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Preface

During the past few years, there have been enormous advances in ge-
nomics and molecular biology, which carry the promise of understanding
the functioning of whole genomes in a systematic manner. The challenge
of interpreting the vast amounts of data from microarrays and other high
throughput technologies has led to the development of new tools in the
fields of computational biology and bioinformatics, and opened exciting
new connections to areas such as chemometrics, exploratory data analysis,
statistics, machine learning, and graph theory.

The Bioconductor project is an open source and open development soft-
ware project for the analysis and comprehension of genomic data. It is
rooted in the open source statistical computing environment R. This book’s
coverage is broad and ranges across most of the key capabilities of the
Bioconductor project. Thanks to the hard work and dedication of many
developers, a responsive and enthusiastic user community has formed. Al-
though this book is self-contained with respect to the data processing and
data analytic tasks covered, readers of this book are advised to acquaint
themselves with other aspects of the project by touring the project web
site www.bioconductor.org.

This book represents an innovative approach to publishing about sci-
entific software. We made a commitment at the outset to have a fully
computable book. Tables, figures, and other outputs are dynamically gen-
erated directly from the experimental data. Through the companion web
site, www.bioconductor.org/mogr, readers have full access to the source
code and necessary supporting libraries and hence will be able to see how
every plot and statistic was computed. They will be able to reproduce those
calculations on their own computers and should be able to extend most of
those computations to address their own needs.
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Preprocessing Overview

W. Huber, R. A. Irizarry, and R. Gentleman

Abstract
In this chapter, we give a brief overview of the tasks of microarray

data preprocessing. There are a variety of microarray technology
platforms in use, and each of them requires specific considerations.
These will be described in detail by other chapters in this part of the
book. This overview chapter describes relevant data structures, and
provides with some broadly applicable theoretical background.

1.1 Introduction

Microarray technology takes advantage of hybridization properties of nu-
cleic acid and uses complementary molecules attached to a solid surface,
referred to as probes, to measure the quantity of specific nucleic acid tran-
scripts of interest that are present in a sample, referred to as the target.
The molecules in the target are labeled, and a specialized scanner is used to
measure the amount of hybridized target at each probe, which is reported as
an intensity. Various manufacturers provide a large assortment of different
platforms. Most manufacturers, realizing the effects of optical noise and
non-specific binding, include features in their arrays to directly measure
these effects. The raw or probe-level data are the intensities read for each
of these components. In practice, various sources of variation need to be
accounted for, and these data are heavily manipulated before one obtains
the genomic-level measurements that most biologists and clinicians use in
their research. This procedure is commonly referred to as preprocessing.

The different platforms can be divided into two main classes that are
differentiated by the type of data they produce. The high-density oligonu-
cleotide array platforms produce one set of probe-level data per microarray
with some probes designed to measure specific binding and others to mea-
sure non-specific binding. The two-color spotted platforms produce two sets
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of probe-level data per microarray (the red and green channels), and lo-
cal background noise levels are measured from areas in the glass slide not
containing probe.

Despite the differences among the different platforms, there are some
tasks that are common to all microarray technology. These tasks are de-
scribed in Section 1.2. The data structures needed to effectively preprocess
microarray data are described in Section 1.3. In Section 1.4 we present sta-
tistical background that serves as a mathematical framework for developing
preprocessing methodology. Detailed description of the preprocessing tasks
for this platforms are described in Chapters 2 and 3. The specifics for the
two-color spotted platforms are described in Chapter 4. Chapters 5 and 6
describe preprocessing methodology for related technologies where similar
principles apply.

1.2 Tasks

Preprocessing can be divided into 6 tasks: image analysis, data import,
background adjustment, normalization, summarization, and quality assess-
ment. Image analysis permits us to convert the pixel intensities in the
scanned images into probe-level data. Flexible data import methods are
needed because data come in different formats and are often scattered
across a number of files or database tables from which they need to be
extracted and organized. Background adjustment is essential because part
of the measured probe intensities are due to non-specific hybridization and
the noise in the optical detection system. Observed intensities need to be
adjusted to give accurate measurements of specific hybridization. With-
out proper normalization, it is impossible to compare measurements from
different array hybridizations due to many obscuring sources of variation.
These include different efficiencies of reverse transcription, labeling, or hy-
bridization reactions, physical problems with the arrays, reagent batch
effects, and laboratory conditions. In some platforms, summarization is
needed because transcripts are represented by multiple probes. For each
gene, the background adjusted and normalized intensities need to be sum-
marized into one quantity that estimates an amount proportional to the
amount of RNA transcript. Quality assessment is an important procedure
that detects divergent measurements beyond the acceptable level of ran-
dom fluctuations. These data are usually flagged and not used, or down
weighted, in subsequent statistical analyses.

The complex nature of microarray data and data formats makes it nec-
essary to have flexible and efficient statistical methodology and software.
This part of the book describes what Bioconductor has to offer in this ca-
pacity. In the rest of this section, we describe prerequisites necessary to
perform these tasks and two general approaches to preprocessing.
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1.2.1 Prerequisites

A number of important steps are involved in the generation of the raw data.
The experimental design includes the choice and collection of samples (tis-
sue biopsies or cell lines exposed to different treatments); the choice of
probes and array platform; the choice of controls, RNA extraction, amplifi-
cation, labeling, and hybridization procedures; the allocation of replicates;
and the scheduling of the experiments. The experimental design must take
into account technical, logistic, and financial boundary conditions. Its qual-
ity determines to a large extent the utility of the data. A fundamental
guideline is the avoidance of confounding between different biological fac-
tors of interest or between a biological factor of interest and a technical
factor that is anticipated to affect the measurements. The experiment then
has to be carried out, which requires great skill and expertise.

In the image analysis step, we extract probe intensities out of the scanned
images containing pixel-level data. The arrays are scanned by the detector
at a high spatial resolution to produce a digitized image in which each probe
is represented by dozens of pixels. To obtain a single overall intensity value
for each probe, the associated pixels need to be identified (segmentation)
and their intensities summarized (quantification). In addition to the overall
probe intensity, further auxiliary quantities may be calculated, such as an
estimate of apparent unspecific “local background” intensity, or spot qual-
ity measures. Various software packages offer different segmentation and
quantification methods. They differ in their robustness against irregulari-
ties and in the amount of human interaction that they require. The different
platforms present different problems which implies that the types of image
analysis algorithms used are quite different. Currently, Bioconductor does
not offer image processing software. Thus, the user will need alternative
software to process the image pixel-level data. However, import functions
that are compatible with most of the existing image analysis products are
available. For an evaluation of image analysis methods for two-color spot-
ted arrays see, for example, the study of Yang et al. (2002a). Details on
image analysis methodology for high-density oligonucleotide arrays were
described by Schadt et al. (2001).

1.2.2 Stepwise and integrated approaches

The stepwise approach to microarray data preprocessing starts with probe-
level data as input, performs the tasks sequentially and produces an
expression matrix as output. In this matrix, rows correspond to gene
transcripts, columns to conditions, and each element represents the abun-
dance or relative abundance of a transcript. Subsequent biological analyses
work off the expression matrix and generally do not consider the statis-
tical manipulations performed on the probe-level data. The preprocessing
task are divided into a set of sequential instructions: for example, subtract
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the background, then normalize the intensities, then summarize replicate
probes, then summarize replicate arrays. The modularity of this approach
allows us to structure the analysis work-flow. Software, data structures, and
methodology can be easily re-used. For example, the same machine learning
algorithm can be applied to an expression matrix irrespective of whether the
data were obtained on high-density oligonucleotide chips or two-color spot-
ted arrays. A potential disadvantage of the stepwise approach is that each
step is independently optimized without considering the effect of previous
or subsequent steps. This could lead to sub-optimal bottom-line results.

In contrast, integrated approaches solve specific problems by carrying
out the analysis in one unified estimation procedure. This approach has
the potential of using the available data more efficiently. For example,
rather than calculating an expression matrix, one might fit an ANOVA-
type linear model to the probe-level data, which includes both technical
covariates, such as dye and sample effects, and biological covariates, such
as treatment effects (Kerr et al., 2000). In the affyPLM package, the weight-
ing and summarization of the multiple probes per transcript on Affymetrix
chips is integrated with the detection of differential expression. Another ex-
ample is the vsn method (Huber et al., 2002), which integrates background
subtraction and normalization in a non-linear model.

Stepwise approaches are often presented as modular data processing
pipelines; integrated approaches are motivated by statistical models with
parameters representing quantities of interest. In practice, data analysts
will often choose to use a combination of both approaches. For example,
a researcher may start with the stepwise approach and do a first round of
high-level analyses that motivates an integrated approach that is applied to
obtain final results. Bioconductor software allows users to explore, adapt,
and combine stepwise and integrated methods.

1.3 Data structures

1.3.1 Data sources

The basic data types that we deal with in microarray data preprocessing
are probe and background intensities, probe annotations, array layout, and
sample annotations. Typically, they come in the form of rectangular tables,
stored either in flat files or in a database server. The probe intensities
are the result of image processing. The format in which they are reported
varies between different vendors of image processing software. Examples
are discussed in Sections 2 and 4.

The probe annotations are usually provided by the organization that se-
lected the probes for the array. This may be a commercial vendor, another
laboratory, or the experimenters themselves. For high-density oligonu-
cleotide arrays, the primary annotation is the sequence. In addition, there
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may be a database identifier of the gene transcript that the probe is in-
tended to match and possibly the exact location. Often, the probe sequences
are derived from cDNA sequence clusterings such as Unigene (Pontius et al.,
2003). For spotted cDNA arrays, the primary probe identifier is often a
clone ID in a nucleotide sequence database. The largest public nucleotide
sequence databases are EMBL in Europe, DDBJ in Japan, and Genbank
in the United States. Through a system of cross-mirroring, their contents
are essentially equivalent. These databases contain full or partial sequences
of a large number of expressed sequences. Their clone identifiers can be
mapped to genomic databases such as Entrez Gene, H-inv, or Ensembl.
Further annotations of the genes that are represented by the probes are
provided by various genomic database, for example genomic locus, dis-
ease associations, participation in biological processes, molecular function,
cellular localization. This will be discussed in Part II of the book.

The array layout is provided by the organization that produced the
array. As a minimum, the layout specifies the physical position of each
probe on the array. In principle, this can be done through its x- and y-
coordinates. For spotted arrays, it is customary to specify probe coordinates
through three coordinates: block, row, and column, where the block coordi-
nate addresses a particular sub-sector of the array, and the row and column
coordinates address the probe within that sub-sector. Details are discussed
in Sections 2 and 4.

The sample annotations describe the labeled cDNA that has been hy-
bridized to the array. This includes technical information on processing
protocols (e.g., isolation, amplification, labeling, hybridization) as well as
the biologically more interesting covariates such as treatment conditions
and harvesting time points for cell lines or histopathological and clinical
data for tissue biopsies and the individuals that the biopsies originated
from. A table containing this information can sometimes be obtained from
the laboratory information management system (LIMS) of the lab that
performed the experiments. Sometimes, it is produced ad hoc with office
spreadsheet software.

1.3.2 Facilities in R and Bioconductor

Specific data structures and functions for the import and processing of
data from different experimental platforms are provided in specialized pack-
ages. We will see a number of examples in the subsequent sections. A more
general-purpose data structure to represents the data from a microarray
experiment is provided by the class exprSet in the package Biobase.

The design of the exprSet class supports the stepwise approach to mi-
croarray preprocessing, as discussed in Section 1.2. This class represents a
self-documenting data structure, with data separated into logically distinct
but substantively interdependent components. Our primary motivation was
to link together the large expression arrays with the phenotypic data in such
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a way that it would be easy to further process the data. Ensuring correct
alignment of data when subsets are taken or when resampling schemes are
used should be left to well-designed computer code and generally should
not be done by hand.

The general premise is that there is an array, or a set of arrays, that
are of interest. The exprSet structure imposes an order on the sample-
specific expression measures in the set, provides convenient access to probe
and sample identifier codes, allows coordinated management of standard
errors of expression, and couples to this expression information sample-
and experiment-level information, following the MIAME standard (Brazma
et al., 2001). This data structure is straightforwardly employed with data
from single-channel experiments, for ratio quantities derived from double-
channel experiments, and for protein mass-spectrometry data. It can be
extended, using formal inheritance infrastructure, to accommodate other
output formats. One advantage to the use of exprSets is demonstrated in
Chapter 16 where we describe the use of a uniform calling sequence for many
machine learning algorithms (package MLInterfaces). This greatly simplifies
individual users’ interactions and will simplify the design and construc-
tion of graphical user interfaces. Establishment of a standardized calling
paradigm is most simply accomplished when there are structural standards
for the inputs. Both users and developers will profit from closer acquain-
tance with the exprSet structure, especially those who are contemplating
complex downstream workflows.

1.4 Statistical background

The purpose of this section is to provide a general statistical framework
for the following components of preprocessing: background adjustment,
normalization, summarization, and quality assessment. More specific is-
sues relating to the individual technological platforms will be discussed in
Chapters 2–4.

With a microarray experiment, we aim to make statements about the
abundances of specific molecules in a set of biological samples. However,
the quantities that we measure are the fluorescence intensities of the differ-
ent elements of the array. The measurement process consists of a cascade of
biochemical reactions and an optical detection system with a laser scanner
or a CCD camera. Biochemical reactions and detection are performed in
parallel, allowing up to a million measurements on one array. Subtle varia-
tions between arrays, the reagents used, and the environmental conditions
lead to slightly different measurements even for the same sample.

The effects of these variations may be grouped in two classes: systematic
effects, which affect a large number of measurements (for example, the mea-
surements for all probes on one array; or the measurements from one probe
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across several arrays) simultaneously. Such effects can be estimated and ap-
proximately removed. Other kinds of effects are completely random, with
no well-understood pattern. These effects are commonly called stochastic
components or noise.

Stochastic models are useful for preprocessing because they permit us
to find optimal estimates of the systematic effects. We are interested in
estimates that are precise and accurate. However, given the noise structure
of the data, we sometimes have to sacrifice accuracy for better precision
and vice versa. An appropriate stochastic model will aid in understanding
the accuracy-precision, or bias-variance, trade-off.

Stochastic models are also useful for construction of inferential state-
ments about experimental results. Consider an experiment in which we
want to compare gene expression in the colons of mice that were treated
with a substance and mice that were not. If we have many measurements
from two populations being compared, we can, for example, perform a
Wilcoxon test to obtain a p-value for each transcript of interest. But often
it is not possible, too expensive, or unethical, to obtain so many replicate
measurements for all genes and for all conditions of interest. Often, it is
also not necessary. Models that provide good approximations of reality can
add power to our statistical results.

Quality assessment is yet another example of the usefulness of stochas-
tic models: if the distribution of a new set of data greatly deviates from
the model, this may direct our attention to quality issues with these
data. Chapter 3 demonstrates an example of the use of models for quality
assessment.

1.4.1 An error model

A generic model for the value of the intensity y of a single probe on a
microarray is given by

Y = B + αS (1.1)

where B is a random quantity due to background noise, usually composed
of optical effects and non-specific binding, α is a gain factor, and S is the
amount of measured specific binding. The signal S is considered a random
variable as well and accounts for measurement error and probe effects. The
measurement error is typically assumed to be multiplicative so we write:

log(S) = θ + φ + ε. (1.2)

Here θ represents the logarithm of the true abundance, φ is a probe-specific
effect, and ε accounts for measurement error. This is the additive-
multiplicative error model for microarray data, which was first proposed
by Rocke and Durbin (2001) and in a closely related form by Ideker et al.
(2000).
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Figure 1.1. a) Density estimates of data from six replicate Affymetrix arrays. The
x-axis is on a logarithmic scale (base 2). b) Box-plots.

Different arrays will have different distributions of B and different values
of α, resulting in quite different distributions of the values of Y even if
S is the same. To see this, let us look at the empirical distribution of six
replicate Affymetrix arrays.

> library("affy")

> library("SpikeInSubset")

> data("spikein95")

> hist(spikein95)

> boxplot(spikein95)

The resulting plots are shown in Figure 1.1.
Part of the task of preprocessing is to eliminate the effect of background

noise. Notice in Figure 1.1 that the smallest values attained are around
64, with slight differences between the arrays. We know that many of the
probes are not supposed to be hybridizing to anything (as not all genes
are expressed), so many measurements should indeed be 0. A bottom line
effect of not appropriately removing background noise is that estimates of
differential expression are biased. Specifically, the ratios are attenuated to-
ward 1. This can be seen using the Affymetrix spike-in experiment, where
genes were spiked in at known concentrations. Figure 1.2a shows the ob-
served concentrations versus nominal concentrations of the spiked-in genes.
Measurements with smaller nominal concentrations appear to be affected
by attenuation bias. To see this, notice that the curve has a slope of about
1 for high nominal concentrations but gets flat as the nominal concen-
tration gets closer to 0. This is consistent with the additive background
noise model (1.1). Mathematically, it is easy to see that if s1/s2 is the
true ratio and b1 and b2 are approximately equal positive numbers, then
(s1 + b1)/(s2 + b2) is closer to 1 than the true ratio, and the more so the
smaller the absolute values of the si are compared to the bi.
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Figure 1.2. a) Plot of observed against nominal concentrations. Both axes are
on the logarithmic scale (base 2). The curve represents the average value of all
probes at each nominal concentration. Nominal concentrations are measured in
picomol. b) Normal quantile-quantile plot of the logarithmic (base 2) intensities
for all probes with the same nominal concentration of 1 picomol.

Figure 1.2b shows a normal quantile-quantile plot of logarithmic inten-
sities of probes for genes with the same nominal concentration. Note that
these appear to roughly follow a normal distribution. Figure 1.2 supports
the multiplicative error assumption of model 1.1.

1.4.2 The variance-bias trade-off

A typical problem with many preprocessing algorithms is that much pre-
cision is sacrificed to remove background effects and improve accuracy.
Model (1.1) can be used to show that subtracting unbiased estimates of
background effects leads to exaggerated variance for genes with small val-
ues of a. In fact, background estimates that are often used in practice, such
as the “local background values” from many image analysis programs for
two-color spotted arrays and the mismatch (MM) value from Affymetrix
arrays, tend to be over -estimates, which makes the problem even worse.

Various researchers have used models similar to Equation (1.1) to de-
velop preprocessing algorithms that improve both accuracy and precision
in a balanced way. Some of these methods propose variance stabilizing
transformations (Durbin et al., 2002; Huber et al., 2002, 2004), others use
estimation procedures that improve mean squared error (Irizarry et al.,
2003b). Some examples will be provided in Chapters 2 and 4.

1.4.3 Sensitivity and specificity of probes

The probes on a microarray are intended to measure the abundance of
the particular transcript that they are assigned to. However, probes may
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differ in terms of their sensitivity and specificity. This fact is represented
by the existence of φ in model (1.2). Here, sensitivity means that a probe’s
fluorescence signal indeed responds to changes in the transcript abundance;
specificity, that it does not respond to other transcripts or other types of
perturbations.

Probes may lack sensitivity. Some probes initially identified with a gene
do not actually hybridize to any of its products. Some probes will have been
developed from information that has been superseded. In some cases, the
probe may correspond to a different gene or it may in fact not represent
any gene. There is also the possibility of human error (Halgren et al., 2001;
Knight, 2001).

A potential problem especially with short oligonucleotide technology is
that the probes may not be specific, that is, in addition to matching the
intended transcript, they may also match some other gene(s). In this case,
we expect the observed intensity to be a composite from all matching tran-
scripts. Note that here we are limited by the current state of knowledge
of the human transcriptome. As our knowledge improves, the information
about sensitivity of probes should also improve.

1.5 Conclusion

Various academic groups have demonstrated that the use of modern sta-
tistical methodology can substantially improve accuracy and precision of
bottom-line results, relative to ad hoc procedures introduced by designers
and manufacturers of the technology. In the following chapters, we provide
some details of how Bioconductor tools can be used to do this, not only in
microarray platforms, but also in other related technologies.
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Abstract
High-density oligonucleotide expression arrays are a widely used

microarray platform. Affymetrix GeneChip arrays dominate this
market. An important distinction between the GeneChip and other
technologies is that on GeneChips, multiple short probes are used
to measure gene expression levels. This makes preprocessing par-
ticularly important when using this platform. This chapter begins
by describing how to import probe-level data into the system and
how these data can be examined using the facilities of the AffyBatch
class. Then we will describe background adjustment, normalization,
and summarization methods. Functionality for GeneChip probe-level
data is provided by the affy, affyPLM, affycomp, gcrma, and affypdnn
packages. All these tools are useful for preprocessing probe-level data
stored in an AffyBatch object into expression-level data stored in an
exprSet object. Because there are many competing methods for this
preprocessing step, it is useful to have a way to assess the differences.
In Bioconductor, this can be carried out using the affycomp package,
which we discuss briefly.

2.1 Introduction

The most popular microarray application is measuring genome-wide expres-
sion levels. High-density oligonucleotide expression arrays are a commonly
used technology for this purpose. Affymetrix GeneChip arrays dominate
this market. In this platform, the choice of preprocessing method can have
enormous influence on the quality of the ultimate results. Many prepro-
cessing methods have been proposed for high-density oligonucleotide array
data. In this chapter, we discuss methodology and Bioconductor tools


