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Preface

During several centuries various reincarnations of projective duality have in-
spired research in algebraic and differential geometry, classical mechanics,
invariant theory, combinatorics, etc. To put it simply, projective duality is the
systematic way of recovering a projective variety from the set of its tangent
hyperplanes. In this survey I have tried to emphasize that there are many
different aspects of projective duality and that it can be studied using a wide
range of methods. But at the same time I was pushing hard to minimize the
technical details in the hope of writing a text that requires a knowledge of
only basic facts from algebraic geometry and the theory of algebraic (or Lie)
groups. Most proofs in this book are compilations from various sources.

Projective duality is defined for arbitrary projective varieties and it does
not seem natural a priori to consider varieties with symmetries. However,
it turns out that many important examples carry the natural action of the
algebraic group. This is especially true for projective varieties that have ex-
tremal projective properties: self-dual varieties, varieties of positive defect,
Severi varieties, Scorza varieties, varieties of small codegree, etc. I have tried
to emphasize this phenomenon in this survey. However, one aspect is totally
omitted - I decided against including results about dual varieties of toric va-
rieties and A-discriminants. This theory is presented in the beautiful book by
Gelfand, Zelevinsky, and Kapranov [GKZ2] (the author always keeps it under
his pillow) and I don't feel I have anything to add to it.

Let us say a few words about the contents of this survey.
Chapter 1 is intended as a brief introduction to projective duality. All

results here were already well-known in the 19th century. After giving basic
definitions in Sect. 1.1 we discuss duality for plane curves in Sect. 1.2. We give
parametric equations for dual curves, discuss the connection to the Legendre
transform, introduce Pliicker formulas, and study curves of degree 2, 3, and 4.
In Sect. 1.3 we prove the Reflexivity Theorem. Here we follow the exposition
in [GKZ2] and use the interpretation of a conormal variety as a Lagrangian
subvariety in the cotangent bundle. We introduce the discriminant as a defin-
ing equation for the dual variety and the defect that measures how far the
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dual variety is from being a hypersurface. We prove that if the defect is pos-
itive then the variety is ruled. Finally, in Sect. 1.4 we study the behaviour
of a dual variety under projections and introduce the standard notation of
algebraic geometry related to divisors and line bundles.

In our survey we are mostly interested in the study of varieties with sym-
metries, and in Chap. 2 we study projective geometry of homogeneous spaces;
more precisely we look at orbit closures for algebraic groups acting on projec-
tive spaces with finitely many orbits. In Sect. 2.1 we give the necessary back-
ground on algebraic groups and fix notation. In Sect. 2.2 we discuss Pyasetskii
pairing, which is an interesting instance of projective duality. We give some
standard and a few exotic examples. The next Sect. 2.3 contains the systematic
treatment of actions related to gradings of simple Lie algebras. These actions
provide a wealth of very important varieties that will be studied throughout
this book. Some examples include Severi varieties, smooth self-dual varieties,
smooth building blocks for varieties of positive defect, varieties of small code-
gree, etc. It is quite an interesting phenomenon that varieties with extremal
projective properties tend to have maximal symmetries. We finish this chap-
ter with the description of Pyasetskii pairing for actions related to gradings
of GLn called the Zelevinsky involution.

In Chap. 3 we study projectively dual varieties using calculations in local
coordinates. In Sect. 3.1 we prove a formula due to Katz that expresses the
dimension of a dual variety in terms of the hessian of local equations of a
variety. We use it to prove a formula of Weyman and Zelevinsky that expresses
the defect of a Segre embedding of a product of two varieties. In Sect. 3.2
we introduce a gadget called the second fundamental form that incorporates
these calculations. We prove some results of Griffiths and Harris about the
second fundamental form. We finish this section with the description of higher
fundamental forms of flag varieties obtained by Landsberg.

In Chap. 4 we study projective constructions related to projective duality
but also having a merit of their own. We prove a theorem of Zak and Ran that
the Gauss map of a smooth variety is a normalization. We introduce secant
and tangent varieties in Sect. 4.2, prove the Terracini Lemma, give a method
for the calculation of multisecant varieties of homogeneous spaces, discuss the
relationship discovered by Zak between the degree of a dual variety and the
order of the variety, and give an overview of old and new results related to the
Waring problem for forms. In Sect. 4.3 we discuss theorems of Zak related to
the Hartshorne conjecture - theorems on tangencies, on linear normality and
on Severi varieties. The main tool is a connectedness theorem of Fulton and
Hansen. We finish in Sect. 4.4 by explaining the Cayley trick for Chow forms.

The dual variety is the image of the conormal variety which is the projec-
tivized conormal bundle if the variety is smooth. In Chap. 5 we exploit this
relation between duality and vector bundles. In Sect. 5.1 we prove a theorem
of Holme and Ein about the defect of a smooth effective very ample divisor.
We deduce this result from a theorem of Munoz about the dimension of the
linear span of a tangential variety. We discuss the related notion of projec-
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tive extendability. In Sect. 5.2 we apply Hartshorne's ample vector bundles to
prove a theorem of Ein that a dual variety of a smooth complete intersection
is a hypersurface. We introduce resultants and prove a classical theorem that
they are well-defined. We also explain the Cayley trick for resultants. In the
last Sect. 5.3 we describe the "Cayley method" developed by Gelfand, Kapra-
nov, and Zelevinsky. The idea is to show that the dual variety is represented
in the derived category by Koszul complexes of jet bundles. The discriminant
is then equal to the "Cayley determinant" of a generically exact complex. As
an application we deduce some classical formulas for discriminants and their
degrees.

In Chap. 6 we discuss about the degree of dual varieties and resultants.
We start in Sect. 6.1 by recalling Chern classes and then proving a formula
of Katz, Kleiman, and Holme that expresses the degree of a dual variety in
terms of Chern classes of the cotangent bundle. We give many examples and
generalizations. We prove a theorem of De Concini and Weyman about the
formula for the degree with non-negative coefficients. In Sect. 6.2 we discuss
formulas for the codegree and ranks related to the Cayley method, such as a
formula due to Lascoux.

In Chap. 7 we study varieties with positive defect. In Sect. 7.1 we focus on
beautiful theorems of Ein about the normal bundle of a generic contact locus.
Since this locus is a projective subspace, it is possible to use the machinery
of vector bundles on projective spaces. We prove Ein's theorem that this
normal bundle is symmetric and uniform, which explains among other things
a parity theorem of Landman. We introduce the Beilinson spectral sequence
and use it to calculate the normal bundle to a generic contact locus in small
dimensions. Finally, we study dual varieties of scrolls and prove a theorem
of Ein that a variety of defect at least 2 is a scroll if and only if the normal
bundle to a generic contact locus splits. In Sect. 7.2 we follow [IL] and discuss
linear systems of quadrics of constant rank and how they are related to dual
varieties via the second fundamental form. In Sect. 7.3 we prove a theorem of
Beltrametti, Fania, and Sommese that relates the defect of a projective variety
and its Mori-theoretic characteristic called the nef value. We give a brief survey
of necessary results from Mori theory. We finish by giving a classification of
smooth varieties of positive defect up to dimension 10 obtained by many
authors and initiated by Ein. Finally, in Sect. 7.4 we use this connection with
Mori theory to classify all flag varieties with positive defect. This approach
was developed by Snow in contrast with the original proof of Knop and Menzel
that used the Katz dimension formula.

In Chap. 8 we study dual varieties and discriminants of several special
homogeneous spaces. We start in Sect. 8.1 by showing how to use standard re-
sults of representation theory such as the Borel-Weil-Bott theorem, the BGG
homomorphism, identities with Schur functors, and formulas of the Schubert
calculus to find the codegree of Grassmannians or full and partial flag vari-
eties. We give a list of formulas for the degree of hyperdeterminants and sketch
the proof of a theorem of Zak about varieties of codegree 3. In Sect. 8.2 we
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generalize the theorem of Matsumura and Monsky about automorphisms of
smooth hypersurfaces to automorphisms of smooth very ample divisors on
flag varieties. In Sect. 8.3 we study commutative algebras without identities
from the "discriminantaP point of view. As a corollary we prove that the
algebra of diagonal matrices does not have quasiderivations. In Sect. 8.4 we
study anticommutative algebras (nets of skew-symmetric forms). We show
that they have beautiful geometric properties related to cubic surfaces, Del
Pezzo surfaces, representation theory of S5, etc. In Sect. 8.5 we show that the
discriminant in a simple Lie algebra defined by analogy with the disciminant
of a linear operator is equal to the discriminant of the minimal orbit, the so-
called adjoint variety. Finally, in Sect. 8.6 we study related questions about
schemes of zeros of irreducible homogeneous vector bundles. In particular, we
address a question of classifying irreducible homogeneous vector bundles with
a trivial line subbundle, find the maximal dimension of an isotropic subspace
of a generic symmetric or skew-symmetric form, and study properties of the
related Moore-Penrose involution.

In Chap. 9 we study self-dual varieties, i.e. varieties isomorphic to their
projectively dual variety. In Sect. 9.1 we consider smooth self-dual varieties.
The complete list of these varieties is (conjecturally) surprisingly short. All
known varieties are flag varieties so we start by considering this case, where
everything follows from the classification of flag varieties of positive defect.
After a brief introduction to the Hartshorne conjecture we sketch the proof
of the amazing theorem of Ein that gives the complete list of self-dual va-
rieties in the range that is allowed by the Hartshorne conjecture. We also
prove a finiteness theorem of Murioz that uses the distribution of primes to
give restrictions on the Beilinson spectral sequence. We finish in Sect. 9.2 by
describing results of Popov about self-dual nilpotent orbits.

In the final Chap. 10 we study how the topology of the variety is reflected
in singularities of the dual variety. We start in Sect. 10.1 by proving the class
formula and its variant due to Landman that relates the degree of the dual
variety and the Euler characteristic of the variety and its hyperplane sections.
In the singular case this formula was proved by Ernstrom, but the Euler
characteristic has to be substituted by the degree of the Chern-Mather class.
In Sect. 10.2 we prove theorems of Dimca, Nemethi, Aluffi and others that
multiplicities of the dual variety are given by Milnor numbers (or classes). To
give an example we follow Aluffi and Cukierman and calculate multiplicities of
the dual variety to a smooth surface. Finally, we give some results of Weyman
and Zelevinsky about singularities of hyperdeterminants.

I would like to thank F. Zak for very inspiring discussions of projective
geometry and R. Munoz for his insights about positive defect varieties. I am
grateful to S. Keel, V. Popov, A. Kuznetsov, P. Katsylo, D. Saltman, E. Vin-
berg for many helpful remarks and encouragement. P. Aluffi, F. Cukierman,
N.C. Leung, A.J. Sommese and many others sent me lots of comments about
the preliminary version of this survey.



Preface IX

Parts of this book were written during my visits to the Erwin Schrodinger
Institute in Vienna, Mathematical Institute in Basel, and University of Glas-
gow. I am grateful to my hosts for the warm hospitality.

Moscow-Edinburgh-Austin, Jenia Tevelev
August 2004
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Introduction to Projective Duality 

This chapter is intended as a brief introduction to projective duality. All re- 
sults here were already well-known in the 19th century. After giving basic 
definitions in Sect. 1.1 we discuss duality for plane curves in Sect. 1.2. We 
give parametric equations for dual curves, discuss the connection to the Leg- 
endre transform, introduce Pliicker formulas, and study curves of degree 2, 
3, and 4. In Sect. 1.3 we prove the Reflexivity Theorem. Here we follow the 
exposition in [GKZ2] and use the interpretation of a conormal variety as a La- 
grangian subvariety in the cotangent bundle. We introduce the discriminant 
as a defining equation for the dual variety and the defect that measures how 
far the dual variety is from being a hypersurface. We prove that if the defect is 
positive then the variety is ruled. Finally, in Sect. 1.4 we study the behaviour 
of a dual variety under projections and introduce the standard notation of 
algebraic geometry related to divisors and line bundles. 

1.1 Projectively Dual Varieties 

For any finite-dimensional complex vector space V we denote by P(V) its 
projectivization (the set of 1-dimensional subspaces). If V = cNfl then lPN = 
P(CN") is the standard complex projective space. 

Let VV be the dual vector space of linear forms on V. Points of the 
dual projective space P(V)' = P(VV) correspond to hyperplanes in P(V). 
Conversely, to any point p of P(V), we can associate a hyperplane in P(V)V, 
namely the set of all hyperplanes in P(V) passing through p. Therefore P(V) '" 
is naturally identified with P(V) . More generally, there exists the projective 
duality between projective subspaces in P(V) and P(V)': for any L c P(V), 
its projectively dual subspace L* c P(V)' parametrizes all hyperplanes that 
contain L. 

Quite remarkably, this projective duality extends to the involutive corre- 
spondence between arbitrary subvarieties in PN and (PN)' . 
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Let X c PN be an irreducible projective variety with dimX = n. We 
denote by Tx,x the tangent space at any smooth point x E X,,. We can also 
define the embedded projective tangent space TXjx c lPN as follows: 

where Cone(X) c V is the cone over X, v is any non-zero point on the line x, 
and we consider Tv,co,,(x) as a linear subspace of V (it does not depend on 
the choice of v). 

Definition 1.1 A hyperplane H c PN is a tangent hyperplane of X if c 
H for some x E X,,. The closure of the set of all tangent hyperplanes is 
called the projectively dual variety X* c (lPN)'. 

We shall prove later that 

Theorem 1.2 (Reflexivity Theorem) X** = X .  

1.2 Dual Plane Curves 

The most classical example of a dual variety is the dual curve C* of a plane 
curve C c P2. By definition, generic points of C* are the tangents to C at 
smooth points. In this case the Reflexivity Theorem has a simple meaning: 
the tangent line TP at a smooth point p E C is the limit of secants for q E C 
as q -+ p. The point in P2 that corresponds to the tangent to C* c (P2)" at 
a non-singular point TP is the limit of the intersection points of the tangents 
Tp and Tq as q -+ p. Of course, this point is p. 

1.2.1 Parametric Equations 

It is easy to write down a parametric representation of the dual curve C* 
using a given parametric representation of C. Let x, y, z be homogeneous 
coordinates on P2 and p, q, r the dual homogeneous coordinates on (P2)'. We 
choose an affine chart C2 = { z  # 0) c P2 with affine coordinates x, y (so we 
set z to be 1). The dual chart (C2)' c (P2)' with coordinates p, q is obtained 
by setting the coordinate r of (P2)' to be -1. Then (C2)' consists of all lines 
in P2 that do not pass through the origin (0,O) E C2 c P2. Every such line 
either has an affine equation px + qy = 1 or is the line "at infinity" with 
coordinates p = q = 0. Suppose that a local parametric equation of C has the 
form x = x(t), y = y(t), where t is a local parameter on C,  and x(t), y (t) are 
analytic functions. The dual curve C* is parametrized by p = p(t), q = q(t), 
where p(t)x + q(t)y = 1 is the tangent line to C at (x(t), y(t)). It follows that 

Applying this formula twice one can prove the Reflexivity Theorem. 



1.2 Dual Plane Curves 3 

1.2.2 Legendre Transformation 

Projective duality and the Legendre transformation of classical mechanics are 
closely related to each other. Let us recall this classical definition in the case 
of real functions in one variable. Details and generalizations can be found in 
PrI .  

Definition 1.3 Let y = f (x) be a smooth convex real function, fl'(x) > 0. 
The Legendre transformation of f is a function g(p) defined as follows. Let 
x = x(p) be a point at which the graph y = f (x) has slope p. Then 

Equivalently, x(p) is the unique point where the function F(p,  x) = px - f (x) 
has a maximum with respect to x and gCp) = FCp, xb)). 

The Legendre transformation is easily seen to be involutive. To link it with 
projective duality, we need caustic curves. Let us express projective duality 
entirely in terms of the projective plane P2. A tangent line to a curve C at 
some point x is the line which is infinitesimally close to C near x. A point 
of (P2)' is a line 1 c P2. A curve in (P2)' is therefore a 1-parameter family 
of lines in P2. For example, a line in (P2)' is a pencil x* of all lines in P2 
passing through a given point x E P2. The dual curve C* is a 1-parameter 
family of tangent lines to C. Now let us take an arbitrary curve C' c (P2)" 
(a 1-parameter family of lines in P2) and then find a geometric interpretation 
of the dual curve C1* c P2. Take some line 1 E C'. The condition that x* is 
tangent to C' at 1 means that 1 is a member of a family C' and other lines 
from C' near 1 are infinitesimally close to the pencil of lines x*. This is usually 
expressed by saying that x is a caustic point for the family of lines C'. The 
set of all caustic points of C' is called the caustic curve of C'. This is nothing 
else but the projectively dual curve C1*. 

By the Reflexivity Theorem, any curve C c P2 is the caustic curve of 
the family of its tangent lines. Another consequence is that any 1-parameter 
family of lines in P2 is a family of tangent lines to some curve C. 

The caustic could be found (locally) using the Legendre transformation: 

Theorem 1.4 Consider a family of lines y = px - g(p). Its caustic curve has 
an equation y = f (x), where f is the Legendre transformation of g. 

Proof. The tangent line to y = f (x) at a point x(p) with slope p is equal to 

It remains to use the involutivity of the Legendre transformation. 0 
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1.2.3 Pliicker Formulas 

Even if a plane curve C c iP2 is smooth, C* c ((iP2)' is almost always singular. 
There is a natural map 

c-+c*, p ~ ~ p .  

This map is a resolution of singularities. Moreover, even if C is not smooth, 
the curves C and C* are birationally equivalent, in particular they have the 
same geometric genus g. Indeed, consider the conormal variety 

Obviously, Ic projects birationally on C. Therefore, by the Reflexivity Theo- 
rem, Ic also projects birationally on C*. So C and C* are birationally equiv- 
alent. If C is smooth then, of course, Ic = C. 

A line 1 tangent to C in at  least two points is a singular point of C*. It 
is known as a multiple tangent. If 1 has exactly two tangency points on C 
and the intersection multiplicity at  each of them is 2, then 1 is a bitangent. A 
bitangent corresponds to an ordinary double point (node) of C*. 

If I = TP intersects C at  p  with multiplicity rn 2 3, it is again a singular 
point of C*. If m = 3, and 1 is not tangent to C at any other point, then p  is 
called an inflection point (or flex) of C. I is a cuspidal point (or cusp) of C*. 

Now we can introduce a class of "generic" curves with singularities, which 
is preserved by the projective duality. Namely, we say that C is generic if both 
C and C* have only double points and cusps as their singularities. Suppose 
that C is generic in this sense. Let d, g, K, 6, b, f be the degree, the geometric 
genus, the number of cusps, the number of double points, the number of 
bitangents, and the number of flexes of C. Let d*, g*, K*, 6*, b*, f *  be the 
corresponding numbers for C* (d* is also called the class of C). Then by the 
Reflexivity Theorem we have the following 

Proposition 1.5 g = g*, K = f*, 6 = b*, b = 6*, f = K*. 

It turns out that there is another remarkable set of equations linking these 
numbers. It was discovered by Pliicker and Clebsch. The proof can be found 
in [GH]. 

Theorem 1.6 
1 

g =  -(d* -l)(d* -2)-  b -  f ,  
2 
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1.2.4 Curves of Small Degree 

Conics 

Let C c P2 be a smooth conic given by the equation 

where A = (aij) is a non-degenerate symmetric 3 x 3 matrix. The tangent 
line to C at xo E C is given by (Axo,x) = 0. Hence the point < E (P2)V 
corresponding to this tangent line has homogeneous coordinates AXO, which 
implies that (Ap1<,<) = 0. Therefore C* c (P2)' is also a smooth conic 
defined by A-l. Conics are the only smooth plane curves having smooth 
duals. 

Cubics 

Let C c P2 be a smooth cubic curve. By the B6zout Theorem, C* has only 
flexes as singularities and the Pliicker formulas are always applicable. Hence 
C has no bitangents and exactly 9 flexes. The dual curve C* is a very special 
curve of degree 6 with 9 cusps and no double points. A beautiful determinantal 
formula for it was found by Schlafli. Let X I ,  x2, x3 be homogeneous coordinates 
in P2 and pl , pa, pg the dual coordinates in (P2)". Let f (XI,  x2, x3) = 0 be the 
homogeneous equation of C and F(pl,p2,p3) = 0 the homogeneous equation 
of C*. Consider the polynomial 

Clearly V(p, x) has degree 2 in x. Then Schlafli's formula is as follows: 

The proof can be found in [GKZ2]. 

Quartics 

Let C c P2 be a generic smooth quartic curve. By the Pliicker formulas, C 
has genus 3, 24 flexes, and 28 bitangents. There are two visual descriptions of 
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these bitangents. The first classical approach is to realize the quartic curve as 
a 'shade' of a generic cubic surface S c P3. Namely, suppose that x E S is a 
generic point. Consider the projective plane P2 of lines in P3 passing through 
x. Then lines 1 E P2 that are tangent to S form a quartic curve C. The 28 
bitangents are given by projections of 27 lines on S plus one extra line, the 
projection of T ~ , ~ .  

Another classical description is less well-known: Consider a generic 3- 
dimensional linear system L of quadrics in P3. Singular members of this linear 
system give rise to a quartic curve in P(L) = P2. It can be shown that any 
generic quartic curve can be obtained this way. By the BBzout Theorem, L 
has 23 = 8 base points in P3. For any two base points p, q let l,, c P(L) be 
the line formed by all quadrics that contain not only points p and q, but also 
the line [pq] connecting them. Thus we have 28 lines I,, c P(L). Let us show 
that these lines are bitangents to C. 

Fix a basis {el, e2, e3, e4) in C4 such that el belongs to p and e2 belongs 
to q. Then quadrics from I p q  have the form 

and therefore 
det G = (det A ) ~ .  

This means exactly that I,, intersects C in two double points, i.e. I p q  is a 
bitangent to C. 

1.3 Reflexivity Theorem 

Now let us formulate the general version of the Reflexivity Theorem. 

Theorem 1.7 

(i) For any irreducible projective variety X c PN, we have X** = X .  
(ii) More precisely, if z E X,, and H E X*,,, then H is tangent to X at z 

iff z ,  regarded as a hyperplane in (PN)", is tangent to X* at H .  

In the proof of the Reflexivity Theorem we follow [GKZZ] and deduce 
this result from the classical theorem of symplectic geometry. Other proofs, 
including the subtleties of a prime characteristic case, can be found in [Se], 
[MI, WI. 

1.3.1 Proof of the Relexivity Theorem 

We start with some standard definitions. 
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Definition 1.8 If X is a smooth algebraic variety, then Tx denotes the tan- 
gent bundle of X .  If Y c X is a smooth algebraic subvariety, then Ty is 
a subbundle in Tx ly . The quotient is called the normal bundle of Y in X ,  
denoted by NY,x (or simply Ny if X is clear). By taking dual bundles we ob- 
tain the cotangent bundle T$ and the conormal bundle Ng,x. The conormal 
bundle can be naturally regarded as a subvariety of T$. 

Suppose that X c PN is an irreducible subvariety. 

Definition 1.9 Consider the set I; C PN x (PN)' of pairs (x, H) such that 
x E X,, and H is the hyperplane tangent to X at x. Let Ix be the Zariski 
closure of I:. Then Ix is called the conormal variety of X .  

The first projection prl : I: -+ X,, makes 1% a projective bundle over 
X,, whose fibers are projective subspaces of dimension N - n - 1. Therefore 
Ix is an irreducible variety of dimension N - 1. The dual variety X *  is the 
image of the second projection pr2 : Ix -+ ( P ~ ) ~ .  Hence X* is an irreducible 
variety. Let us show that I; = P(Nz3,n,pN). Indeed, the choice of a hyperplane 

H c PN tangent to X,, at x is equivalent to the choice of a hyperplane 
Tz,H in the tangent space Tz,mv, which contains T,,x. The equation of this 
hyperplane is an element of Ng,qm ,pN a t  x. 

The Reflexivity Theorem can be reformulated as follows: 

Let PN = P(V) and (PN)' = P(VV). We take 

Denote by Lag(Y) the closure of N$s,n,, in TG (we are about to show that 
Lag(Y) is a Lagrangian subvariety). 

TG is canonically identified with VX VV. Denote by prl, pr2 the projections 
of this product to its factors. Then Y* coincides with pr2(Lag(Y)). Therefore, 
(1.1) can be reformulated as follows: 

where we identify T; and T;, with V x VV. 
Recall that a smooth algebraic variety M  is called symplectic if it has a 

symplectic structure, i.e. a differential 2-form w such that 

w is closed, dw = 0. 
0 For any p E M, the restriction of w on T,,n/r is non-degenerate. 

In this case dim M is necessarily even. An irreducible closed subvariety 
A c M  is called Lagrangian if dim A = dim M / 2  and the restriction of w to 
A,, vanishes as a 2-form (is totally isotropic). 
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The cotangent bundle T z  of a smooth algebraic variety X carries a canon- 
ical symplectic structure defined as follows. Let (xl , .  . . , x,) be a local coordi- 
nate system in X. Let Ji be the fiberwise linear function on T z  given by the 
pairing of a 1-form with the vector field d/dxi. Then ( ~ 1 , .  . . , x,, (1,. . . , Jn) 
forms a local coordinate system in Tz .  The form w is defined by 

It easy to give an equivalent definition of w without any coordinate systems. 
Let T : T s  -+ X be the canonical projection. Let p E T z  and v E Tp,T; be a 
vector tangent to T z  a t  p. Then v(v) = p ( ~ , v )  is a canonical 1-form on T z  
and w = dv. 

An example of a Lagrangian subvariety in T z  can be obtained as follows. 
Let Y c X be an irreducible subvariety and let 

be the closure in TVX. Clearly, Lag(Y) is a conical subvariety (invariant under 
dilations of fibers of Tz). 

Theorem 1.10 

(i) Lag(Y) is a Lagrangian subvariety. 
(ii) Any conical Lagrangian subvariety has the form Lag(Y) for some irre- 

ducible subvariety Y c X. 

Proof. Let us show that Lag(Y) is Lagrangian. Clearly, 

dim Lag(Y) = dim Y + (dim X - dim Y) = dim ~ $ 1 2 .  

So we need only verify that wILag(y) = 0. It suffices to restrict to points 
over Y,,. Let X I , .  . . , x, be a local coordinate system on X such that Y 
is locally defined by equations xl = . . . = x, = 0. Then the fibers of the 
conormal bundle over points of Y are generated by 1-forms dxl , . . . , dx,. Hence 
Jr+l = . . . = J, = 0 on N;3m,X and by (1.3) we see that w = 0 on Ngs , , .  
Therefore Lag(Y) is indeed Lagrangian. 

Suppose now that A c T; is a conical Lagrangian subvariety. We take 
Y = T(A), where T : T$ -+ X is the projection, and claim that A = Lag(Y). 
It suffices to show that A c Lag(Y), because A and Lag(Y) are irreducible 
varieties of the same dimension. In turn, to prove that A c Lag(Y), it suffices 
to check that, for any y E Y,,, the fiber T - ' ( ~ )  n A is contained in the 
conormal space (N;,x)y. Let < be any covector from T-l (y) n A. Since T;x 
is a vector space, we can regard J as a "vertical" tangent vector to T z  a t  
y E X c T;, where we identify X with the zero section of T. Since A is 
conical, J E TE,n. Since A is Lagrangian, J is orthogonal with respect to w to 
any tangent vector from TE,n and, hence, to any tangent vector v E T y , y  But 
by (1.3) it is easy to see that this is equivalent to J E (N;,X)Y. 0 

Now we can prove the Reflexivity Theorem: 
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Proof of the Reflexivity Theorem 

We are going to verify (1.2). The identification TG = V x VV = T& pre- 
serves the canonical symplectic structure up to a sign. Therefore Lag(Y) is 
still Lagrangian as a subvariety of T&. Moreover, since Lag(Y) C V x VV is 
invariant under dilations of V and VV, Lag(Y) is a conical Lagrangian vari- 
ety of T$. Therefore, by Theorem 1.10, Lag(Y) = Lag(Z), where Z is the 
projection of Lag(Y) on VV. But this projection coincides with Y*. Hence 
Lag(Y) = Lag(Y*). 

1.3.2 Defect and Discriminant 

We should expect that in 'typical' cases X *  is a hypersurface. Having this in 
mind, we give the following definition: 

Definition 1.11 def X := ~ o d i m ( ~ ~ ) v  X* - 1 is called the defect of X .  

If def X = 0 then X* is defined by an irreducible polynomial Ax. 

Definition 1.12 Ax is called the discriminant of X .  

Ax is defined up to a scalar multiple. If def X > 0 then we set A x  = 1. 
Let us give an equivalent definition of A x .  Suppose that X I , .  . . , xn+l are 

some local coordinates on Cone(X) c V. Any f E V*, a linear form on V, 
being restricted to Cone(X) becomes an algebraic function in XI , .  . . , x,+l. 
Then Ax is just an irreducible polynomial, which vanishes at f E V* whenever 
the function f (xl,.  . . , x,+~) has a multiple root, that is, vanishes at some 
v E Cone(X), v # 0, together with all first derivatives d f /axi. 

Example 1.13 Consider the projective space PN = P(V) with homogeneous 
coordinates zo, . . . , z ~ ,  and let X c PN be the rational normal curve 

(the image of the Veronese embedding IP1 c PN). Any linear form f (z) = 
C aizi is uniquely determined by its restriction to Cone(X), which is a binary 
form f (x, y) = C aixN-i y . Therefore f E Cone(X*) if and only if f (x, y) 
vanishes a t  some point (xo, yo) # (0,O) (so (XO : yo) is a root of f (x, y)) with 
its first derivatives (so (xo : yo) is a multiple root of f (x, y)). It follows that 
Ax is the classical discriminant of a binary form. 

The following Theorem is an easy corollary of the Reflexivity Theorem. It 
allows us to find singular points of hyperplane sections of smooth projective 
varieties. 
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Theorem 1.14 Suppose that X c PN is smooth and X *  c (PN)" is a hy- 
persurface. Let 20,. . . , z~ be homogeneous coordinates on  IPN and ao, . . . , aN 
the dual homogeneous coordinates on (IPN)'. Suppose that f = (ao : . . . : aN) 
i s  a smooth point of X*. Then the hyperplane section { f  = 0) of X has a 
unique singular point with coordinates given by 

Proof. Let H c PN be the hyperplane corresponding to f .  By the Reflexivity 
Theorem, H is tangent to X at z if and only if the hyperplane in (IPN)" 
corresponding to z is tangent to X *  at f .  Since X* is smooth at f ,  such a 
point z is unique and is given by zi = %(f). 0 

Consider the diagram of projections 

Theorem 1.15 

(i) If X i s  smooth then I x  is smooth. 
(ii) If X *  is a hypersurface then pr, is birational. 

(iii) If X is smooth and X* is a hypersurface then pr, is a resolution of sin- 
gularities. 

Proof. The map prl is a projective bundle over X,,. Therefore, if X is smooth 
then Ix is smooth. If X*  is a hypersurface then dimX* = dim I x  = N - 1. 
Since pr2 is generically a projective bundle, it is birational. Finally, (iii) follows 
from (i) and (ii). 0 

Typically the dual variety X* c (PN)' is a hypersurface. Namely, we shall 
see that if def X > 0 then X is a ruled variety. 

Definition 1.16 A projective variety X is called ruled in projective subspaces 
of dimension r if for any x E X there exists a projective subspace L such that 
x E L c X and dimL= r .  

Definition 1.17 For any projective variety X C PN and a hyperplane H ,  
the singular locus of X n H is called the contact locus of X and H.  

Theorem 1.18 Suppose that def X = r 2 1. Then 

(i) X is ruled i n  projective subspaces of dimension r .  
(ii) If X is smooth then the contact locus (XnH),i,, is a projective subspace of 

dimension r for any H E (X*),,. The union of these projective subspaces 
is dense i n  X .  

Proof. By the Reflexivity Theorem 1.7, (i) is equivalent to the following: if 
codim X = r + 1 then X*  is ruled in projective subspaces of dimension r .  By 
a standard closedness argument it is sufficient to check this property only for 



1.4 Projections and Linear Normality 11 

some Zariski open dense subset of X*. The condition for a hyperplane H to 
be tangent to X a t  x E X,, is that H contains T ~ J .  For a given x, all H 
with this property form a projective subspace of dimension r. But the set of 
hyperplanes of X *  tangent to X at some smooth point obviously contains a 
Zariski open subset of X*. 

(ii) is proved by the same argument. 0 

Example 1.19 Suppose that X c pN is a non-linear curve. Then def X = 0. 
Indeed, X obviously could not contain a projective subspace Pk for k > 0. 

Example 1.20 Let us give the minimal possible example of a smooth variety 
with positive defect. Let V = Matn,3 be the space of 2 x 3 matrices. Then 
VV = and the pairing is given by the trace of the product. Let X c 
P(V) and X* c P(V)' be the projectivizations of the varieties of matrices of 
rank less than 2. Then X and X *  are smooth, projectively dual to each other, 
and both isomorphic to P1 x P2. Therefore defX = codimX* - 1 = 1. For 
any H E X*, the intersection X n H is the union of a smooth quadric surface 
and a plane. Their intersection, i.e. (X n H),i,,, is a line. See also 2.11. 

1.4 Projections and Linear Normality 

1.4.1 Projections 

Let P = P(V) be an N-dimensional projective space and L c P a projective 
subspace of dimension k, L = P(U), U c V. The quotient projective space 
P /L  = P(V/U) has, as points, ( I c  + 1)-dimensional projective subspaces in P 
containing L. The projection with center L is the map 

which takes any point x E P\ L to the (kf 1)-dimensional projective subspace 
spanned by x and L. It corresponds to the projection V -, V/U. P /L  can be 
identified with any (N - k - 1)-dimensional projective subspace K c P not 
intersecting L. Then TL sends x E P \ L to the unique intersection point of K 
and the (k + 1)-dimensional projective subspace spanned by x and L. Clearly, 
the dual projective space (PIL)" is canonically embedded in PV as the set of 
hyperplanes containing L, and so it coincides with L*, the dual variety of L. 

Theorem 1.21 

(i) Let X c P = P(V) be an irreducible subvariety not intersecting a subspace 
L = P(U) and such that dimX < dim P/L. Then 

(nL(X)* c L* n X*. 

The discriminant A,,(x) (as a polynomial on (V/LV)~ c VV) is a factor 
of the restriction of Ax to (V/U)'. 
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(ii) Suppose further that TI, : X -, ~ L ( X )  is an isomorphism. Then 

( rL(X)* = L* n X*, and A,,(xl = Ax 

Proof. A hyperplane in P /L is just a hyperplane in P containing L. It  is 
clear that, if a hyperplane H c P / L  is tangent to rL (X)  at  some smooth 
point y = r ~ ( x ) ,  where x E X is also smooth, then H as a hyperplane in P 
is tangent to X at  x. This proves (i). 

Suppose now that r~ is an isomorphism. The same argument as above 
shows that, if X; c X*  (resp. xL(X)T) c rL(X)*) is a dense subset 
of hyperplanes tangent to X (resp. rL(X))  at  some smooth point, then 
rL(X)T) = L* n X;, since r~ induces an isomorphism X,, -, rL(X),, It  
suffices to show that L* n X *  = L* n X;. Here the assumption that r~ is an 
isomorphism is crucial, because otherwise critical points of r~ may produce 
extra components of L* n X*. 

Consider a germ of a curve (x(t), H(t)) in the conormal variety Ix such 
that x(t) E X,, for t # 0 and H(0) contains L. We claim that there is a germ 
(x(t), H1(t)) such that H1(0) = H(0) and and H1(t) contains L for any t. 
Since r~ is an isomorphism, it induces an isomorphism of Zariski tangent 
spaces. Therefore T ~ ( ~ ) , ~  does not intersect L. Let To c T ~ ~ ~ ) , ~  be a limit 
position of embedded tangent Zariski spaces Tt = T,(t),x as t -, 0. Then 
Tt does not intersect L for any t.  Therefore we may consider a family T,' of 
(dim L + dimX + 1)-dimensional projective subspaces such that for any t we 
have L c T,' and for t # 0 the subspace Tl is tangent to X a t  x(t). Namely, 
T,' is a projective subspace spanned by L and Tt. Since d imX < dim P/L,  we 
can embed T,' into a family of hyperplanes H,' with same properties. 

1.4.2 Degenerate Varieties 

Definition 1.22 An irreducible subvariety X c lPN is called non-degenerate 
if X is not contained in any hyperplane H. 

The next theorem shows that we may restrict ourselves to non-degenerate 
varieties while studying dual varieties and discriminants. 

Theorem 1.23 Let X c lPN be an irreducible subvariety. 

(i) Assume that X is contained in a hyperplane H = lPN-I. If X*' is the dual 
variety of X ,  when we consider X as a subvariety of lPN-l, then X *  is 
the cone over X*' with vertex p corresponding to H. 

(ii) Conversely, if X *  is a cone with vertex p, then X is contained in the 
corresponding hyperplane H .  

Proof. If HI # H is a tangent hyperplane of X then H n H' is a tangent 
hyperplane of X in PN-l. Conversely, if T is a tangent hyperplane of X in 
lPN-l then each hyperplane HI in IPN containing T is tangent to X .  Therefore 
X *  is the cone over X*'. This proves (i). 
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By the Reflexivity Theorem, we also have (ii). Namely, each hyperplane 
which is tangent to X*  a t  a smooth point necessarily contains p. Therefore 
X = X** is contained in the hyperplane corresponding to p. 0 

In terms of discriminants, Theorem 1.23 can be reformulated as fol- 
lows. Consider a surjection 71- : V --+ U. Then we have an embedding 
i : P(UV) v P(VV). Let X c P(UV). Then Ax is a polynomial function 
on U. If we consider X as a subvariety in P(VV) then is a function on 
V. By Theorem 1.23 these polynomial functions are related as follows: 

In other words, Ai(x) does not depend on some of the arguments and forget- 
ting these arguments gives Ax. 

1.4.3 Linear Normality 

Theorems 1.21 and 1.23 show that in order to study dual varieties and dis- 
criminants it suffices to consider only projective varieties X that are non- 
degenerate and not equal to a non-trivial projection. These projective varieties 
are called linearly normal. To give a more intrinsic definition of linearly nor- 
mal varieties we need to recall the correspondence between invertible sheaves, 
linear systems, and projective embeddings. 

An invertible sheaf on an algebraic variety X is simply the sheaf of sections 
of some algebraic line bundle. For example, the structure sheaf of regular 
functions Ox corresponds to the trivial line bundle. Usually we shall not 
distinguish notationally between invertible sheaves and line bundles. Invertible 
sheaves form the group Pic(X) with respect to the tensor product. A Cartier 
divisor on X is a family (Ut, gi), i E I, where Ui are open subsets of X 
covering X ,  and gi are rational functions on Ui such that gi/gj is regular 
on each intersection Ui n Uj. The functions gi are called local equations of 
the divisor. More precisely, a Cartier divisor is an equivalence class of such 
data. Two collections (Ui, gi) and (U,!, gi) are equivalent if their union is still 
a divisor. Cartier divisors can be added by multiplying their local equations. 
Thus they form a group, denoted by Div(X). 

If each local equation gi is regular on Ui, then we say that the divisor 
D is effective, and we write D > 0. The subschemes {gi = 0) of the Ui can 
then be glued together into a subscheme of X ,  also denoted by D. Therefore, 
effective Cartier divisors can be identified with locally principal subschemes of 
X (locally given by one equation). Any non-zero rational function f E @(X) 
determines a principal Cartier divisor (f).  Principal divisors form a subgroup 
of Div(X). 

Let Kx denote the sheaf of rational functions on X, ICx(U) = @(U). To 
every Cartier divisor D = (Ui,gi)iEI we can attach a subsheaf Ox(D) c Kx. 
Namely, on Ui it is defined as g,lOu,. On the intersection Ui n Uj the sheaves 
g,' Ou, and gy1 Ou, coincide, since gi/gj is invertible. Therefore these sheaves 
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can be pasted together into a sheaf Ox (D) c iCx . For instance, Ox (0) = Ox 
and Ox  (Dl + D2) = OX (Dl) 8 OX (D2). The sheaves Ox(D) are invert- 
ible. In fact, multiplication by gi defines an isomorphism ("trivialization") 
O x  (D) lu, P Ou, . This gives a surjective homomorphism Div(X) + Pic(X). 
Its kernel consists of principal divisors. 

A non-zero section of Ox(D) is a rational function f on X such that fgi 
is regular on the Ui for any i, in other words, such that the divisor (f) + D is 
effective. If D itself is effective, the sheaf Ox(D) has a canonical section s o ,  
which corresponds to the constant function 1. This can also be reformulated 
as follows. Let s E HO(X, L) be a non-trivial global section of an invertible 
sheaf L. After choosing some trivializations q5i : Lui 21 Oui on a covering (Ui), 
we obtain an effective divisor (Ui, 4i(si)), the scheme of zeros of s, which we 
denote by Z(s). For instance, if D is effective then Z(sD) = D. So basically 
any effective divisor is defined by one equation s = 0. However, s is not a 
function, but a section of an invertible sheaf. If st is another non-zero global 
section of L then the divisors Z(st) and Z(s) differ by the divisor of a rational 
function sls'. One also says that they are linearly equivalent. 

The sheaf Ox(-D), for D effective, is an ideal sheaf in OX. It defines D 
as a subscheme. 

Example 1.24 Let us recall the construction of invertible sheaves on pro- 
jective spaces P(V). All these sheaves have the form O(d), where O(d) is 
the sheaf of homogeneous functions of degree d on P(V). More precisely, let 
n : V \ (0) -t P(V) be the canonical projection. If U c P(V) is a Zariski 
open set, then the sections of O(d) over U are, by definition, regular func- 
tions f on n-I (U) c V, which are homogeneous of degree d: f (Xu) = Ad f (v). 
It is well-known that these sheaves are invertible and any invertible sheaf 
has the form O(d) for some d. For example, 0(-I) ,  as a line bundle, is the 
tautological line bundle. Its fiber over a point of P(V) represented by a 1- 
dimensional subspace 1 is I itself. If d < 0 then HO(P, O(d)) = 0. If d > 0 
then HO (P, O(d)) = symd VV, homogeneous polynomials of degree d. For any 
non-zero s E HO(P, O(d)), the corresponding effective divisor Z(s) is just the 
hypersurface defined by the polynomial s. In particular, hyperplanes in P(V) 
correspond to global sections of O(1). 

Suppose now that X is an irreducible subvariety in PN. Then O(d) can 
be restricted on X ,  giving a sheaf Ox(d). In particular, we have a restriction 
homomorphism of global sections: 

Vv = HO(P~,  O(1)) 3 H'(X, OX (1)). 

Clearly this map is not injective if and only if X is degenerate. So suppose now 
that X is non-degenerate. In general, res is not surjective either. Its image is 
a vector subspace W c HO(X, Ox(l)) with the following obvious property: 
for any x E X there exists a section s E W such that s(x) # 0. Divisors 
of the form Z(s), s E W, are just hyperplane sections X n H for various 
hyperplanes H.  


