
	8.4	Getting gene sequence information	144
	8.5	Conclusion	145
9	Inter	ractive Outputs	147
	С. А.	Smith, W. Huber, and R. Gentleman	
	9.1	Introduction	147
	9.2	A simple approach	148
	9.3	Using the annaffy package	149
	9.4	Linking to On-line Databases	152
	9.5	Building HTML pages	153
		9.5.1 Limiting the results	153
		9.5.2 Annotating the probes	154
		9.5.3 Adding other data	155
	9.6	Graphical displays with drill-down functionality	156
		9.6.1 HTML image maps	157
		9.6.2 Scalable Vector Graphics (SVG)	158
	9.7	Searching Meta-data	159
		9.7.1 Text searching	159
	9.8	Concluding Remarks	160

	W. H	Iuber, X. Li, and R. Gentleman	
	10.1	Introduction	161
	10.2	Practicalities	162
	10.3	High-volume scatterplots	163
		10.3.1 A note on performance \ldots \ldots \ldots \ldots \ldots \ldots	164
	10.4	Heatmaps	166
		10.4.1 Heatmaps of residuals \ldots \ldots \ldots \ldots \ldots \ldots	168
	10.5	Visualizing distances	170
		10.5.1 Multidimensional scaling	173
	10.6	Plotting along genomic coordinates	174
		10.6.1 Cumulative Expression	178
	10.7	Conclusion	179
II	I S	tatistical analysis for genomic experiments	181
11	Ana	lysis Overview	183
	V. J.	Carey and R. Gentleman	
	11.1	Introduction and road map	183
		11.1.1 Distance concepts	184
		11.1.2 Differential expression	184
		11.1.3 Cluster analysis \ldots	184
		11.1.4 Machine learning	184
		11.1.5 Multiple comparisons	185
		11.1.6 Workflow support	185
	11.2	Absolute and relative expression measures	185
12	Dista R. G	ance Measures in DNA Microarray Data Analysis. entleman, B. Ding, S. Dudoit, and J. Ibrahim	189
	12.1	Introduction	189
	12.2	Distances	191
		12.2.1 Definitions	191
		12.2.2 Distances between points	192
		12.2.3 Distances between distributions	195
		12.2.4 Experiment-specific distances between genes	198
	12.3	Microarray data	199
		12.3.1 Distances and standardization	199
	12.4	Examples	201
		12.4.1 A co-citation example $\ldots \ldots \ldots \ldots \ldots \ldots$	203
		12.4.2 Adjacency	207
	12.5	Discussion	208
13	Clus	ter Analysis of Genomic Data	209
	n.d. 121	Fonard and M.J. Van der Laan	200
	10.1		209

	13.2	Methods	210
		13.2.1 Overview of clustering algorithms	210
		13.2.2 Ingredients of a clustering algorithm	211
		13.2.3 Building sequences of clustering results	211
		13.2.4 Visualizing clustering results	214
		13.2.5 Statistical issues in clustering	215
		13.2.6 Bootstrapping a cluster analysis	216
		13.2.7 Number of clusters	217
	13.3	Application: renal cell cancer	222
		13.3.1 Gene selection \ldots	222
		13.3.2 HOPACH clustering of genes	223
		13.3.3 Comparison with PAM	224
		13.3.4 Bootstrap resampling	224
		13.3.5 HOPACH clustering of arrays	224
		13.3.6 Output files	226
	13.4	Conclusion	228
14	Anal	ysis of Differential Gene Expression Studies	229
	D. Sc	holtens and A. von Heydebreck	
	14.1	Introduction	229
	14.2	Differential expression analysis	230
		14.2.1 Example: ALL data	232
		14.2.2 Example: Kidney cancer data	236
	14.3	Multifactor experiments	239
		14.3.1 Example: Estrogen data	241
	14.4	Conclusion	248
15	Mult	tiple Testing Procedures: the multtest Package and	
	Appl	lications to Genomics	249
	K. S.	Pollard, S. Dudoit, and M. J. van der Laan	
	15.1	Introduction	249
	15.2	Multiple hypothesis testing methodology	250
		15.2.1 Multiple hypothesis testing framework	250
		15.2.2 Test statistics null distribution	255
		15.2.3 Single-step procedures for controlling general	
		Type I error rates $\theta(F_{V_n})$	256
		15.2.4 Step-down procedures for controlling the	
		family-wise error rate	257
		15.2.5 Augmentation multiple testing procedures for	
		controlling tail probability error rates	258
	15.3	Software implementation: R multtest package	259
		15.3.1 Resampling-based multiple testing procedures:	
		MTP function	260
		15.3.2 Numerical and graphical summaries	262
	15.4	Applications: ALL microarray data set	262

Contents	xiii
Contents	X111

		15.4.1 ALL data package and initial gene filtering	262
		15.4.2 Association of expression measures and tumor	
		cellular subtype: Two-sample t -statistics \ldots \ldots	263
		15.4.3 Augmentation procedures	265
		15.4.4 Association of expression measures and tumor	
		molecular subtype: Multi-sample F -statistics \ldots	266
		15.4.5 Association of expression measures and time to	
		relapse: Cox t -statistics $\ldots \ldots \ldots \ldots \ldots \ldots$	268
	15.5	Discussion	270
16	Mac	hine Learning Concepts and Tools for Statistical	
	Gene	omics	273
	V. J.	Carey	
	16.1	Introduction	273
	16.2	Illustration: Two continuous features; decision regions	274
	16.3	Methodological issues	276
		16.3.1 Families of learning methods	276
		16.3.2 Model assessment	281
		16.3.3 Metatheorems on learner and feature selection	283
		16.3.4 Computing interfaces	284
	16.4	Applications	285
		16.4.1 Exploring and comparing classifiers with the ALL	
		data	285
		16.4.2 Neural net initialization, convergence, and tuning.	287
		16.4.3 Other methods	287
		16.4.4 Structured cross-validation support	288
		16.4.5 Assessing variable importance	289
		16.4.6 Expression density diagnostics	289
	16.5	Conclusions	291
17	Ense	emble Methods of Computational Inference	293
	T. He	othorn, M. Dettling, and P. Bühlmann	
	17.1	Introduction	293
	17.2	Bagging and random forests	295
	17.3	Boosting	296
	17.4	Multiclass problems	298
	17.5	Evaluation	298
	17.6	Applications: tumor prediction	300
		17.6.1 Acute lymphoblastic leukemia	300
		17.6.2 Renal cell cancer	303
	17.7	Applications: Survival analysis	307
	17.8	Conclusion	310
18	Brow	vser-based Affymetrix Analysis and Annotation	313
-0			210

20.4

	С. А.	Smith	
	18.1	Introduction	313
		18.1.1 Key user interface features	314
	18.2	Deploying webbioc	315
		18.2.1 System requirements	315
		18.2.2 Installation	315
		18.2.3 Configuration	316
	18.3	Using webbioc	317
		18.3.1 Data Preprocessing	317
		18.3.2 Differential expression multiple testing	318
		18.3.3 Linked annotation meta-data	320
		18.3.4 Retrieving results	321
	18.4	Extending webbioc	322
		18.4.1 Architectural overview	322
		18.4.2 Creating a new module	324
	18.5	Conclusion	326
11	G	raphs and networks	327
19	Intro	duction and Motivating Examples	329
	R. Ge	entleman, W. Huber, and V. J. Carey	
	19.1	Introduction	329
	19.2	Practicalities	330
		19.2.1 Representation	330
		19.2.2 Algorithms	330
		19.2.3 Data Analysis	331
	19.3	Motivating examples	331
		19.3.1 Biomolecular Pathways	331
		19.3.2 Gene ontology: A graph of concept-terms	333
		19.3.3 Graphs induced by literature references and	
		citations	334
	19.4	Discussion	336
20	Grap	bhs	337
	W. H	uber, R. Gentleman, and V. J. Carey	
	20.1	Overview	337
	20.2	Definitions	338
		20.2.1 Special types of graphs	341
		20.2.2 Random graphs	343
		20.2.3 Node and edge labeling	344
		20.2.4 Searching and related algorithms	344

346

 V. J. Carey, R. Gentleman, W. Huber, and 21.1 Introduction	d J. Gentry
 21.1 Introduction	
 21.2 The graph package	
 21.2.1 Getting started 21.2.2 Random graphs 21.3 The RBGL package 21.3.1 Connected graphs 21.3.2 Paths and related concepts 	
 21.2.2 Random graphs 21.3 The RBGL package 21.3.1 Connected graphs 21.3.2 Paths and related concepts 	
21.3 The RBGL package 21.3.1 Connected graphs 21.3.2 Paths and related concepts	
21.3.1 Connected graphs	
21.3.2 Paths and related concents	
21.0.2 Tams and related concepts	
21.3.3 RBGL summary	
21.4 Drawing graphs	
21.4.1 Global attributes	
21.4.2 Node and edge attributes .	
21.4.3 The function agopen and th	e Ragraph class 365
21.4.4 User-defined drawing function	ons $\ldots \ldots \ldots \ldots \ldots \ldots 366$
21.4.5 Image maps on graphs	
22 Case Studies Using Graphs on Biolo	gical Data 369
R. Gentleman, D. Scholtens, B. Ding, V. J	J. Carey, and W. Huber
$22.1 \text{Introduction} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
22.2 Comparing the transcriptome and t	the interactome \ldots 370
22.2.1 Testing associations	
22.2.2 Data analysis	
22.3 Using GO \ldots \ldots \ldots \ldots	
22.3.1 Finding interesting GO term	ns $\ldots \ldots 375$
22.4 Literature co-citation	
22.4.1 Statistical development	
22.4.2 Comparisons of interest	
22.4.3 Examples	
22.5 Pathways	
22.5.1 The graph structure of path	1ways
22.5.2 Relating expression data to	pathways
22.6 Concluding remarks	
V Case studies	395
23 limma: Linear Models for Microarra	y Data 397
G.K. Smyth	
$23.1 \text{Introduction} \dots \dots \dots \dots$	
23.2 Data representations	
23.3 Linear models	
23.3Linear models23.4Simple comparisons	400
 23.3 Linear models	

	23.7	Two groups	407
	23.8	Several groups	409
	23.9	Direct two-color designs	411
	23.10	Factorial designs	412
	23.11	Time course experiments	414
	23.12	Statistics for differential expression	415
	23.13	Fitted model objects	417
	23.14	Preprocessing considerations	418
	23.15	Conclusion	420
24	Class	sification with Gene Expression Data	421
	M. De	ettling	
	24.1	Introduction	421
	24.2	Reading and customizing the data	422
	24.3	Training and validating classifiers	423
	24.4	Multiple random divisions	426
	24.5	Classification of test data	428
	24.6	Conclusion	429
25	From	CEL Files to Annotated Lists of Interesting Genes	431
	R. A.	Irizarry	
	25.1	Introduction	431
	25.2	Reading CEL files	432
	25.3	Preprocessing	432
	25.4	Ranking and filtering genes	433
		25.4.1 Summary statistics and tests for ranking	434
		25.4.2 Selecting cutoffs	437
		25.4.3 Comparison	437
	25.5	Annotation	438
		25.5.1 PubMed abstracts	439
		25.5.2 Generating reports	441
	25.6	Conclusion	442
\mathbf{A}	Deta	ils on selected resources	443
	A.1	Data sets	443
		A.1.1 ALL	443
		A.1.2 Renal cell cancer	443
		A.1.3 Estrogen receptor stimulation	443
	A.2	URLs for projects mentioned	444
References 44			
Index			465

List of Contributors

B. M. Bolstad, Department of Statistics, University of California, Berkeley, CA, USA

J. Brettschneider, Department of Statistics, University of California, Berkeley, CA, USA

P. Buhlmann, Swiss Federal Institute of Technology, Zürich, CH

V. J. Carey, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

F. Collin, Department of Statistics, University of California, Berkeley, CA, USA

L. Cope, Division of Oncology Biostatistics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical School, Baltimore, MD, USA

M. Dettling, Division of Oncology and Biostatistics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical School, Baltimore, MD, USA

B. Ding, Medical Affairs Biostatistics, Amgen Inc., Thousand Oaks, CA, USA

S. Dudoit, Department of Biostatistics, University of California, Berkeley, CA, USA

L. Gautier, Independent investigator, Copenhagen, DK

R. Gentleman, Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

K. Simpson, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

C. A. Smith, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA

G. K. Smyth, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

T. P. Speed, Department of Statistics, University of California, Berkeley, CA, USA

D. Temple Lang, Department of Statistics, University of California, Davis, CA, USA

M. J. van der Laan, Department of Biostatistics, University of California, Berkeley, CA, USA

A. von Heydebreck, Global Technologies, Merck KGaA, Darmstadt, FRG

Z. Wu, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Y. H. Yang, Department of Biostatistics, University of California, San Francisco, CA, USA

J. Zhang, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

Part I

Preprocessing data from genomic experiments

Preprocessing Overview

W. Huber, R. A. Irizarry, and R. Gentleman

Abstract

In this chapter, we give a brief overview of the tasks of microarray data preprocessing. There are a variety of microarray technology platforms in use, and each of them requires specific considerations. These will be described in detail by other chapters in this part of the book. This overview chapter describes relevant data structures, and provides with some broadly applicable theoretical background.

1.1 Introduction

Microarray technology takes advantage of hybridization properties of nucleic acid and uses complementary molecules attached to a solid surface, referred to as *probes*, to measure the quantity of specific nucleic acid transcripts of interest that are present in a sample, referred to as the *target*. The molecules in the target are labeled, and a specialized scanner is used to measure the amount of hybridized target at each probe, which is reported as an intensity. Various manufacturers provide a large assortment of different platforms. Most manufacturers, realizing the effects of optical noise and non-specific binding, include features in their arrays to directly measure these effects. The raw or *probe-level* data are the intensities read for each of these components. In practice, various sources of variation need to be accounted for, and these data are heavily manipulated before one obtains the genomic-level measurements that most biologists and clinicians use in their research. This procedure is commonly referred to as *preprocessing*.

The different platforms can be divided into two main classes that are differentiated by the type of data they produce. The *high-density oligonucleotide array* platforms produce one set of probe-level data per microarray with some probes designed to measure specific binding and others to measure non-specific binding. The two-color spotted platforms produce two sets of probe-level data per microarray (the red and green channels), and local background noise levels are measured from areas in the glass slide not containing probe.

Despite the differences among the different platforms, there are some tasks that are common to all microarray technology. These tasks are described in Section 1.2. The data structures needed to effectively preprocess microarray data are described in Section 1.3. In Section 1.4 we present statistical background that serves as a mathematical framework for developing preprocessing methodology. Detailed description of the preprocessing tasks for this platforms are described in Chapters 2 and 3. The specifics for the two-color spotted platforms are described in Chapter 4. Chapters 5 and 6 describe preprocessing methodology for related technologies where similar principles apply.

1.2 Tasks

Preprocessing can be divided into 6 tasks: image analysis, data import, background adjustment, normalization, summarization, and quality assessment. Image analysis permits us to convert the pixel intensities in the scanned images into probe-level data. Flexible data import methods are needed because data come in different formats and are often scattered across a number of files or database tables from which they need to be extracted and organized. Background adjustment is essential because part of the measured probe intensities are due to non-specific hybridization and the noise in the optical detection system. Observed intensities need to be adjusted to give accurate measurements of specific hybridization. Without proper *normalization*, it is impossible to compare measurements from different array hybridizations due to many obscuring sources of variation. These include different efficiencies of reverse transcription, labeling, or hybridization reactions, physical problems with the arrays, reagent batch effects, and laboratory conditions. In some platforms, summarization is needed because transcripts are represented by multiple probes. For each gene, the background adjusted and normalized intensities need to be summarized into one quantity that estimates an amount proportional to the amount of RNA transcript. Quality assessment is an important procedure that detects divergent measurements beyond the acceptable level of random fluctuations. These data are usually flagged and not used, or down weighted, in subsequent statistical analyses.

The complex nature of microarray data and data formats makes it necessary to have flexible and efficient statistical methodology and software. This part of the book describes what Bioconductor has to offer in this capacity. In the rest of this section, we describe prerequisites necessary to perform these tasks and two general approaches to preprocessing.

1.2.1 Prerequisites

A number of important steps are involved in the generation of the raw data. The experimental design includes the choice and collection of samples (tissue biopsies or cell lines exposed to different treatments); the choice of probes and array platform; the choice of controls, RNA extraction, amplification, labeling, and hybridization procedures; the allocation of replicates; and the scheduling of the experiments. The experimental design must take into account technical, logistic, and financial boundary conditions. Its quality determines to a large extent the utility of the data. A fundamental guideline is the avoidance of *confounding* between different biological factors of interest or between a biological factor of interest and a technical factor that is anticipated to affect the measurements. The experiment then has to be carried out, which requires great skill and expertise.

In the *image analysis* step, we extract probe intensities out of the scanned images containing pixel-level data. The arrays are scanned by the detector at a high spatial resolution to produce a digitized image in which each probe is represented by dozens of pixels. To obtain a single overall intensity value for each probe, the associated pixels need to be identified (segmentation) and their intensities summarized (quantification). In addition to the overall probe intensity, further auxiliary quantities may be calculated, such as an estimate of apparent unspecific "local background" intensity, or spot quality measures. Various software packages offer different segmentation and quantification methods. They differ in their robustness against irregularities and in the amount of human interaction that they require. The different platforms present different problems which implies that the types of image analysis algorithms used are quite different. Currently, Bioconductor does not offer image processing software. Thus, the user will need alternative software to process the image pixel-level data. However, import functions that are compatible with most of the existing image analysis products are available. For an evaluation of image analysis methods for two-color spotted arrays see, for example, the study of Yang et al. (2002a). Details on image analysis methodology for high-density oligonucleotide arrays were described by Schadt et al. (2001).

1.2.2 Stepwise and integrated approaches

The *stepwise* approach to microarray data preprocessing starts with probelevel data as input, performs the tasks sequentially and produces an *expression matrix* as output. In this matrix, rows correspond to gene transcripts, columns to conditions, and each element represents the abundance or relative abundance of a transcript. Subsequent biological analyses work off the expression matrix and generally do not consider the statistical manipulations performed on the probe-level data. The preprocessing task are divided into a set of sequential instructions: for example, subtract the background, then normalize the intensities, then summarize replicate probes, then summarize replicate arrays. The modularity of this approach allows us to structure the analysis work-flow. Software, data structures, and methodology can be easily re-used. For example, the same machine learning algorithm can be applied to an expression matrix irrespective of whether the data were obtained on high-density oligonucleotide chips or two-color spotted arrays. A potential disadvantage of the stepwise approach is that each step is independently optimized without considering the effect of previous or subsequent steps. This could lead to sub-optimal bottom-line results.

In contrast, *integrated* approaches solve specific problems by carrying out the analysis in one unified estimation procedure. This approach has the potential of using the available data more efficiently. For example, rather than calculating an expression matrix, one might fit an ANOVA-type linear model to the probe-level data, which includes both technical covariates, such as dye and sample effects, and biological covariates, such as treatment effects (Kerr et al., 2000). In the affyPLM package, the weighting and summarization of the multiple probes per transcript on Affymetrix chips is integrated with the detection of differential expression. Another example is the vsn method (Huber et al., 2002), which integrates background subtraction and normalization in a non-linear model.

Stepwise approaches are often presented as modular data processing pipelines; integrated approaches are motivated by statistical models with parameters representing quantities of interest. In practice, data analysts will often choose to use a combination of both approaches. For example, a researcher may start with the stepwise approach and do a first round of high-level analyses that motivates an integrated approach that is applied to obtain final results. Bioconductor software allows users to explore, adapt, and combine stepwise and integrated methods.

1.3 Data structures

1.3.1 Data sources

The basic data types that we deal with in microarray data preprocessing are probe and background intensities, probe annotations, array layout, and sample annotations. Typically, they come in the form of rectangular tables, stored either in flat files or in a database server. The probe intensities are the result of image processing. The format in which they are reported varies between different vendors of image processing software. Examples are discussed in Sections 2 and 4.

The probe annotations are usually provided by the organization that selected the probes for the array. This may be a commercial vendor, another laboratory, or the experimenters themselves. For high-density oligonucleotide arrays, the primary annotation is the sequence. In addition, there may be a database identifier of the gene transcript that the probe is intended to match and possibly the exact location. Often, the probe sequences are derived from cDNA sequence clusterings such as Unigene (Pontius et al., 2003). For spotted cDNA arrays, the primary probe identifier is often a clone ID in a nucleotide sequence database. The largest public nucleotide sequence databases are EMBL in Europe, DDBJ in Japan, and Genbank in the United States. Through a system of cross-mirroring, their contents are essentially equivalent. These databases contain full or partial sequences of a large number of expressed sequences. Their clone identifiers can be mapped to genomic databases such as Entrez Gene, H-inv, or Ensembl. Further annotations of the genes that are represented by the probes are provided by various genomic database, for example genomic locus, disease associations, participation in biological processes, molecular function, cellular localization. This will be discussed in Part II of the book.

The array layout is provided by the organization that produced the array. As a minimum, the layout specifies the physical position of each probe on the array. In principle, this can be done through its x- and y-coordinates. For spotted arrays, it is customary to specify probe coordinates through three coordinates: *block*, *row*, and *column*, where the *block* coordinate addresses a particular sub-sector of the array, and the *row* and *column* coordinates address the probe within that sub-sector. Details are discussed in Sections 2 and 4.

The sample annotations describe the labeled cDNA that has been hybridized to the array. This includes technical information on processing protocols (e.g., isolation, amplification, labeling, hybridization) as well as the biologically more interesting covariates such as treatment conditions and harvesting time points for cell lines or histopathological and clinical data for tissue biopsies and the individuals that the biopsies originated from. A table containing this information can sometimes be obtained from the laboratory information management system (LIMS) of the lab that performed the experiments. Sometimes, it is produced *ad hoc* with office spreadsheet software.

1.3.2 Facilities in R and Bioconductor

Specific data structures and functions for the import and processing of data from different experimental platforms are provided in specialized packages. We will see a number of examples in the subsequent sections. A more general-purpose data structure to represents the data from a microarray experiment is provided by the class *exprSet* in the package Biobase.

The design of the *exprSet* class supports the stepwise approach to microarray preprocessing, as discussed in Section 1.2. This class represents a self-documenting data structure, with data separated into logically distinct but substantively interdependent components. Our primary motivation was to link together the large expression arrays with the phenotypic data in such

a way that it would be easy to further process the data. Ensuring correct alignment of data when subsets are taken or when resampling schemes are used should be left to well-designed computer code and generally should not be done by hand.

The general premise is that there is an array, or a set of arrays, that are of interest. The *exprSet* structure imposes an order on the samplespecific expression measures in the set, provides convenient access to probe and sample identifier codes, allows coordinated management of standard errors of expression, and couples to this expression information sampleand experiment-level information, following the MIAME standard (Brazma et al., 2001). This data structure is straightforwardly employed with data from single-channel experiments, for ratio quantities derived from doublechannel experiments, and for protein mass-spectrometry data. It can be extended, using formal inheritance infrastructure, to accommodate other output formats. One advantage to the use of exprSets is demonstrated in Chapter 16 where we describe the use of a uniform calling sequence for many machine learning algorithms (package MLInterfaces). This greatly simplifies individual users' interactions and will simplify the design and construction of graphical user interfaces. Establishment of a standardized calling paradigm is most simply accomplished when there are structural standards for the inputs. Both users and developers will profit from closer acquaintance with the exprSet structure, especially those who are contemplating complex downstream workflows.

1.4 Statistical background

The purpose of this section is to provide a general statistical framework for the following components of preprocessing: background adjustment, normalization, summarization, and quality assessment. More specific issues relating to the individual technological platforms will be discussed in Chapters 2–4.

With a microarray experiment, we aim to make statements about the abundances of specific molecules in a set of biological samples. However, the quantities that we measure are the fluorescence intensities of the different elements of the array. The measurement process consists of a cascade of biochemical reactions and an optical detection system with a laser scanner or a CCD camera. Biochemical reactions and detection are performed in parallel, allowing up to a million measurements on one array. Subtle variations between arrays, the reagents used, and the environmental conditions lead to slightly different measurements even for the same sample.

The effects of these variations may be grouped in two classes: *systematic effects*, which affect a large number of measurements (for example, the measurements for all probes on one array; or the measurements from one probe

across several arrays) simultaneously. Such effects can be estimated and approximately removed. Other kinds of effects are completely random, with no well-understood pattern. These effects are commonly called *stochastic components* or *noise*.

Stochastic models are useful for preprocessing because they permit us to find *optimal* estimates of the systematic effects. We are interested in estimates that are precise and accurate. However, given the noise structure of the data, we sometimes have to sacrifice accuracy for better precision and *vice versa*. An appropriate stochastic model will aid in understanding the accuracy-precision, or bias-variance, trade-off.

Stochastic models are also useful for construction of inferential statements about experimental results. Consider an experiment in which we want to compare gene expression in the colons of mice that were treated with a substance and mice that were not. If we have many measurements from two populations being compared, we can, for example, perform a Wilcoxon test to obtain a p-value for each transcript of interest. But often it is not possible, too expensive, or unethical, to obtain so many replicate measurements for all genes and for all conditions of interest. Often, it is also not necessary. Models that provide good approximations of reality can add power to our statistical results.

Quality assessment is yet another example of the usefulness of stochastic models: if the distribution of a new set of data greatly deviates from the model, this may direct our attention to quality issues with these data. Chapter 3 demonstrates an example of the use of models for quality assessment.

1.4.1 An error model

A generic model for the value of the intensity y of a single probe on a microarray is given by

$$Y = B + \alpha S \tag{1.1}$$

where B is a random quantity due to *background noise*, usually composed of optical effects and non-specific binding, α is a gain factor, and S is the amount of measured specific binding. The signal S is considered a random variable as well and accounts for measurement error and probe effects. The measurement error is typically assumed to be multiplicative so we write:

$$\log(S) = \theta + \phi + \varepsilon. \tag{1.2}$$

Here θ represents the logarithm of the true abundance, ϕ is a probe-specific effect, and ε accounts for measurement error. This is the *additive-multiplicative error model* for microarray data, which was first proposed by Rocke and Durbin (2001) and in a closely related form by Ideker et al. (2000).

Figure 1.1. a) Density estimates of data from six replicate Affymetrix arrays. The x-axis is on a logarithmic scale (base 2). b) Box-plots.

Different arrays will have different distributions of B and different values of α , resulting in quite different distributions of the values of Y even if S is the same. To see this, let us look at the empirical distribution of six replicate Affymetrix arrays.

- > library("affy")
- > library("SpikeInSubset")
- > data("spikein95")
- > hist(spikein95)
- > boxplot(spikein95)

The resulting plots are shown in Figure 1.1.

Part of the task of preprocessing is to eliminate the effect of background noise. Notice in Figure 1.1 that the smallest values attained are around 64, with slight differences between the arrays. We know that many of the probes are not supposed to be hybridizing to anything (as not all genes are expressed), so many measurements should indeed be 0. A bottom line effect of not appropriately removing background noise is that estimates of differential expression are biased. Specifically, the ratios are attenuated toward 1. This can be seen using the Affymetrix spike-in experiment, where genes were spiked in at known concentrations. Figure 1.2a shows the observed concentrations versus nominal concentrations of the spiked-in genes. Measurements with smaller nominal concentrations appear to be affected by attenuation bias. To see this, notice that the curve has a slope of about 1 for high nominal concentrations but gets flat as the nominal concentration gets closer to 0. This is consistent with the additive background noise model (1.1). Mathematically, it is easy to see that if s_1/s_2 is the true ratio and b_1 and b_2 are approximately equal positive numbers, then $(s_1 + b_1)/(s_2 + b_2)$ is closer to 1 than the true ratio, and the more so the smaller the absolute values of the s_i are compared to the b_i .

Figure 1.2. a) Plot of observed against nominal concentrations. Both axes are on the logarithmic scale (base 2). The curve represents the average value of all probes at each nominal concentration. Nominal concentrations are measured in picomol. b) Normal quantile-quantile plot of the logarithmic (base 2) intensities for all probes with the same nominal concentration of 1 picomol.

Figure 1.2b shows a normal quantile-quantile plot of logarithmic intensities of probes for genes with the same nominal concentration. Note that these appear to roughly follow a normal distribution. Figure 1.2 supports the multiplicative error assumption of model 1.1.

1.4.2 The variance-bias trade-off

A typical problem with many preprocessing algorithms is that much precision is sacrificed to remove background effects and improve accuracy. Model (1.1) can be used to show that subtracting unbiased estimates of background effects leads to exaggerated variance for genes with small values of a. In fact, background estimates that are often used in practice, such as the "local background values" from many image analysis programs for two-color spotted arrays and the mismatch (MM) value from Affymetrix arrays, tend to be *over*-estimates, which makes the problem even worse.

Various researchers have used models similar to Equation (1.1) to develop preprocessing algorithms that improve both accuracy and precision in a balanced way. Some of these methods propose variance stabilizing transformations (Durbin et al., 2002; Huber et al., 2002, 2004), others use estimation procedures that improve mean squared error (Irizarry et al., 2003b). Some examples will be provided in Chapters 2 and 4.

1.4.3 Sensitivity and specificity of probes

The probes on a microarray are intended to measure the abundance of the particular transcript that they are assigned to. However, probes may differ in terms of their sensitivity and specificity. This fact is represented by the existence of ϕ in model (1.2). Here, sensitivity means that a probe's fluorescence signal indeed responds to changes in the transcript abundance; specificity, that it does not respond to other transcripts or other types of perturbations.

Probes may lack sensitivity. Some probes initially identified with a gene do not actually hybridize to any of its products. Some probes will have been developed from information that has been superseded. In some cases, the probe may correspond to a different gene or it may in fact not represent any gene. There is also the possibility of human error (Halgren et al., 2001; Knight, 2001).

A potential problem especially with short oligonucleotide technology is that the probes may not be specific, that is, in addition to matching the intended transcript, they may also match some other gene(s). In this case, we expect the observed intensity to be a composite from all matching transcripts. Note that here we are limited by the current state of knowledge of the human transcriptome. As our knowledge improves, the information about sensitivity of probes should also improve.

1.5 Conclusion

Various academic groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of bottom-line results, relative to *ad hoc* procedures introduced by designers and manufacturers of the technology. In the following chapters, we provide some details of how Bioconductor tools can be used to do this, not only in microarray platforms, but also in other related technologies.

Preprocessing High-density Oligonucleotide Arrays

B. M. Bolstad, R. A. Irizarry, L. Gautier, and Z. Wu

Abstract

High-density oligonucleotide expression arrays are a widely used microarray platform. Affymetrix GeneChip arrays dominate this market. An important distinction between the GeneChip and other technologies is that on GeneChips, multiple short probes are used to measure gene expression levels. This makes preprocessing particularly important when using this platform. This chapter begins by describing how to import probe-level data into the system and how these data can be examined using the facilities of the AffyBatch class. Then we will describe background adjustment, normalization, and summarization methods. Functionality for GeneChip probe-level data is provided by the affy, affyPLM, affycomp, gcrma, and affypdnn packages. All these tools are useful for preprocessing probe-level data stored in an AffuBatch object into expression-level data stored in an *exprSet* object. Because there are many competing methods for this preprocessing step, it is useful to have a way to assess the differences. In Bioconductor, this can be carried out using the affycomp package, which we discuss briefly.

2.1 Introduction

The most popular microarray application is measuring genome-wide expression levels. High-density oligonucleotide expression arrays are a commonly used technology for this purpose. Affymetrix GeneChip arrays dominate this market. In this platform, the choice of preprocessing method can have enormous influence on the quality of the ultimate results. Many preprocessing methods have been proposed for high-density oligonucleotide array data. In this chapter, we discuss methodology and Bioconductor tools