Sinkholes and Subsidence
Karst and Cavernous Rocks in Engineering and Construction




Tony Waltham
Fred Bell and
Martin Culshaw

Sinkholes and
Subsidence

Karst and Cavernous Rocks
in Engineering and Construction

. Published in association with
@ Sprlnger Praxis Publishing

Chichester, UK

PR



Dr Tony Waltham Professor Fred. G. Bell

Lecturer in engineering geology Visiting Research Associate
Civil Engineering Division British Geological Survey
Nottingham Trent University Keyworth

Nottingham Nottinghamshire

UK UK

Martin G. Culshaw

Manager of the Urban Geoscience and
Geological Hazards Programme

British Geological Survey

Keyworth

Nottinghamshire

UK

SPRINGER-PRAXIS BOOKS IN GEOPHYSICAL SCIENCES
SUBJECT ADVISORY EDITOR: Dr Philippe Blondel, C.Geol, F.G.S., Ph.D., M.Sc., Senior Scientist,
Department of Physics, University of Bath, Bath, UK

ISBN 3-540-20725-2 Springer-Verlag Berlin Heidelberg New York

Springer is part of Springer-Science + Business Media (springeronline.com)

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available from the Internet at http://dnb.ddb.de

Library of Congress Control Number: 2004112901

Apart from any fair dealing for the purposes of research or private study, or criticism
or review, as permitted under the Copyright, Designs and Patents Act 1988, this
publication may only be reproduced, stored or transmitted, in any form or by any
means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

© Praxis Publishing Ltd, Chichester, UK, 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free
for general use.

Cover design: Jim Wilkie
Project Management: Originator Publishing Services, Gt Yarmouth, Norfolk, UK

Printed on acid-free paper



Contents

Preface. . . . . . . . . e xi
Contributors. . . . . . . . . ... Xiii
List of figures . . . . . . . ... . ... XV
List of tables . . . . . . . .. . . ... ... XXV
List of boxes . . . . . . .. ... .. ... XXVil
Glossary . . . . . . ... XXiX
1 Rocks, dissolution and karst. . . . . . ... ... ... ... ... ... ..... 1
1.1  Limestone lithologies . . . . .. ... ... .. .. ... ......... 2

1.2 Limestone and dissolution. . . ... .................... 5
1.2.1 Cavernous ground. . . ... .................... 7

1.3 Karst landforms development by dissolution. . . ... ........ 9

1.4 Climatic influence on limestone karst. . . . ............... 10
1.4.1 Types of limestone karst landscape. . . ... ......... 12

1.5 Dolomite and its sinkholes . . ... .................... 15

1.6 Chalk and its sinkholes ... ........................ 16

1.7  Evaporite rocks and their sinkholes. . . .. ... ... ......... 18
1.7.1  Dissolution and sinkholes on gypsum and anhydrite . . . 19

1.7.2  Dissolution and sinkholes on salt. . . ... .......... 21

1.8 Man’s influence on dissolution and sinkholes . ... ......... 21



vi

2

Contents

Sinkhole classification and nomenclature . . . . . ... ... ...... .. ..
2.1 Sinkholes and dolines . ... ............ ... .........
2.2 Classification of sinkholes . ... ....................
2.3 Solution sinkholes and solution dolines . . . . .............
2.3.1 Solution dolines and engineering . . . .. ...........
2.3.2 Solution dolines on'salt . . ... .................
2.3.3  Solution dolines on gypsum . . .. ...............
2.4  Collapse and caprock sinkholes . . ... .................
2.5 Subsidence, suffosion and dropout sinkholes. . . .. ... ... ...
2.6 Buried sinkholes . . ... ....... ... .. .. .. .. ..
2.7 Karst types and sinkhole distribution . . . ... ............
2.7.1  Sinkholes in the engineering classification of karst. . . . .

Rock failure in collapse and caprock sinkholes . . . . ... ........ ..
3.1 Karsticcollapse. . . . . ...
3.2  Collapse of cave chambers . ........................
3.2.1 Cave roof breakdown by bed failure. . .. ..........
3.2.2  Stable arch development in cave roofs . ...........
3.2.3 Breakdown processes. . . ... ... ... ...
3.3 Collapse sinkholes . . . . ........ ... .. ... ...
3.3.1 Collapse sinkholes in limestones. . . . . ............
332 Tiankengs . . .. ... ... ...
3.3.3 Collapse sinkholes in chalk. . .. ................
3.3.4 Collapse sinkholes in gypsum . .................
34 Caprock sinkholes. . .. ..... ... ... ... .. .. ... .. ...
3.4.1 Caprock sinkholes over limestone. . . ... ..........
3.4.2 Caprock sinkholes over gypsum. . ... ............
3.4.3 Caprock sinkholes over salt . ..................
3.5 Breccia pipes . . ..o e
3.6 The collapse geohazard. . . ... ... ... ... ... ........

Soil failure in subsidence sinkholes . . ... .......... ... ... ...
4.1 Subsidence sinkhole morphology. . . .. .................
4.2 Types of subsidence sinkholes . . ... ..................
4.3 Dropout sinkholes. . . . ....... ... . ... ... . ... .. .. ..
4.3.1 Growth and failure of soil cavities . . . . ...........
4.3.2  Evolution of subsidence sinkholes. . . ... ..........
4.4  Spatial distribution of subsidence sinkholes. . . ... .........
4.4.1 Subsidence sinkholes related to cover thickness. . . .. ..
4.5 The subsidence sinkhole geohazard . . . ... ..............

Buried sinkholes and rockhead features. . . . . ... ..............
5.1 Buried sinkhole morphology . . . . ... ... ..............
5.1.1  Compaction and suffosion in buried sinkholes . ... ...

25
25
26
29
35
37
40
41
43
44
44
45

49
49
50
52
55
56
58
58
64
66
67
70
70
75
78
80
&3



Contents vii

5.2  Buried sinkholes as engineering hazards. . . ... ........... 120
5.3 Buried sinkholes and soil pipes in chalk. . . .............. 125
Sinkholes in insoluble rocks . . . . . . ... ... . L. 129
6.1 Lavatubes........ ... ... ... .. 129
6.1.1 Lava tube stability . . ....................... 132
6.1.2  Engineering failures related to lava sinkholes . . ... ... 136
6.2 Sinkholes in other forms of pseudokarst . ... ............ 137
Rock failure under imposed load over caves. . . . . . ... ... ... ... 141
7.1  Recorded collapse sinkholes induced by loading ... ........ 142
7.2 Bearing capacity of cave roofs . . . . ... .. ... ... ... ... 144
7.2.1  Integrity of loaded rock arches . ................ 145
7.2.2  Modelling the failure of cave roofs under load . . . . . .. 146
7.2.3  Punching failure of cave roofs. . . ... ............ 149
7.3 Safe cover thickness over caves . . .................... 151
7.4  Existing structures OVer Caves. . . . . . . . . v v v v v v v i it 154
Sinkholes induced by engineering works . . .. ... .. ... ... ... .. 157
8.1 Sinkholes induced by increased water input . ............. 159
8.1.1 Sinkholes caused by reservoir impoundment. . . ... ... 164
8.2  Sinkholes induced by water table decline . . . ............. 165
8.2.1  Sinkholes induced by groundwater abstraction . ... ... 166
8.2.2  Sinkholes induced by de-watering. . . . ... ......... 170
8.3  Sinkholes induced by ground disturbance. . . ............. 176
8.4 The avoidable geohazard of induced sinkholes . ........... 177
Ground investigation in sinkhole terrains . ... ................ 181
9.1 Preliminary stages . . . . . . . . .. i e 182
9.2  Ground investigation fieldwork . . ... ... .. ... ... . ..., 184
9.3 Ground-based geophysical surveys . ... ................ 185
9.3.1  Geophysical methods. . . .. ................... 186
9.3.2  Surface seismic SUIVEYS. . . . . . . vt v vt i e 189
9.3.3  Electrical resistivity surveys. . . . .. ... ... ........ 190
9.3.4  Electromagnetic conductivity surveys. . . .. ......... 191
9.3.5 Ground penetrating radar. . . . ................. 192
9.3.6  Microgravity SUIVeYS . . . . . v v v v v i et 193
9.3.7  Magnetic SUIVEYS . . . v v v v vt ii e et e 194
9.3.8  Cross-hole tomography . ..................... 195
9.4 Airborne and satellite remote sensing . . .. .............. 198
9.5 Direct investigations. . . . . . . . . .. 199
9.5.1 Soil probing. . . .. ... .. ... .. 200

9.5.2  Rock probing and boring. . . .. ................ 203



viii

10

11

12

13

Contents

Hazard and risk assessment of sinkholes. . . . . .. ... ........... 205
10.1 Hazard and risk . . .. ... .. .. ... ... . . . ... 205
10.2 Risk management . . . ... ........ .. ... .. ... ... ..., 206
10.3 Karst hazard analysis. . . . ... ... ...... ... .......... 209
10.3.1 Parameters in sinkhole hazard assessment . ... ...... 212
10.3.2 Sinkhole hazard assessment in South Africa. .. ...... 215
10.4 Hazard maps and land-use planning . . . . ... ............ 218
10.5 Legislation in response to sinkhole hazards. . . ............ 221
10.6 Sinkholes and insurance . . . . .. ........ ... ...... . ... 223
Prevention and remediation of sinkholes . . . . ... .............. 227
11.1 Soil treatment as sinkhole prevention . . ... ............. 227
11.1.1 Grouting in karst . . ... ..................... 228
11.1.2 Compaction grouting over cavernous karst. . . .. ... .. 229
11.1.3 Soil stabilisation for sinkhole limitation. . . ... ... ... 231
11.2 Sinkhole remediation . . . ... ... ... .. ... ... . ....... 233
11.2.1 Repairs to large sinkhole failures. . . ... .......... 235
11.3 Landfills in sinkhole karst. . . ... ... ................. 239
11.3.1 Sinkholes as pollution sources . . . .. ............. 241
11.3.2 Landfill within sinkholes. . . . . ... ... ........... 241
Construction in sinkhole terrains . . . . . . ... ... .............. 245
12.1 Construction on soil over karst . . . ... ... ............. 245
12.1.1 Control of drainage. . . . . ... ................. 246
12.1.2 Foundations within the soil over pinnacled bedrock. . .. 247
12.1.3 Extended foundations on rafts and mattresses. . . . . . .. 248
12.1.4 Sinkhole flooding . . ... ...... ... ... ... ... ... 251
12.2 Roads and railways on karst. . . .. ... ... ............. 253
12.2.1 Geogrid as a sinkhole defence . . . .. ... .......... 255
12.3 Foundations on karst bedrock . . . . ... ................ 257
12.3.1 Driven piles and pin piles. . . ... ............... 261
12.3.2 Bored piles and caissons. . . . ... ...... ... ...... 264
12.3.3 Proof testing for piles in karst. . .. .............. 265
12.4 Tunnels through cavernous ground . . . .. ... .. .......... 266
12.5 Dam construction in sinkhole karst. . . .. ... ... ... ...... 268
Case studies . . . . . .. ... .. .. .. 271
#1 Remediation of a sinkhole over gypsum at Ripon, UK. ... ... 272
#2 Collapse sinkhole at Dishman Lane, Kentucky . ........ ... 277
#3 Caves and sinkholes in motorway construction, Slovenia. . . . . . 283
#4 Road built over Sung Gul lava tube, Korea . . . .. ......... 289
#5 Karst collapse prevention along Shui-Nan Highway, China . . .. 293
#6 Construction over a cave in Huntsville, Alabama. . ... ... ... 299
#7 Sinkhole destruction of Corporate Plaza, Pennsylvania . . . . . .. 304

#8 Subsidence over a chalk pipe at Chalfont St. Peter, UK. ... .. 309



Contents ix

#9 Geophysical investigations of sinkholes in chalk, UK. .. ... .. 313
# 10 Detection of caves by microgravity geophysics, Bahamas. . . . . . 317
#11 Sinkholes and subsidence over salt at Wink, Texas. . . .. ... .. 321
#12 Subsidence over buried karst at Centurion, South Africa. . .. .. 326
#13 Agriculture on sinkhole karst on gypsum, Lithuania ........ 331
# 14 Sinkhole remediation over Weeks Island salt, Louisiana . .. .. 336
#15 Hazard assessment on dolomite at Simunye, South Africa. . . .. 341
# 16 Ground investigation in covered karst at Tournai, Belgium . ... 347
References. . . . . . . . . . .. .. 351
Location index . . . . . . . .. .. ... 375

Subject index . . . . .. ... L 379



Preface

It is the authors’ and publisher’s intention that this book provides an accessible
information source for civil engineers who encounter one of the most serious types
of difficult ground conditions — on cavernous karst. Essentially it is written by
geologists for engineers. It aims to explain and improve the understanding of ground
cavities, subsurface processes, sinkhole collapses and ground subsidence that
together constitute a significant geohazard on terrains of limestone and certain
other rocks. It is the authors’ belief that, once the processes of karst terrains are fully
appreciated, the modern generation of construction engineers will be well able to
design structures and buildings that will stand safely on this difficult ground. Sadly
there is a welter of misunderstanding and misconception about “holes in the
ground” that needs to be rectified, and hopefully this book does just that.

The main chapters first review ground conditions and processes, and then move
on to the thorny problems of assessment, before reviewing appropriate engineering
practices. They were written with extensive cooperation between the three authors.
The case studies are all by invited specialists who have contributed material from
their own experiences on karst. Each contributor is credited in his own case study
heading, and the authors are delighted to be able to thank all of them for their
welcome efforts that have created a most valuable section of the book.

Illustrations in the text are all credited to their appropriate sources, except that
the photographs from Tony Waltham’s Geophotos picture library are credited as
TW for purposes of repetitive brevity. The authors are grateful to the colleagues and
companies who have permitted their own photographs to be used in these pages.
Copyright is retained by all the photographers, except Martin Culshaw and Anthony
Cooper whose images are copyrighted by the British Geological Survey (NERC).
The book is published with the permission of the Executive Director of the British
Geological Survey (NERC).

The authors are grateful to their many friends who contributed to the prepara-
tion of this book, especially Lu Zhengxin (Nottingham University) who investigated



xii  Preface

cave roof stability through his numerical modelling, Cath Poulton (British Geologi-
cal Survey) for assistance in literature search and Hilary Lambert for providing the
small, central cover photograph. We also thank Trevor Ford (Leicester University),
Ian Jefferson (Birmingham University), Dave Reddish (Nottingham University) and
Dave McCann (British Geological Survey) for their valuable comments during peer
review of various chapters. Finally, we thank Clive Horwood at Praxis Publishing
and Neil Shuttlewood at Originator for seeing the book successfully into print.

Tony Waltham, Fred Bell and Martin Culshaw
Nottingham, 2004

Postscript

Just as this text had been completed, its significance was demonstrated by an event in
Tampa, Florida. In April 2004, an elevated section of an extension to the Lee Roy
Selmon Expressway collapsed while under construction. A single massive column,
that supported the entire 3-lane width of the road between spans of 30 m, dropped
abruptly by 5m. The column extended down into a caisson 1.8 m in diameter, which
was founded in apparently strong limestone 19 m below the surface; rockhead was
11 m deep. The column carried a dead load of 11 MN, increased at the time of failure
by 3MN from a massive temporary truss used in the construction process. The
caisson appears to have punched through the roof of a cave just below its base.
Prior to construction, each column had been proven by a borehole that reached just
3m below the caisson base. This was simply inadequate for such heavily loaded
columns in limestone that is well known for its mature karst features. Repairs are
now budgeted for $11M, whereas prior probing to 5m or even to 7m beneath every
caisson toe would have added only a few thousand dollars to the total project cost.
This failure was avoidable.

Press comments that ““A sinkhole as deep as this is undetectable™, ‘It was just a
bizarre event”, “A small problem with the soil, something 1-6 m across, is easy to
miss; if you try to find every one, you could not afford the project”, and “It was an
act of God” showed a complete lack of understanding of the karst. The authors hope
that this book will improve understanding in the future.
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Glossary of sinkhole terminology

Blue hole

Breakdown

Breccia pipe

Buried sinkhole or doline

Caprock sinkhole or doline

Cave

Cavern

Cenote

Closed depression

Cockpit

Collapse chamber

Collapse sinkhole or doline

Deep water-filled sinkhole in a coastal karst or the
floor of a shallow sea.

Blocks of rock fallen from the walls or roof of a
cave.

Column of breakdown debris above a collapsed
cave chamber.

Sinkhole filled with loose sediment beneath a soil
cover.

Sinkhole in insoluble rock formed by collapse into
underlying cavernous rock.

Natural hole in the ground, large enough for
human entry.

Cave or cave chamber usually of large dimensions.

Steep-sided collapse sinkhole floored by a lake
whose surface is at the regional water table.

Karst hollow with internal drainage, including
sinkhole, doline, uvala, polje and cockpit.

Large stellate doline between the conical hills of
cone karst.

Cave chamber modified by wall and roof collapse.

Sinkhole formed by collapse of rock into a cave
passage or chamber.
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Cutter

Daya or daia

Dissolution sinkhole or doline

Doline

Doline karst

Dropout sinkhole or doline

Filled sinkhole

Fissure

Grike or gryke

Karren

Karst

Pinnacled rockhead

Pipe

Polje

Polygonal karst

Ponor

Pothole

Pseudokarst

Soil-filled fissure in rockhead of a soluble rock (used
in US.A.)

Wide and shallow, flat-floored depression in a
desert limestone plateau.

Same as solution sinkhole or doline.

Closed depression in karst, often known as a
sinkhole.

Karst terrain where the dominant landforms are
solution dolines.

Subsidence sinkhole that forms rapidly in a soil
cover.

Same as buried sinkhole.

Cavity opened by dissolution along a rock
discontinuity, but smaller than a cave passage.

Dissolution fissure within the bare rock of a
limestone pavement (used in Great Britain).

Small dissolutional runnels etched into bare
limestone surfaces.

Landscape created on soluble rock with efficient
underground drainage.

Extremely irregular rockhead with soil-filled fissures
and buried sinkholes between remnant rock
pinnacles.

Cylindrical or conical mass of clay and sand that
fills a solution sinkhole, shaft or cave.

Closed depression with wide alluviated floor, much
larger than a doline.

Terrain composed entirely of internally drained
dolines or sinkholes between a polygonal net of low
ridges.

Sink, normally into an open cave passage in the
floor of a polje (mainly used in eastern Europe).

Solutional shaft or mainly vertical cave system.

Terrain with caves and/or karst landforms not
formed by dissolution of rock.
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Ravelling Breakdown and disassociation of soil that falls
away from the roof and walls of a ground cavity.

Regolith Soil cover that overlies bedrock (mainly used in
U.S.A.).
Rockhead Buried interface between the underlying bedrock

and its soil cover.
Shaft Vertical or steeply inclined cave passage.

Shakehole Small suffosion sinkhole in till overlying limestone
(mainly used in England’s Pennines).

Sink Point where a stream or river disappears
underground.

Sinkhole Small closed depression in karst, also known as a
doline.

Solution sinkhole or doline Sinkhole formed by dissolutional lowering of the
rock surface in and around zones of drainage into a
cavernous rock.

Stoping Progressive collapse of roof rock that causes a
cavern to migrate upwards.

Subsidence sinkhole or doline Sinkhole created where soil is washed down into
underlying cavernous rock.

Suffosion Removal of fines by down-washing through
unconsolidated sediment.

Suffosion sinkhole or doline  Subsidence sinkhole that develops slowly in a soil

cover.
Swallet Same as sink (mainly used in southern England).
Swallow hole Same as sink.

Tiankeng Extremely large collapse sinkhole.

Tumour sinkhole Collapse sinkhole formed by undermining, where no

large chamber ever existed.

Turlough Karst depression that is seasonally flooded, larger
than a sinkhole.

Uvala Closed depression with multiple sink points (now
little used).



1

Rocks, dissolution and karst

Karst refers to a distinctive terrain that evolves through dissolution of the bedrock
and development of efficient underground drainage. It is therefore associated
primarily with limestone, but also forms on other carbonates and other soluble
rocks. The special landforms of karst include sinkholes, dry valleys, pavements,
cave systems and associated springs. Karst terrain possesses not only topographic
features peculiar to itself but also unique hydrogeological characteristics. The
landforms of karst vary enormously in character, shape and size, and combine to
create a terrain that may represent extremely difficult ground conditions for con-
struction and engineering. Collapse of rock over caves formed by dissolution is
fundamental to the evolution of karst terrains, but is the least important of karst
hazards in civil engineering (Chapter 3).

Karstic rock masses may be overlain by allogenic sediments or by residual soils
that represent the insoluble material left after dissolution. Residual soils are mainly
sandy silty clays, and their wide range of plasticity reflects their clay content; chert
fragments are a common component. Dissolutional weathering imparts a loose
packing to residual soil, which may or may not be consolidated or indurated sub-
sequently. In addition, the rockhead beneath the soil cover is typically abrupt rather
than gradational, and may be highly irregular with pinnacles of rock protruding
upwards into the soil. Although these soils may possess their own engineering
problems, the most widespread hazard in karst terrains occurs where soil is
washed into underlying bedrock openings so that a void migrates upwards by pro-
gressive collapse to form a subsidence or dropout sinkhole (Figure 1.1). Though
these sinkholes form entirely within the soil cover, they are a major component of
most karst terrains (Chapter 4). They also constitute the greatest hazard for con-
struction engineers, especially as their development is so frequently induced by
engineering activity (Chapter 8).

Cavities, collapse and ground subsidence may also develop as pseudokarst
in insoluble rocks. Tubes and caves in some basaltic lava flows, along with
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Figure 1.1. A new subsidence sinkhole in the garden of a house in Kentucky.
Photo: Art Palmer.

piping failures in clastic soils, are the most widespread forms of pseudokarst
(Chapter 6).

Limestone is one of the world’s most widespread sedimentary rocks, and karst is
developed to some degree in almost every country of the world. Areas of limestone
outcrop have potential for the development of karst and therefore the development
of sinkholes (Figure 1.2). Available data varies greatly in quality, so the figured map
varies in its detail, with high quality in Europe, Iran, U.S.A. and some other
countries, but very generalised in Russia and Saudi Arabia for example. Further-
more, large areas marked on this map, including much of northern Canada, Siberia,
Kazakhstan, Egypt and northern Australia have few sinkholes, because the karst is
either buried or is poorly developed in desert or arctic environments. The potential
impact on engineering is represented by the fact that in the U.S.A. 40% of land east
of the Mississippi is underlain by some form of karstic rock — where hazardous
bedrock cavities and surface sinkholes can therefore occur. The other most
notable regions where large areas of karst lie beneath densely populated land are
in southern China and the countries that once constituted Yugoslavia.

1.1 LIMESTONE LITHOLOGIES

Carbonate rocks are defined as those containing more than 50% by weight of
carbonate minerals, although the proportion commonly exceeds 90%. The two
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Figure 1.2. The worldwide distribution of karst, on an equal-area projection. The black areas
are the main areas of limestone outcrop with potential development of karst with sinkholes.
Major areas of pseudokarst on basalt and quartzite are also marked in dark grey, as in Iceland

and Venezuela respectively, but small areas are barely distinguishable at this scale.
From Ford and Williams (2005).

major carbonate minerals are calcite (CaCOj3) and dolomite (MgCa(CO3),), while
aragonite (also CaCQy), siderite (FeCO;3) and magnesite (MgCQOs5) are rare in sedi-
mentary rocks. Any non-carbonate fraction in these rocks is generally any of the clay
minerals or cryptocrystalline silica (as chert or flint), which is left to form the residual
soils during dissolutional weathering. The rocks known as dolomites contain high
proportions of dolomite mineral, but are very similar to limestones with respect to
their karst and their sinkhole hazards (Section 1.5).

The mechanical properties of old, well-lithified limestones cover a range of
unconfined compressive strengths (UCS) of 30-100 MPa for the intact rock
(Waltham and Fookes, 2003). Most caves, sinkholes and karst form in the
stronger rocks with UCS > 60 MPa, unit weight 2.6kN/m® and primary porosity
< 2%. Groundwater flow and dissolutional development are focused on fractures to
create discrete conduits. These properties are largely dictated by tectonic history, but
age of the limestone is irrelevant; major karst terrains lie on limestones that are
Proterozoic in Brazil, Ordovician in Pennsylvania, Carboniferous in Great Britain,
Permian in China, Mesozoic in Europe and Tertiary in Malaysia. Limestones of
moderate strength, with UCS around 30 MPa, unit weight around 2.3kN/m? and
primary porosity >10%, have a larger proportion of diffuse groundwater flow, so
their fissures are not so rapidly enlarged by dissolution. These include the Jurassic
limestones of England’s Cotswold Hills, where the extensive karst is significantly less
cavernous and with fewer sinkholes than in the neighbouring Carboniferous
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limestone. Chalk and some other weaker varieties of limestone also support sinkhole
karst, but have very distinctive engineering properties (Section 1.6). Marbles are
metamorphosed limestones, generally strong and also prone to erosion into
cavernous karst.

Limestones are polygenetic. Some are of mechanical origin representing
carbonate detritus that has been transported and deposited or has accumulated in
situ; these include the chalks. Others represent chemical or biochemical precipitates,
or organic deposits such as coral limestone that have formed in place. Biological or
biochemical processes dominate in the production of carbonate detritus, that mostly
originates as shell debris. Allochthonous or transported limestone may have a fabric
similar to that of sandstone and may display current bedding structures. Autochtho-
nous limestones, that have formed in situ, possess only poor stratification. Some
autochthonous limestones show growth bedding, the most striking of which is
stromatolitic bedding, as in some algal and reef limestones.

Most limestones were formed as shallow-water marine deposits in environments
that include tidal and supratidal flats, shelf and bank areas, marginal reefs and back-
reef lagoons. They largely consist of varying proportions of complex derived grains
(allochems), coarsely crystalline calcite (sparite) that may constitute a cement binder
and microcrystalline calcium carbonate (micrite) that commonly forms the matrix
(Folk, 1962). They may be described as calcilutites (carbonate mudstones) or calcar-
enites (of sand grain size), or by other terms based on their texture (Dunham, 1962).
Ooliths are roughly spherical grains, 0.2-2.0mm in diameter with concentric or
radial structure, that formed by accretion on lagoon floors and may constitute the
majority of the rock in oolitic limestones (also known as oolites). Most other
carbonates are minor as rock units. Pelagic oozes and turbidites of deep-water
marine basins leave little geological record. Those from evaporitic basins can be
more extensive, but are mostly dolomitic (Section 1.5). Caliche is a carbonate
duricrust that may be widespread in arid regions. Tufa is a soft porous carbonate
precipitated by algal and bacterial action in springs and streams in limestone
terrains. Travertine is a dense, banded deposit, similar to tufa in that it is
deposited in flowing streams, but generally in response to changes in water
chemistry or downstream of hydrothermal sources (the terms travertine, tufa and
sinter are almost synonymous in different parts of the world). Stalagmite is the
variety of travertine deposited in caves. Wind-blown carbonate sand may form on
beaches and as dunes on coral islands, and is commonly capped by a partially
cemented duricrust.

The mechanical behaviour of all carbonate sediments is influenced by grain size
and those post-depositional changes that bring about induration, and thereby
increase density and strength. Induration of limestones commonly starts during
the early stages of deposition, by cementation that occurs where individual grains
are in contact. Consequently, cementation is not solely dependent on consolidation
due to increasing overburden pressure. Because induration can take place at the
same time as deposition, carbonate sediments can sustain high overburden
pressures, and can therefore retain high porosities at considerable depths. A bed
of cemented grains may overliec one that is poorly cemented. Eventually, high



