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Preface to the Fourth Edition 

This fourth edition of selecta of my work on the stability of matter contains recent 
work on two topics that continue to fascinate me: Quantum electrodynamics (QED) 
and the Bose gas. 

Three papers have been added to Part VII on QED. As I mentioned in the preface 
to the third edition, there must be a way to formulate a non-perturbative QED, 
presumably with an ultraviolet cutoff, that correctly describes low energy physics, 
i.e., ordinary matter and its interaction with the electromagnetic field. The new 
paper VII.5, which “quantizes” the results in V.9, shows that the elementary ‘no-pair’ 
version of relativistic QED (using the Dirac operator) is unstable when many-body 
effects are taken into account. Stability can be restored, however, if the Dirac operator 
with the field, instead of the bare Dirac operator, is used to define an electron. Thus, 
the notion of a “bare” electron without its self-field is physically questionable. 

One of the truly basic quantum-mechanical phenomena is the existence of a ground 
state, but to define this one must have a Hamiltonian and a variational principle. This 
is not easy to formulate in a truly relativistic theory using the Dirac operator, but 
work has been done trying to make the ground state clear for the non-relativistic 
Schro¨dinger operator coupled to the relativistic electromagnetic field. Paper VII.3 
completes the work started in VII.2 by showing that the “binding condition” of VII.2 
is satisfied and hence that atoms and molecules have true ground states in this theory, 
despite the possibility of an “infrared problem”. 

Paper VII.4 is a first, primitive attempt to quantify the mass renormalization 
problem non-perturbatively. 

Part VIII on the Bose gas has four new papers. Paper VIII.7 carries forward what 
was begun in VIII.6 on the one-component gas (‘jellium’)by proving that Dyson’s 
1967 conjecture on the ground state of a two-component gas of high density charged 
bosons is exactly describable, asymptotically, by a mean-field equation. 

The theory of the low density gas, is quite a different matter and its ground state is 
shown to have 100% Bose-Einstein condensation (in VIII.8) and 100% superfluidity 
(in VIII.9) for gases in traps (in the Gross-Pitaevskii limit). These long-conjectured 
results are now proved, but the ‘holy grail’ of proving Bose-Einstein condensation 
for an interacting gas in the usual thermodynamic limit remains as a challenge. 

Other interesting facts, experimental and theoretical, about dilute gases in traps 
continue to emerge. Recent experiments show that gases in elongated traps behave 
like one-dimensional systems, and the mathematical proof is announced in VIII.10. 
A more detailed discussion of these papers is in VIII.1. 

Three other selecta have also been published: Inequalities, edited by Michael 
Loss and Mary Beth Ruskai; Statistical Mechanics and Condensed Matter Physics 
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and Exactly Soluble Models, both edited by Bruno Nachtergaele, Jan Philip Solovej 
and Jakob Yngvason. Section VIII of the Condensed Matter Physics selecta contains 
other papers on the Bose gas, including a recent review article. 

It is a pleasure to thank Wolf Beiglbo¨ck and Walter Thirring for their support and 
encouragement and Sabine Lehr and Brigitte Reichel-Mayer for their patient help 
with the production through four editions. 

Princeton, August 2004 Elliott Lieb 

VI 



Preface to the Third Edition 

The second edition of this "selecta" of my work on the stability of matter was sold 
out and this presented an opportunity to add some newer work on the quantum-
mechanical many-body problem. In order to do so, and still keep the volume 
within manageable limits, it was necessary to delete a few papers that appeared in 
the previous editions. This was done without sacrificing content, however, since 
the material contained in the deleted papers still appears, in abbreviated form, at 
least, in other papers reprinted here. 

Sections VII and VIII are new. The former is on quantum electrodynamics 
(QED), to which I was led by consideration of stability of the non-relativistic 
many-body Coulomb problem, as contained in the first and second editions. In 
particular, the fragility of stability of matter with classical magnetic fields, which 
requires a bound on the fine-structure constant even in the non-relativistic case 
(item V.4), leads to the question of stability in a theory with quantized fields. 
There are many unresolved problems of QED if one attempts to develop a non-
perturbative theory - as everyone knows. A non-perturbative theory is essential, 
however, if one is going to understand the stability of the many-body problem, 
which is the stability of ordinary matter. Some physicists will say that a non-
perturbative QED does not exist - and this might be true in the absence of cutoffs 
- but an effective theory with cutoffs of a few Mev must exist since matter exists. 

At the present time physicists believe fully in the non-relativistic Schrodinger 
equation and even write philosophical tracts about it. This equation is the basis 
of condensed matter physics and, while it is understood that relativistic effects 
exist, they are not large and can be treated as mild perturbations. The original 
Schrodinger picture is alive and well as a very good approximation to reality, and 
shows no signs of internal inconsistency. For this reason, the 'stability of matter' 
question, which takes the equation literally and seriously without approximation, 
is accepted as a legitimate question about physical reality. 

The radiation field, on the other hand, especially the quantized radiation field, 
is almost always treated perturbatively in one way or another. The Schrodinger 
equation, including coupling to the quantized radiation field treated perturba­
tively, describes ordinary matter with great accuracy, for it is the basis of chem­
istry and solid state physics. 

One can ask if there is a theory, analogous to the Schrodinger theory, that 
incorporates particles and electromagnetic fields together without having to resort 
to perturbation theory. If it were really impossible to have a self-consistent, non-
perturbative theory of matter and the low frequency radiation field it would not be 
unreasonable to call this a crisis in physical theory. It has always been assumed 
that at each level of physical reality there is a self consistent theory that describes 
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phenomena well at that level. For example, we have chemistry, which is well 
described at the level of molecules, phase transitions and thermodynamics, which 
is presumably well described by statistical mechanics, etc. At the present time 
we have the beginnings of a consistent theory of matter and radiation at the non-
relativistic level, but a corresponding relativistic theory, is less developed. 

Section VII describe some primitive attempts to address some of the questions 
that have to be resolved. One problem concerns renormalization. Starting from a 
relativistic Dirac theory, one finds that the radiation field forces a renormaliza­
tion of the electron mass. This is well known, but what is not so well known is 
that the nonrelativistic theory forces an even bigger renormalization. Thus, if one 
starts from a relativistic theory, performs the renormalization, and then asks for 
the nonrelativistic limit of such a theory, it appears that one has to make fiarther 
renormalizations - which it should not be necessary to do. 

The new Section VIII is devoted to a subject that was a favorite of mine from 
the beginning of my career: many-boson systems. Some of the papers reprinted in 
the first and second editions on the stability of charged boson systems have been 
moved to this section. A very brief summary of all this material, as well as a list of 
my earliest work on this topic is given in an introduction VIII. 1. Three new papers 
(VIII.2, 3, 4) are about the solution to a very old problem, namely the calculation 
of the ground state energy of a system of Bose particles with short-range forces 
at low density. The stability question is trivial, but the calculation of physical 
quantities in this intensely quantum-mechanical regime requires another sort of 
physical insight that goes back half a century but which was never rigorously 
validated. 

Currently, the study of low density, low temperature Bose gases in "traps" is 
an active area of experimental physics. The extension of the homogeneous gas 
results to inhomogeneous gases in traps is in VIII.3. Similar subtleties arise for 
charged bosons in a neutralizing background ("jellium"), and this was resolved 
recently in VIII.7. The new material is summarized in VIII.4. 

Certainly, much more remains to be understood about the ground states of 
bosonic systems. The two-component charged Bose gas, which is related to the 
jellium problem (see VIII.6) should be better understood, quantitatively. And, of 
course, there is the ancient quest for a proof of the existence of Bose condensation 
in interacting systems. 

Princeton, March 2001 Elliott Lieb 
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Preface to the Second Edition 

The first edition of "The StabiHty of Matter: From Atoms to Stars" was sold 
out after a time unusually short for a selecta collection and we thought it ap­
propriate not just to make a reprinting but to include eight new contributions. 
They demonstrate that this field is still lively and keeps revealing unexpected 
features. Of course, we restricted ourselves to developments in which Elliott 
Lieb participated and thus the heroic struggle in Thomas-Fermi theory where 
the accuracy has been pushed from Ẑ ^̂  to Ẑ ^̂  is not included. A rich landscape 
opened up after Jakob Yngvason's observation that atoms in magnetic fields also 
are described in suitable limits by a Thomas-Fermi-type theory. Together with 
Elliott Lieb and Jan Philip Solovej it was eventually worked out that one has to 
distinguish 5 regions. If one takes as a dimensionless measure of the magnetic 
field strength B the ratio Larmor radius/Bohr radius one can compare it with 
N ^ Z and for each of the domains 

(i) 
(ii) 
(iii) 
(iv) 
(V) 

B « N'^'\ 
B ~ N^'\ 
N^l^ « B «.N\ 
B-- N\ 
B »iV3 

a different version of magnetic Thomas-Fermi theory becomes exact in the limit 
Â  —>• oo. In two dimensions and a confining potential ("quantum dots") the 
situation is somewhat simpler, one has to distinguish only 

(i) fi « TV, 
(ii) fi ~ /V, 
(iii) 5 » i V 

and thus there are three semiclassical theories asymptotically exact. These fine 
distinctions make it clear how careful one has to be when people claim to 
have derived results valid for high magnetic fields. There is plenty of room for 
confusion if they pertain to different regions. 

The question of stability of matter in in a magnetic field B has also been 
further cleaned up. Already the partial results in V.3 and V.4 of the first edition 
showed where the problem resides. Whereas diamagnetism poses no problem to 
stability since there a magnetic field pushes the energy up, the paramagnetism 
of the electron's spin magnetic moment can lower the energy arbitrarily much 
with increasing B. Only if one includes the field energy +-^ f B^ one gets a 
bound uniform in B. This has now been shown to be true for arbitrarily many 
electrons and nuclei provided a and Za^ are small enough. Though the sharp 
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constants have not been determined, for a = 1/137 and Z < 1050 (nonrelativis-
tic) stability is guaranteed. Two recent works pertaining to this question have 
now been included: 

1. A transparent and relatively simple proof of stability for Coulomb systems 
with relativistic kinetic energy is now available. 

2. The problem has been studied with the Dirac Hamiltonians for the individual 
electrons in an external magnetic field. Here the question of how to fill the 
Dirac sea arises and it turns out that the correct way is to use the Hamiltonian 
including the magnetic field. Once this is done the Coulomb interaction does 
not introduce an instability provided the charges are below certain limits. On 
the contrary if one fills the Dirac sea of the free electrons and then introduces 
the magnetic field then one gets instability. Amusingly the relativistic theory 
also allows the above nonrelativistic limit on Z to be improved to Z < 2265. 

Unfortunately QED has not yet matured mathematically to a state where these 
questions can be answered in a full-fledged relativistic quantum field theory and 
only in patchworks of relativistic corrections some answers are obtained. Thus 
this field is by no means exhausted and will keep challenging future generations. 

Vienna, November 1996 Walter Thirring 
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Preface to the First Edition 

With this book, ElHott Lieb joins his peers Hermann Weyl and Chen Ning 
Yang. Weyl's Selecta was pubhshed in 1956, Yang's Selected Papers in 1983. 
Lieb's "Selecta", hke its predecessors, gives us the essence of a great mathema­
tical physicist concentrated into one convenient volume. Weyl, Yang and Lieb 
have much more in common than the accident of this manner of publication. 
They have in common a style and a tradition. Each of them is master of a for­
midable mathematical technique. Each of them uses hard mathematical ana­
lysis to reach an understanding of physical laws. Each of them enriches both 
physics and mathematics by finding new mathematical depths in the description 
of famihar physical processes. 

The central theme of Weyl's work in mathematical physics was the idea of 
symmetry, linking physical invariance-principles with the mathematics of 
group-theory. One of Yang's central themes is the idea of a gauge field, Hnking 
physical interactions with the mathematics of fibre-bundles. The central theme 
of Lieb's papers collected in this book is the classical Thomas-Fermi model of 
an atom, hnking the physical stabiHty of matter with the mathematics of func­
tional analysis. In all three cases, a rather simple physical idea provided the 
starting-point for building a grand and beautiful mathematical structure. Weyl, 
Yang and Lieb were not content with merely solving a problem. Each of them 
was concerned with understanding the deep mathematical roots out of which 
physical phenomena grow. 

The historical development of Lieb's thinking is explained in the review 
articles in this volume, items 65, 92 and 136 in Lieb's publication list. I do not 
need to add explanatory remarks to Lieb's lucid narrative. I suppose the reason 
I was asked to write this preface is^because Lenard and I found a proof of the 
stability of matter in 1967. Our proof was so complicated and so unihuminating 
that it stimulated Lieb and Thirring to find the first decent proof, included here 
(paper 85 in the pubhcation hst). Why was our proof so bad and why was theirs 
so good? The reason is simple. Lenard and I began with mathematical tricks 
and hacked our way through a forest of inequalities without any physical under­
standing. Lieb and Thirring began with physical understanding and went on to 
find the appropriate mathematical language to make their understanding rigo­
rous. Our proof was a dead end. Theirs was a gateway to the new world of ideas 
collected in this book. 

Pfinceton, March 1990 Freeman Dyson 
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Introduction 

"Once we have the fundamental equation (Urgleichung^) we have the theory of every­
thing" is the creed of some physicists. They go on to say that "then physics is complete 
and we have to seek other employment". Fortunately, other scientists do not subscribe 
to this credo, for they believe that it is not the few Greek letters of the Urgleichung that 
are the essential physics but rather that physics consists of aU the consequences of the 
basic laws that have to be unearthed by hard analysis. In fact, sometimes it is the case 
that physics is not so much determined by the specific form of the fundamental laws 
but rather by more general mathematical relations. For instance, the KAM-theorem 
that determines the stability of planetary orbits does not depend on the exact 1/r 
law of the gravitational potential but it has a number theoretic origin. Thus a proper 
understanding of physics requires following several different roads: One analyzes the 
general structure of equations and the new concepts emerging from them; one solves 
simplified models which one hopes render typical features; one tries to prove general 
theorems which bring some systematics into the gross features of classes of systems and 
so on. Elliott Lieb has followed these roads and made landmark contributions to all of 
them. Thus it was a difficult assignment when Professor Beiglbock of Springer-Verlag 
asked me to prepare selecta on one subject from Lieb's rich publication list^ .̂ When 1 
finally chose the papers around the theme "stability of matter" I not only followed my 
own preference but I also wanted to bring the following points to the fore: 

(a) It is sometimes felt that mathematical physics deals with epsilontics irrelevant 
to physics. Quite on the contrary, here one sees the dominant features of real 
matter emerging from deeper mathematical analysis. 

(b) The Urgleichung seems to be an ever receding mirage which leaves in its wake 
laws which describe certain more or less broad classes of phenomena. Perhaps the 
widest class is that associated with the Schrodinger equation with 1/r-potentials, 
which appears to be relevant from atoms and molecules to bulk matter and even 
cosmic bodies. Thus the papers reproduced here do not deal with mathematical 
games but with the very physics necessary for our life. 

(c) In mathematics we see a never ending struggle for predominance between ge­
ometry and analysis, the fashions swinging between extremes. Not too long ago 
the intuitive geometrical way in which most physicists think was scorned by 

^ Urgleichung (which is a word coined by Heisenberg) has now been replaced by the TOE (theory 
of everything) of the advocates of superstring theory. 
^Henceforth quoted as [Lieb, ...]. 



mathematicians and only results from abstract analysis were accepted. Today 
the pendulum has swung the other way and the admired heroes are people with 
geometric vision, whereas great analysts like J. von Neumann tend to be thought 
of as degenerate logicians. As a physicist one should remain neutral with regard 
to internal affairs of mathematics, but it is always worthwhile to steer against 
the trend. Stability of matter illustrates beautifully that the great masters have 
forged for us the very analytical tools which we need to extract the physics from 
the fundamental equations. 

In the selected papers the deeper results are carefuUy derived and what is presup­
posed on the reader's part are standard mathematical relations like convexity inequal­
ities. Thus, it is to be hoped that this volume is not only of historical interest but also 
a useful source for workers in quantum mechanics. 

2 Extensivity 

We all take for granted that two liters of gasoline contain twice as much energy as 
one liter. In thermodynamics this fact has been dogmatized by the statement that 
the energy is an extensive quantity. This means that if E(N) is the energy of the 
TV-particle system then lim;v-^oo E{N)/N is supposed to exist, or that the energy 
per particle approaches a limit in the many-body problem. This is what is meant by 
"stability of matter" and it was tacitly assumed by people working in this field even 
though at first sight it seems rather improbable for a system of particles interacting 
via two-body potentials. The Hamiltonian 

contains a double sum and one might expect E{N) ~ iV^ rather than E(N) ~ N. His­
torically the existence of limjv-^oo -^E{N) was first seriously studied in the framework 
of classical statistical mechanics by Van Hove [1] where he had to assume a potential 
with a hard core. However, real matter, which consists of electrons and nuclei, obeys 
the laws of quantum mechanics and the dominant interactions are electrostatic or, for 
cosmic bodies, gravitational. In the latter case the iV-dependence of the quantum me­
chanical ground state energy E^ was first established by Levy-Leblond [2] who proved 
that in the gravitational case, v{xi — Xj) = —Kmimj/\xi — Xj|, Ejsf ~ N^ for bosons 
and EN ~ 7V /̂̂  for fermions. Consequently, as was pointed out by Fisher and Ruelle 
[3], the situation for purely electrostatic interactions, v{xi — Xj) = eiej/\xi — Xj\, was 
not so clear. A new chapter in science was opened up when this question was finally 
settled by Dyson and Lenard [4] who derived in a seminal paper the fundamental result 
that in this case actually Ejs^ ~ TV if all particles of one sign of charge are fermions. 
If this is not the case and there are bosons of both signs of charge then they could 
show that EN is somewhere between N^^^ and N'^^^. It is fairly obvious that there 
is no chance for stability if the potential is all attractive, but it was rather shocking 
that electrostatics with its screening property might lead to instability. One might be 
inclined to consider this as a pathology of the Coulomb potential 1/r with its long 



range and its singularity and that things would be stable once these troublemakers are 
removed. That this is not the case is illustrated by the following [5]. 

Proposit ion (2) 
For the Hamiltonian 

N 2 

the quantum mechanical ground state energy EN satisfies 

(i) EN ~ N for fermions, EN ~ 7V /̂̂  for bosons if 

v{r) = ~, 
r 

(ii) EN ~ N for fermions and bosons if 

v(r) = 

(iii) EN ~ N'^ for fermions and bosons if 

1 - e-^"-

v(r) = re' jir 

Thus it becomes clear that EN ~ N happens only under exceptional circumstances 
and one has to inquire what goes wrong in the case that EN ^ iV^, 7 > 1. It is 
sometimes said that in this case the thermodynamic limit does not exist and therefore 
thermodynamics no longer applies. Though there is some truth in this statement, the 
argument is somewhat superficial and a more detailed analysis is warranted. One might 
object that in reality one deals with finite systems and the existence of lim^v^oo is only 
of mathematical interest. This is not quite true because the existence of the limit simply 
says that for a large but finite system the corresponding quantities are already close to 
their limiting value and the system can be described by the idealized situation TV —> 00. 
But for this to be true the kind of limit that is taken is irrelevant. For instance, in 
the gravitational case one can show the existence of limAr-H.00 N~'^^^EN for fermions 
(or lim;v-^oo N~^EN for bosons). For stars (N ~ 10^^) one is certainly close to the 
limit, and their energy is predicted equally well by this kind of TV"̂ /̂  limit as in the 
stable situation. However I shall now discuss three dominating features which set the 
case EN ~ N apart from EN ~ N^, 7 > 1? înd justify the terminology "stability of 
matter". 

2.1 Re la t iv i s t i c Col lapse 

The relativistic expression for the kinetic energy y/p^ + m^ weakens the zero point 
pressure to the extent that the "relativistic" quantum mechanical Hamiltonian 

/̂v = E\/p'+"*i + EH^'-^i) (3) 



might cease to be bounded from below if N is sufficiently big. Although this fact was 
recognized at the beginning of quantum mechanics [6], its dramatic consequence that 
a star of more than about twice the solar mass will collapse was doubted by lead­
ing astrophysicists. Only the experimental discovery of pulsars in the sixties provided 
overwhelming evidence for this prediction of quantum mechanics and therefore its rel­
evance for cosmic bodies. Thus, there seems to be an essential difference between the 
relativistic and the nonrelativistic Hamiltonian. Whereas (1) with 1/r-potentials is al­
ways bounded from below - and instability only implies that its lower bound Ej^^ is 
not proportional to iV - relativistically EN niay be — oo for all N > Nc = some critical 
particle number ("relativistic collapse"). Related to this is the fact that nonrelativisti-
cally the size of the ground state may shrink with N but it always stays finite, whereas 
relativistically for N > Nc the system keeps contracting until effects not contained in 
(3) take over. The two phenomena are related by the following fact which illustrates 
why instability is catastrophic [7]. 

Proposit ion (4) 
If in (1) v(x) scales like v{Xx) = \~^v{x) then nonrelativistic instability implies rela­
tivistic collapse. 

The converse statement is false since nonrelativistically matter is stable for arbi­
trary values of e, whereas relativistically the two-body Hamiltonian already becomes 
unbounded from below for a > 7r/2 = ac(2). Once it was found by Daubechies and 
Lieb [Lieb, 150] that these stability limits for a become more severe in the many-body 
situation, the question of stability of Coulomb matter with relativistic kinetic energy 
appeared more serious because limjv-^oo « c ( ^ ) could conceivably be zero. That this is 
not so for fermions was first shown by Conlon [8] who proved for nuclear charge Z = 1 
ac{N) > 10"^^^ for all iV, a value which was subsequently improved by Fefferman and 
de la Llave [9]. Finally, Lieb and Yau [Lieb, 186] obtained the optimal result which is 
stability if aZ < 2/7r and a < 1/94. By Proposition (4) in the other cases (Coulomb 
matter with positive and negative bosons or with gravitation) the relativistic collapse 
is unavoidable. 

2.2 Thermodynamic Stability 

Shortly after H^ > —N - const was established, Lieb and Lebowitz showed the exis­
tence of the thermodynamic functions in the Hmit TV —)> oo for Coulomb matter [Lieb, 
43]. This does not follow automatically from stabifity because the long range of the 
Coulomb potential poses additional problems. They had to demonstrate that this is 
sufficiently screened so that separated portions of matter are sufficiently isolated. They 
not only generalized the work of Van Hove et al. [1,3] to the reafistic situation but also 
considered the microcanonical ensemble and showed that the specific heat was positive. 
Van Hove had shown that classically the limiting system had positive compressibility 
which Lieb and Lebowitz also verified for the quantum Coulomb case. These conditions 
for thermodynamic stability are concisely expressed by a convexity property. Denote 
by H^y the TV-particle Hamiltonian (1) in a volume F , by Hs an e*^-dimensional 
subspace of the Hilbertspace in which H^y acts, and Tr^^^ the trace in this subspace. 
Then for a finite system the energy as function of particle number, entropy and volume 



E{N,S,V) = MTTnsHN,v. (5) 

In the thermodynamic limit one considers 

e(N,S,V)= lim X-'^H{\N,XS,XV) (6) 
A—*oo 

and thermodynamic stability requires that € is jointly convex in its arguments. Lest 
the reader might think that one gets thermodynamic stability for free one has to 
note that it WCLS shown by Hertel and Thirring [10] that in the gravitational case the 
temperature-dependent Thomas-Fermi theory becomes exact in a certain limit such 
that in this case e(N^SyV) not only exists but is calculable. Since this system is not 
stable, e has to be defined by 

e{N,S,V)= lim A-^/^^(AJV,A^,A'V). (7) 
A-^oo 

It turned out that this system was also thermodynamically unstable; it showed a region 
of negative specific heat [11,12,13]. Such a phenomenon had been previously discovered 
in some models [14,15,16] and was always suspected by astrophysicists. That it was no 
accident that it occurred for the nonextensive Hamiltonian was clarified by Landsberg 
[17] by means of the following. 

Theorem fg\ 

Let X -^ f{x) be a map from a convex set of R^ into R. Then any two of the conditions 

Homogeneity: H : f(Xx) = Xf{x), A € R+ 
Subadditivity: S : f{xi -f- X2) < f{xi) + f{x2) 
Convexity: C : f{Xxi -f (1 - A)x2) < A/(a;i) + (1 - A)/(a:2) 

imply the third. 
If we take for / the function e{N^ 5, V) then H is obviously satisfied in the stable 

situation (6) but not in the unstable case (7). Thus iT is a condition for stability against 
implosion. On the other hand, the subadditivity S means a stability against explosion; 
one gains energy by putting two parts together. Finally, C is thermodynamic stability. 
The theorem says that any two of these stability notions imply the third or, if one fails 
to hold, the others cannot both be true. In the cases we considered, S holds. This is clear 
for attractive interactions like gravity whereas for repulsive potentials (e.g. aU charges 
having the same sign) the system would be explosive and S is violated. However, for 
electrically neutral systems there is always a van der Waals attraction [Lieb, 166] so 
that S is satisfied, which means that H and C become equivalent. Thus it turns out 
that our stability condition in terms of extensitivity is equivalent to thermodynamic 
stability provided the system is not explosive. 

2.3 T h e E x i s t e n c e of Q u a n t u m Fie ld T h e o r y 

Systems with negative specific heat cannot coexist with other systems. They heat up 
and give off energy until they reach a state of positive specific heat. This is what 
thermodynamic considerations tell us [15] but it was doubted [18] that in these cases 



thermodynamics is applicable and reflects the dynamics of the system. However, recent 
computer studies [19,20] of the dynamics of unstable systems have revealed that they 
behave exactly the way one expected by determining the dominant feature in phase 
space. In these studies one solved the classical equations of motion for 400 particles on 
a torus with 

v(xi — Xj) = — exp[—|a:,- — Xj\^/b^] 

or 
v(xi - Xj) = eiej{xi — XjY exp[-|a:,- - Xj\'^/b'^]. 

It turned out that irrespective of the initial state, if the total energy is sufficiently small 
a hot cluster of size b with Nc, say 150 particles, developed, the rest being a homo­
geneous atmosphere. The temperature increased proportional to Nc. Thus there is no 
hope for a limiting dynamics for iV ^^ oo. In particular in quantum field theory, where 
N is not restricted, one cannot expect that a Hamiltonian H with a smooth poten­
tial that, however, leads to an unstable system leads to a dynamics in the Heisenberg 
representation via the usual formula 

a{t) = e'^^ae-'"K 

Since states with unlimited N will lead to unlimited temperatures and thus unlimited 
velocities there cannot be a state independent dynamics. These ideas about the rele­
vance of stability for the existence of quantum field theory were brought forward first 
by Dyson [21] and have been substantiated by proofs only in the converse direction. 
If one achieves stability by a momentum cut-oflf then there exists a dynamics in the 
Heisenberg representation for the quantum field theory [22]. 

Thus, if one wants a many-body system to behave in the way we are used to, the 
first question to be answered is its stability. Instability seems to be the rule rather than 
the exception and actually we owe our lives to the gravitational instability. Not only 
did Boltzmann's heat death not take place but, on the contrary, the universe, which 
originally is supposed to have been in an equilibrium state, developed hot clusters, the 
stars. Thus we can enjoy the sunshine which is rich in energy and lean in entropy, the 
kind of diet we need. 

We have seen how a seemingly inconspicuous inequality turned into a key notion for 
understanding many-body physics. One of the great contributors to this development 
was Elliott Lieb. He usually did not say the first word on any of these issues but, with 
various collaborators, the last. His work (with B. Simon) [Lieb, 97] which put Thomas-
Fermi (T.F.) theory on a firm basis opened the way for a better understanding of 
stability of matter. Since they proved that there is no chemical binding in T.F. theory, 
stability of matter becomes obvious once one knows that the T.F. energies are lower 
bounds for the corresponding quantum problem. That this is so is still a conjecture but 
it was shown by E. Lieb (with W. Thirring) [Lieb, 85] that this is true if one changes 
the T.F.-energies by some (TV-independent) numerical factor. 

If the electrons were bosons there remained the question whether the lower bound 
^ -N^l^ or the upper bound ^ -N'^/^ given by Dyson and Lenard [4] reflects the 



true behavior. This question was settled in an unexpected way. Lieb showed that if 
the masses of the nuclei are oo then —N^f^ is correct [Lieb, 118] whereas if they are 
finite he supplied (with J. Conlon and H.-T. Yau) [Lieb, 188] a lower bound ~ —iV^/^, 
thereby showing the essential difference between these two cases. This is all the more 
surprising since in the justification of the Born-Oppenheimer approximation, which 
says that there is not much diflference between big and infinite nuclear mass, usually 
no reference is made to the fermionic nature of the electrons. 

Once one has established the gross features of Coulombic matter reflected by T.F. 
theory one can worry about finer details not described by it. Of these I will single out 
two to which Lieb has significantly contributed. One is the question of negative ions 
(which do not exist in pure T.F. theory but exist if the von Weizsacker correction to 
the kinetic energy is added [Lieb, 130]). Ruskai [24] was the first to show that N{Z), 
the maximal number of electrons bound by a nucleus (in the real quantum theory), 
is finite. Lieb gave an elegant proof that N{Z) < 2Z -\- 1 [Lieb, 157]. Furthermore he 
showed (with I. Sigal, B. Simon and W. Thirring) [Lieb, 185] that if the electrons are 
fermions then lim^_,oo N(Z)/Z = 1. (If the electrons were bosons this limit would be 
1.21 [Lieb, 160], [23].) The latter result on real electrons has recently been improved 
by Feflferman and Seco but the proof of the conjecture N(Z) < 2-{- Z is still a challenge 
for the future. 

A typical feature of quantum mechanics which is not included in T.F. theory or any 
single electron theory (or density functional theory for that matter) is the attraction 
between neutral objects. There Lieb (with W. Thirring) [Lieb, 166] showed that the 
Schrodinger equation predicts a potential which is below —c/(R-{-Ro)^ where R is the 
distance between their centers and RQ a length related to their size. 

From Proposition (4) it follows that the relativistic Hamiltonian with gravitation 
becomes unbounded from below if iV > Nc = some critical particle number. It remained 
to be demonstrated that it stays bounded for N < Nc and to determine Nc. Lieb (with 
W. Thirring) [Lieb, 158] showed that this was actually the case and gave some bounds 
for Nc which show the expected behavior K"^/^ for fermions and K~^ for bosons (K = 
gravitational constants in units h = c = m = 1). Later he sharpened (with H.-T. Yau) 
[Lieb, 177] these results and showed that, for K —> 0, iVc for fermions is exactly the 
Chandrasekhar limit. 

The papers selected here show how powerful modern functional analysis is in deter­
mining the gross features of real matter from the basic quantum mechanical equations. 
Whereas a century's effort of the greatest mathematicians on the classical iV-body 
problem with 1/r potentials only produced results for the simplest special cases, in 
quantum mechanics the contours of the general picture have emerged with much greater 
clarity. 

The papers are grouped in various subheadings, the first paper being a recent 
review which will serve as a convenient introduction. 

Vienna, November 1990 Walter Thirring 
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THE STABILITY OF MATTER: 
FROM ATOMS TO STARS 

ELLIOTT H. LIEB 

Why is ordinary matter (e.g., atoms, molecules, people, planets, 
stars) as stable as it is? Why is it the case, if an atom is thought to 
be a miniature solar system, that bringing very large numbers of 
atoms together (say 10^^) does not produce a violent explosion? 
Sometimes explosions do occur, as when stars collapse to form 
supernovae, but normally matter is well behaved. In short, what is 
the peculiar mechanics of the elementary particles (electrons and 
nuclei) that constitute ordinary matter so that the material world 
can have both rich variety and stability? 

The law of motion that governs these particles is the quantum 
(or wave) mechanics discovered by Schrodinger [SE] in 1926 (with 
precursors by Bohr, Heisenberg, Sommerfeld and others). Every­
thing we can sense in the material world is governed by this theory 
and some of its consequences are quite dramatic, e.g., lasers, tran­
sistors, computer chips, DNA. (DNA may not appear to be very 
quantum mechanical, but notice that it consists of a very long, 
thin, complex structure whose overall length scale is huge com­
pared to the only available characteristic length, namely the size 
of an atom, and yet it is stable.) But we also see the effects of 
quantum mechanics, without realizing it, in such mundane facts 
about stability as that a stone is solid and has a volume which 
is proportional to its mass, and that bringing two stones together 
produces nothing more exciting than a bigger stone. 

The mathematical proof that quantum mechanics gives rise to 
the observed stability is not easy because of the strong electric 
forces among the elementary constituents (electrons and nuclei) of 
matter. The big breakthrough came in the mid sixties when Dyson 
and Lenard [DL] showed, by a complicated proof, that stability 
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is, indeed, a consequence of quantum mechanics. (Part of their 
motivation came from earlier work by Van Hove, Lee and Yang, 
van Kampen, Wils, Mazur, van der Linden, Griffiths, Dobrushin, 
and especially Fisher and Ruelle who formulated the problem and 
showed how to handle certain well chosen, but unrealistic forces.) 
This was a milestone but there was room left for improvement 
since their results had certain drawbacks and did not cover all 
possible cases; for instance, it turns out that quantum mechanics, 
which was originally conceived to understand atoms, is also crucial 
for understanding why stars do not collapse. Another problem 
was that they proved what is called here stability of the second 
kind while the existence of the thermodynamic limit (Theorem 3 
below), which is also essential for stability, required further work 
[LL], The full story has now, two decades later, mostly been sorted 
out, and that is the subject of this lecture. The answer contains 
a few surprises, some of which are not even discussed in today's 
physics textbooks. 

No physics background will be assumed of the reader, so Part I 
reviews some basic facts. Part II contains a synopsis of the aspects 
of quantum mechanics needed here. Part III treats the simplest 
system—the hydrogen atom, and Part IV introduces the strange 
Pauli exclusion principle for many electrons and extends the dis­
cussion to large atoms. Part V deals with the basic issue of the 
stability of matter (without relativistic effects) while Part VI treats 
hypothetical, but interesting, matter composed of bosons. Part VII 
treats the problems introduced by the special theory of relativity. 
Finally, Part VIII applies the results of Part VII to the structure 
of stars. 

PART L THE PHYSICAL FACTS AND THEIR 
PREQUANTUM INTERPRETATION 

While it is certainly possible to present the whole story in a 
purely mathematical setting, it is helpful to begin with a brief dis­
cussion of the physical situation. 

The first elementary constituent of matter to be discovered was 
the electron (J.J. Thomson, 1897). This particle has a negative elec­
tric charge (denoted by -e ) and a mass, m . It is easy to produce 
a beam of electrons (e.g., in a television tube) and use it to mea­
sure the ratio ejm quite accurately. The measurement of e alone 
is much trickier (Millikan 1913). The electron can be considered 
to be a point, i.e., it has no presently discernible geometric struc­
ture. Since matter is normally electrically neutral (otherwise we 
would feel electric fields everywhere), there must also be another 
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constituent with positive charge. One of the early ideas about this 
positive object was that it is a positively charged ball of a radius 
about equal to the radius of an atom, which is approximately 10 "^ 
cm. (This atomic radius is known, e.g., by dividing the volume of 
a solid, which is the most highly compressed form of matter, by 
the number of atoms in the solid.) The electrons were thought to 
be stuck in this charged ball like raisins in a cake; such a struc­
ture would have the virtue of being quite stable, almost by fiat. 
This nice picture was destroyed, however, by Rutherford's classic 
1903 experiment which showed that the positive entities were also 
essentially points. (He did this by scattering positively charged 
helium nuclei through thin metal foils and by showing that the 
distribution of scattering angles was the same as for the Kepler 
problem in which the trajectories are hyperbolas; in other words, 
the scatterers were effectively points—not extended objects.) 

The picture that finally emerged was the following. Ordinary 
matter is composed of two kinds of particles: the point electrons 
and positively charged nuclei. There are many kinds of nuclei, each 
of which is composed of positively charged protons and chargeless 
neutrons. While each nucleus has a positive radius, this radius 
(about 10 ~ cm) is so small compared to any length we shall 
be considering that it can be taken to be zero for our purposes. 
The simplest nucleus is the single proton (the nucleus of hydro­
gen) and it has charge +e. The number of protons in a nucleus 
is denoted by z and the values z = 1, 2, ... , 92, except for 
z = 43, 61, 85, are found in nature. Some of these nuclei, e.g., 
all 84 < z < 92, are unstable (i.e., they eventually break apart 
spontaneously) and we see this instability as naturally occurring 
radioactivity, e.g., radium. Nuclei with the missing z values 43, 
61, 85, as well as those with 92 < z < 109 have all been produced 
artificially, but they decay more or less quickly [AM]. Thus, the 
charge of a naturally occurring nucleus can be -\-e up to +92^ 
(except for 43, 61, 85), but, as mathematicians often do, it is in­
teresting to ask questions about "the asymptotics as z ^ oo " of 
some problems. Moreover, in almost all cases we shall consider 
here, the physical constraint that z is an integer need not and will 
not be imposed. The other constituent—the neutrons—will be of 
no importance to us until we come to stars. They merely add to 
the mass of the nucleus, for they are electrically neutral. For each 
given z several possible neutron numbers actually occur in nature; 
these different nuclei with a common z are called isotopes of each 
other. For example, when z = 1 we have the hydrogen nucleus 
(1 proton) and the deuterium nucleus (1 proton and 1 neutron) 
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which occur naturally, and the tritium nucleus (1 proton and 2 
neutrons) which is artificial and decays spontaneously in about 12 
years into a helium nucleus and an electron, but which is important 
for hydrogen bombs. Isolated neutrons are also not seen naturally, 
for they decay in about 13 minutes into a proton and an electron. 

Finally, the nuclear mass, M, has to be mentioned. It satisfies 
zM^ < M < 3zM^ where M^ = 1837m is the mass of a proton. 
Since the nuclear mass is huge compared to the electron mass, 
m , it can be considered to be infinite for most purposes, i.e., the 
nuclei can be regarded as fixed points in R^, although the location 
of these points will eventually be determined by the requirement 
that the total energy of the electron-nucleus system is minimized. 
A similar approximation is usually made when one considers the 
solar system; to calculate the motion of the planets the sun can be 
regarded as fixed. 

The forces between these constituents of matter (electrons and 
nuclei) is given by Coulomb's inverse square law of electrostatics: 
If two particles have charges q^ and q2 and locations x^ and X2 
in R then F^—the force on the first due to the second—is minus 
F2—the force on the second due to the first—and is given by 

(1.1) -F2 = F,=q,q2r^3' 

(Later on, when stars are discussed, the gravitational force will 
have to be introduced.) If q^q2 < ^ then the force is attractive; 
otherwise it is repulsive. This force can also be written as minus 
the gradient (denoted by V ) of a potential energy function 

(1.2) ^(-^1^-^2) = ^1^2IT TT' 

that is 

(1.3) F i = - V j f F and ^2 = - V 2 ^ . 

If there are Â  electrons located at X_ - (Xj, ... , x^) with 
X. G R , and k nuclei with positive charges Ẑ  = (Zj, ... , z^) 
and located at ^ = (/^,, ... , /^^) with R. e R ,̂ the total-potential 
energy function is then 

(1.4) W{X_) = -A{X) + B{X) + U 
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2^ 

- 1 

with 

(1.5) AiX) = e'J2^i^i) 
i=\ 

k 

(1.6) V{x) = Y.^M-^j 
7=1 

(1.7) B{X) = e^ Yl K-^v-r' 
l<i<j<N 

(1.8) u=e' Yl ^,^;i^,-^,r'-
^<i<j<k 

The A term is the electron-nucleus attractive potential energy, 
with eV{x) being the electric potential of the nuclei. B is the 
electron-electron repulsive energy and U is the repulsive energy 
of the nuclei. A,B,U and V depend on R and Z_, which are 
fixed and therefore do not appear explicitly in the notation. It is 
then the case that the force on the / th particle is 

(1.9) F. = -VW, 

In the case of an atom, /c = 1 by definition. The case k > 1 will 
be called the molecular case, but it includes not only the molecules 
of the chemist but also solids, which are really only huge molecules. 

So far this is just classical electrostatics and we turn next to 
classical dynamics. Newton's law of motion is (with a dot denoting 
jj, where / is the time) 

(1.10) mx. = F.. 

This law of motion, which is a system of second order differential 
equations, is equivalent to the following system of first order equa­
tions. Introduce the Hamiltonian function which is the function on 
the phase space R̂ "̂  = (R^ x R^)^ given by 

(1.11) H{P,X) = l^Y.p] + W{X). 

The notation Z = (/7j, . . . , Pj^) with p. in R is used, and the 
quantity 

(1-12) ''=^tp-
i=\ 
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is called the kinetic energy. The equations of motion (1.10) are 
equivalent to the following first order system in R 

dH 

(^•^^) 3H 
Pi dX; 

The velocity of the / th electron is v. and /?. is called its momen­
tum: p^ = mv. by the first equation in (1.13). 

From (1.13) it will be seen that H{P_, X) is constant throughout 
the motion, i.e., dH{P_{t), K.{t))ldt = 0 . This fixed number is 
called the energy and is denoted by E; it depends, of course, on 
the trajectory, and it is important to note that it can take all values 
in (—oo, oo). 

Another interesting fact about the flow defined by (1.13), but 
one which will not be important for us, is that it preserves Lebesgue 
measure dx^ • • dXj^dp^ • • dp^ on R ; this is Liouville's theo­
rem and it follows from the fact that the vector field that defines the 
flow, {dH/dp^ , ... , dH/dp^ , -dH/dx^, ... , -dH/dx^), is di­
vergence free. This theorem is one important reason for introduc­
ing the Hamiltonian formalism, for it permits a geometric inter­
pretation of classical mechanics and is crucial for ergodic theory 
and statistical mechanics. The analogue in quantum mechanics 
turns out to be that quantum mechanical time evolution is given 
by a one parameter unitary group in Hilbert space (see (2.18))— 
but time evolution will not concern us here. 

Consider the simplest possible case, neutral hydrogen, with z = 
1 (a proton) and one electron (A^ = 1 and k = 1 ). With 
the proton fixed at the origin (i.e., R^ = 0) the Hamiltonian is 

p^/2m - Ze'^\x\~^ and classical bound orbits (i.e., orbits which 
do not escape to infinity) of the electron are well known to be the 
ellipses of Kepler with the origin as a focus. These can pass as 
close as we please to the proton. Indeed, in the degenerate case 
the orbit is a radial line segment and in such an orbit the electron 
passes through the nucleus. One measure of average closeness of 
the electron to the nucleus in an orbit is the energy E, which is 
always negative for a bound orbit. Moreover E can be arbitrarily 
negative because the electron can be arbitrarily close to the nucleus 
and also have arbitrarily small kinetic energy T. A consequence 
of this fact is that the hydrogen atom would be physically unstable; 
in a gas of many atoms another particle or atom could collide with 
our atom and absorb energy from it. After many such collisions 
our electron could find itself in a tiny orbit around the nucleus 
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and our atom would no longer be recognizable as an object whose 
radius is supposed to be 10 cm. Each atom would be an infinite 
source of energy which could be transmitted to other atoms or to 
radiation of electromagnetic waves. 

The problem was nicely summarized by Jeans [J] in his 1915 
textbook. 

"There would be a very real difficulty in supposing that the 
(force) law 1/r held down to zero values of r. For the 
force between two charges at zero distance would be infinite; 
we should have charges of opposite sign continually rushing 
together and, when once together, no force would be ade­
quate to separate them... Thus the matter in the universe 
would tend to shrink into nothing or to diminish indefinitely 
in size." 
The inability to account for stable atoms in terms of classical 

trajectories of pointlike charged particles was the major problem of 
prequantum physics. Since the existence of atoms and molecules 
was largely inferential in those days (nowadays we can actually 
"see" atoms with the tunneling electron microscope), the inability 
to account for their structure even led some serious people to ques­
tion their existence—or at least to question the nice pictures drawn 
by chemists. The main contribution of quantum mechanics was 
to provide a quantitative theory that "explains" why the electron 
cannot fall into the nucleus. In brief, when the electron is close to 
the nucleus its kinetic energy—which could be zero classically—is 
forced to increase in such a way that the total energy (1.11) goes 
to +0C as the average distance \x\ goes to zero. This property is 
known as the uncertainty principle. 

PART II. QUANTUM MECHANICS IN A NUTSHELL 

Schrodinger's answer to the problem of classical mechanics was 
the following. While an electron is truly a point particle, its state 
at any given time cannot be described by a point x € R and a 
momentum p eR (or velocity t̂  = ^;?) as in the classical view. 
Instead the state of an electron is a (complex valued) function y/ 

2 3 

in L (R ). Any y/ will do provided it satisfies the normalization 
condition 
(2.1) 11̂11̂= f Mxfdx=\. 

(Actually, this statement is not accurate; an electron has a prop­
erty called spin, and the mathematical expression of this fact is 
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