
Form-Oriented Analysis

Dirk Draheim · Gerald Weber

123

Form-Oriented
Analysis

With 83 Figures

A New Methodology to Model
Form-Based Applications

http://www.formcharts.org/

Library of Congress Control Number: 2004112522

ACM Computing Classification (1998): D.2.1, D.2.2

ISBN 3-540-20593-4 Springer Berlin Heidelberg New York

Dirk Draheim
Institute of Computer Science
Freie Universität Berlin
Takustr. 9
14195 Berlin, Germany
draheim@acm.org

Gerald Weber
Department of Computer Science
The University of Auckland
Private Bag 92019
Auckland 1020, New Zealand
g.weber@cs.auckland.ac.nz

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the Authors
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Preface

This book presents a special purpose modeling technique for the analysis and
design of an important system class, namely form-based enterprise systems.
Recent discussions on modeling languages emphasize that there is a strong
demand for such domain-specific modeling languages. The class of form-based
enterprise systems includes, for example, web shops as well as ERP and B2B
solutions and can be said to be paradigmatic for enterprise computing. This
book was motivated by the widespread interest in this type of business ap-
plication from professionals as well as from scientists. The book adapts well-
established basic modeling techniques in a novel way in order to achieve a
modeling framework optimized for the indicated application domain.

Besides its practical parts the book details theoretical achievements, which
lead to real improvements in the application domain of the book. It explains
how to model a form-based enterprise system during the analysis and spec-
ification phase, and how these models translate into good design. Typical
form-based applications have common properties that can be molded into
specialized diagram types for such applications. Such a diagram type is the
formchart, the central artifact that is described in the book. The formchart is
a good example of customized diagrams according to the most recent proposed
profiling techniques.

If form-based enterprise systems are modeled with typical general purpose
modeling approaches without such customizations, there are a number of ob-
stacles the modeler will face. For example, if one employs use case modeling
together with interaction diagrams, the analyst will be confronted with three
problems. First of all, the method has to be adapted to the form-based appli-
cation, since no specific guidance for this special application type is part of the
general method. Secondly, the model will become complex for even small-sized
problems, since every diagram has to repeat common properties of this very
specific application class. Hence the model tends to become highly redundant,
and the important distinguishing information is diluted. Furthermore, a third
problematic aspect is that current analysis methods are traditionally rather
oriented towards event-driven and complex GUI-based applications but not

VI Preface

towards form-based applications. Hence the customization demand for form-
based applications is particularly high.

Conversely, there are certain benefits the reader of the book can reap by
employing the new customized artifacts presented in this book. The reader
can obtain faster results and more significant models, because the common
properties of enterprise systems are already incorporated in the semantics
of the modeling method. The new artifact types presented in this book in-
corporate the results of studying form-based systems in general, knowledge
that a software engineer can hardly obtain in the limited setting of a running
project. Our method provides a separation of concerns by splitting the general
semantic structure of such applications from the specific information about
business logic in the concrete single project. The foundation of the new tech-
niques is fully elaborated in the book for the working developer confronted
with everyday problems in professional IT projects. In the same way, the sci-
entist interested in performing novel research on enterprise systems can use
this formal reference.

The book is divided into four parts. The first part is a detailed discussion
of the new modeling method for form-based systems from a practitioner’s
viewpoint and explains how the proposed techniques can actually be employed
in a project. The second part is about tool support and exemplifies how the
concepts introduced in the first part can be exploited by several different
implementing technologies. The third part provides the semantic foundation
of the different kinds of diagrams and tools introduced in the first and second
parts. The fourth part serves as a summary and provides a discussion of related
work.

After the introduction the book starts with an in-depth motivation for the
new techniques. It is shown that the considered system class encompasses a
wide range of important enterprise systems from mainframe/terminal systems
through ubiquitous COTS software to modern web applications. The explana-
tions in the book are deliberately based on a realistic running example in order
to make a difference. Throughout the book the concepts are exemplified with
an online bookshop. This example is not an arbitrary choice of the authors
– the important TPC-W benchmark, for example, also uses a standardized
online bookshop as a representative example of typical business functionality.
The form-oriented information system model is introduced. Different kinds
of diagrams for these models, i.e., screen diagrams, page diagrams, form sto-
ryboards, and formcharts are introduced for the user interface state part of
these models. All of these, and the further model components, i.e., dialogue
constraints and the layered data models, are introduced immediately with un-
ambiguous semantics and are used in modeling the running example. Then,
techniques for decomposition and refinement are discussed. A parsimonious
data modeling language is elaborated. A message approach to the modeling
of data interchange is outlined. The book is not primarily about software en-
gineering processes; however, it provides a discussion on how the proposed
artifacts can be exploited in an entire software engineering life cycle. The

Preface VII

interplay of some proposed best practices that are centered around descrip-
tiveness, artifact orientation, feature orientation, and reuse are discussed. For
each concept we show how it can be used to add sustainable value to the
respective software engineering activities.

The second part discusses issues of architecture, design, and implementing
technology. From this discussion concepts and concrete prototypical technolo-
gies for forward engineering, reverse engineering, and the implementation of
web presentation layers are derived.

The third part of the book presents the semantic foundation of form-
oriented analysis. First, several alternatives for tool support are discussed
and given a conceptual basis using an integrated source code model. Then,
precise semantics for the form-oriented diagram types are given. For this pur-
pose, a new, lightweight, semantics framework approach is introduced as an
alternative to current multi-level metamodeling techniques. Along the lines of
the framework approach precise semantics of formcharts, layered data mod-
eling, and the dialogue constraint language are given. This is followed by a
discussion of the semantic of the proposed parsimonious data modeling ap-
proach. A formal type system for the interplay of server actions and pages of
submit/response style systems is provided.

The fourth part provides a focused description of the widely accepted
modeling approaches in use. The discussion shows the differences between
these approaches and the new method, but it also shows how our method is
integrated with standard modeling techniques. For each related method we
discuss how it could be applied to enterprise systems and how form-oriented
analysis provides a more convenient solution. Therefore this chapter provides
a different view on the benefits of form-oriented analysis to the reader. Finally,
a summary of the main contributions is provided.

The reader should have some experience with object-oriented program-
ming languages. First-hand experience with visual modeling languages and
the graphical tools for them is helpful. Basic knowledge of SQL is also desired
for some advanced excursions, but this can be postponed until needed. Re-
lated approaches are comprehensively introduced, so that even a reader who
is new to these other approaches can follow the arguments.

The book targets professionals, i.e., working software engineers and deci-
sion makers, researchers in computer science, and upper-level graduate stu-
dents who are interested in enterprise systems. Care must be taken, because
professionals, researchers, and students typically have different objectives, dif-
ferent dispositions, and different opinions with respect to software engineering
topics. This is due to the fact that goals and driving forces are different in
industry and academia. Consequently, readers may have different attitudes
towards the several parts of the book; see the figure below for a guess. In the
figure, supposed main interests are shaded gray, whereas minor interests are
left blank.

Professionals actually working on enterprise software will gain a deepened
understanding of form-based systems from the abstract system viewpoint pro-

VIII Preface

Professional

Part I
Modeling Form-Based Systems

Part II
Tool Support

Part IV
Conclusion

Part III
Semantics

Presentation of
Form-Oriented Analysis

Precise
Reference Manual

Entry Point for
Further Investigations

Preliminary
Semantics

Practical
Justification

Learning
Aid

Scientist

Student

Discussion of
Related Work

Summary

Summary

Presentation of
Form-Oriented Analysis

Presentation of
Form-Oriented Analysis

vided by form-oriented analysis. Many developers already use ad hoc tech-
niques tailored to form-based systems like naive page diagrams or click dum-
mies. These ad hoc techniques arise naturally when developing form-based
systems but lack an elaborated conceptual basis. The book allows these de-
velopers to strengthen these techniques in practice. Readers can employ the
approach directly in projects, because every concept introduced comes with
precise semantics and the mutual dependencies between the concepts are elab-
orated, too. The prototypical forward and reverse engineering tools are suit-
able for convincing the professional about the potential practical impact of
the form-oriented approach. The third part of the book is less important for
the professional. If a semantical clarification is needed, this part can serve
as a precise reference manual. The professional can use the fourth part as a
detailed summary.

Researchers might be especially interested in the third part of the book
as an entry point for further investigations. Upper-level graduate students
will benefit from the presentation of state-of-the-art knowledge about the
development, architecture, and design of enterprise systems in the organizing
framework of form-oriented analysis. The second part of the book will help
students to grasp more easily the concepts of form-oriented analysis.

Since enterprise applications are a particularly important class of software,
almost every IT professional, computer scientist, or computer science student
may have some interest in gaining at least an overview of the fundamentals of
enterprise computing. The book is written with the different objectives of pro-
fessionals, researchers, and students in mind. In industry productivity eventu-
ally targets return on investment. Product quality and product quantity are
limited by productivity. Productivity is limited by the availability of resources.
Knowledge acquisition is needed to improve productivity. Academic activity
spans two areas that have to be integrated: research and education. While aca-
demic research has a subtle target, i.e., the construction of knowledge, higher

Preface IX

education has the tangible responsibility to produce well-prepared profession-
als. Academic research is driven by the pressure to get contributions published
in the scientific peer community. Higher education is driven by the demands
of the yet uneducated. Altogether these differences result in the following: one
and the same concept can be perceived totally differently by individuals in
industry and in academia. We encourage all who try to keep an open mind
and hope that this book provides valuable information or inspiration.

We are indebted to Martin Große-Rhode for his encouragement and advice.
We want to thank our editor Ralf Gerstner for his support and guidance. We
would also like to thank the reviewers who made many helpful comments.

Berlin, August 2004 Dirk Draheim
Auckland, August 2004 Gerald Weber

Contents

Part I Modeling Form-Based Systems

1 Introduction . 3
1.1 Enterprise Systems . 4
1.2 Modeling Enterprise Systems . 5
1.3 High-Level Transactional Programming . 6
1.4 A Parsimonious Relational Notation . 6
1.5 A Descriptive Approach to the Software Development Process . 7

2 The Form-Based System Paradigm . 9
2.1 The Submit/Response Style Interface . 10
2.2 A Message-Based Model of Data Interchange 20

3 Exploring the Online Bookshop . 23
3.1 The Dialogue Model . 24
3.2 The Persistent Data Model . 30
3.3 An Exemplary Submit/Response Style System 32

4 Form Storyboarding . 35
4.1 Page Diagrams . 36
4.2 Form Storyboards . 41

5 Formcharts and Dialogue Specification . 49
5.1 Form-Oriented Information System Models 49
5.2 The Dialogue Model . 55
5.3 The Layered Data Model . 59
5.4 Dialogue Specification . 66
5.5 The Bookstore Formchart and Data Model 74

XII Contents

6 Model Decomposition and Refinement . 97
6.1 Model Union . 97
6.2 Formchart Decomposition . 98
6.3 Formchart Hierarchies . 100
6.4 A Feature-Driven Approach . 102
6.5 State Sets and State Specialization . 104
6.6 Decomposition of Page Diagrams and Form Storyboards 107
6.7 Model Refinement . 107

7 Data Modeling . 109
7.1 The Parsimonious Data Modeling Language 111
7.2 The Data Access Language DAL . 114
7.3 The Transaction Data Access Language TDAL 121
7.4 Constraints . 125
7.5 Style Formats . 141

8 Message-Based Modeling of Data Interchange 147
8.1 Connectivity of Enterprise Systems . 147
8.2 The Message-Based System Viewpoint . 150
8.3 Data Interchange Model . 152
8.4 Data Interchange Specification . 156
8.5 The Relation to Data Flow Diagrams . 160
8.6 The Interplay of Formcharts and Data Interchange Diagrams . 162
8.7 Topic Bundles . 164

9 A Descriptive Approach . 165
9.1 Descriptiveness, Prescriptiveness, and the Software Process . . . 168
9.2 Metaphor A Posteriori . 170
9.3 On Desktop Metaphors . 172
9.4 On Real-World Modeling . 173
9.5 Visual Modeling De-emphasized . 175
9.6 Artifact Orientation . 176
9.7 The High-Level Programming Viewpoint 177
9.8 Advanced Systems Modeling Approaches 180

Part II Tool Support

10 Forward Engineering and Reverse Engineering 187
10.1 Forward Engineering . 188
10.2 Reverse Engineering . 193
10.3 Source-Code-Opaque Reverse Engineering 196

Contents XIII

11 Typed Server Pages . 199
11.1 Type-Safe Interplay of Forms and Scripts 200
11.2 Functional Decomposition of Server Pages 214
11.3 Higher-Order Server Pages . 221
11.4 A Comparison of Web Technologies . 224

Part III Semantics

12 The Integrated Source Code Paradigm . 229
12.1 Towards Structured Collaborative Work . 229
12.2 Structured Artifacts . 232
12.3 The Syntax Model Approach . 233
12.4 A Closer Look at Languages . 235
12.5 The Integrated Source Code Paradigm . 237
12.6 A Flexible Generic Textual Format for Data 241
12.7 Generative Programming . 244

13 State History Diagrams . 249
13.1 State History Diagrams and Class Diagrams 249
13.2 Discussion of Formchart Semantics . 258
13.3 Semantics of Dialogue Constraints . 260
13.4 Path Expressions . 267

14 Semantics of the Data Model . 271
14.1 Semantics of the Temporal Model . 271
14.2 Alternative Fundamental Models . 274
14.3 Discussion . 279

15 Semantics of Web Signatures . 283
15.1 Formal Semantics of Web Signature Recovery 283
15.2 Coding Guidelines for Typed Server Pages 287
15.3 Formal Definition of the NSP Type System 299

Part IV Conclusion

16 A Comparison of Modeling Methods . 325
16.1 User Interface Modeling . 325
16.2 Web Site Modeling . 326
16.3 Data Modeling . 328
16.4 Model-Oriented Specification Languages . 329
16.5 Structured Analysis . 331
16.6 Object-Oriented Analysis and Design . 335
16.7 Model-Driven Architecture . 338

XIV Contents

17 Summary . 343
17.1 Contributions to Modeling Form-Based Systems 343
17.2 Contributions to Modeling in General . 347

References . 351

Index . 367

List of Figures

2.1 Example pages of the online bookshop . 10
2.2 Ultra-thin client based submit/response style systems 12
2.3 SAP R/3 system architecture . 12
2.4 Example formchart for a system login capability 17

3.1 Welcome screen of the online bookshop . 24
3.2 Login screen of the online bookshop . 25
3.3 Registration screen of the online bookshop 26
3.4 Category screen of the online bookshop . 27
3.5 Book page of the online bookshop . 27
3.6 Shopping cart of the online bookshop . 28
3.7 Order information page of the online bookshop 30
3.8 Search result page of the online bookshop 31
3.9 Data model of the online bookshop . 32

4.1 Page diagram . 37
4.2 Screen diagram . 39
4.3 List of options for a single conceptual option 40
4.4 Form storyboard . 42
4.5 Page images . 44
4.6 Form storyboard annotated with interaction information 45
4.7 Message storyboard . 47

5.1 The information system model of form-oriented analysis 50
5.2 A first formchart example . 56
5.3 Two alternative formcharts for the same model 57
5.4 Formchart naming conventions . 57
5.5 Opaque references in the information model 61
5.6 Formchart notational elements . 67
5.7 Three-valued logic in OCL . 68
5.8 Meaning of path expressions in the formchart 72

XVI List of Figures

5.9 Complete formchart for the bookstore example 75
5.10 Login, registration and logout feature of the online bookshop . . 76
5.11 Conditional server/page transitions . 79
5.12 Refinement of a server input constraint . 80
5.13 Browsing feature of the online bookshop . 85
5.14 Shopping cart feature of the online bookshop 88
5.15 Buying feature of the online bookshop . 90
5.16 Reuse of the login and registration subdialogues 91
5.17 Managing user data in the online bookshop 92
5.18 Search feature of the online bookshop . 93
5.19 Graphical representation of a client output constraint 96

6.1 Named partitioning of a formchart . 99
6.2 Hierarchical formchart decomposition . 100
6.3 Structured analysis: leveled data flow diagram 101
6.4 A flat formchart . 101
6.5 Additional features of the bookstore . 103
6.6 Modeling with state set notation . 104
6.7 Using state set notation for the bookstore features 105
6.8 Modeling enabling conditions based on state specialization 106

7.1 The PD model of the bookshop . 112
7.2 A submodel of the bookshop . 116
7.3 A relation of arity 3 . 128
7.4 A partial order in the data model . 129
7.5 A composition constraint . 132

8.1 Example datatype interchange diagram . 153
8.2 Model subsystem in a DTIM . 154
8.3 Edges between actions within the same model 155
8.4 Example DTIMs of the login dialogue . 160
8.5 A DTIM and an equivalent DFD . 161

10.1 The Angie language related tool suite . 187
10.2 Grammar of the language Angie . 190
10.3 Bookstore login capability . 192
10.4 Revangie: example screen classifications . 198

11.1 CPDS and CPTS. 201
11.2 Model 2 architecture . 216
11.3 Model 2 architecture versus NSP functional decomposition 218
11.4 Example interaction diagram . 221
11.5 Higher-order server pages design example . 224

12.1 PD core syntax model . 234
12.2 Multiplicity syntax model . 234

List of Figures XVII

12.3 A cutout message storyboard . 243

13.1 Frameworks for state history diagrams and formcharts 252
13.2 A formchart is derived from the semantic framework 255
13.3 The object net over a formchart is a path 256
13.4 A login subdialogue as UML state machine 259
13.5 Semantics of path expressions in DCL . 266
13.6 Example of path expressions . 268
13.7 UML tree definition . 269

15.1 Example form message type . 293
15.2 Example cyclic form message type . 296
15.3 Example complex form message type. 297
15.4 List definitions . 308

16.1 The Seeheim model of user interfaces . 326
16.2 Data flow diagram . 333
16.3 Use case diagram . 337

Part I

Modeling Form-Based Systems

1

Introduction

What is the business logic of an enterprise system? How do I specify it in such
a way that I know how to transform it into a running system, by skill and by
automated tool support? This book gives a self-contained introduction to the
modeling and development of business logic for enterprise systems.

Enterprise systems are a distinct and highly complex class of systems. They
are characterized by their importance for enterprises themselves, making them
mission critical, by their extreme multi-user capability, by their tolerance of
heavy loads, and by their tight integration with the business processes, which
makes every enterprise system installation unique. In short, they are one of
the most fascinating yet most demanding disciplines in software engineering.
This book is in the first instance intended to be a conceptual introduction to
and comprehensive overview of enterprise systems modeling.

Enterprise applications can be singled out within the domain of database
applications in general through a number of typical characteristics, which are
usually not discriminating if seen in isolation, but which together characterize
enterprise applications. An example of a database application very different
from enterprise applications is a typical genome database. Enterprise applica-
tions store amongst other things data describing events in time. The enterprise
system is critical for ensuring data consistency and allowing action consistent
with those data in particular. An enterprise system installation controls a cer-
tain defined part of an organization. Installing and using the system a second
time in parallel for the same business processes leads to serious problems. The
correct assignment of the installation to a part of an organization is itself a
basic element of this consistency effort, otherwise outdated data is used. This
does not mean that multiple installations with correct information about their
domain cannot cooperate. It just means that enterprise system installations
are in a certain sense territorial. This can be pinned down to the data they
manage.

This book explains enterprise systems in the novel form-oriented frame-
work, which is easy to learn and practically applicable yet theoretically power-
ful. It introduces the form-based system specification as the key notion for the

4 1 Introduction

conceptual definition of business logic. It explains state-of-the-art modeling
languages and their usage for specifying business logic and for the subsequent
building of enterprise systems. The techniques presented here are applicable
to enterprise systems of all sizes.

1.1 Enterprise Systems

Enterprise systems are a type of system where so-called business rules are
automated. The term business rule refers to a high-level data manipulation
rule, which is executable manually or mechanically. But business rules can
contain straightforward computations, which we expect today to be executed
by a system, or which we even require to be done, not only for convenience,
but also for security and data integrity, like the tax on a purchase computed
by a cash desk.

There is an intricate relationship between business rules and enterprise
systems. Enterprise systems have a distinctive look and feel, because they are
mainly systems for managing business rules. On the other hand, if you have
a business rule, it is at least conceivable that it will be executed or supported
by an enterprise system. Take as an example your mortgage. If you ask your
banker about it, the banker should and probably will draw up a financing
plan in which you can see what you have to pay each month and what you
still owe afterwards. The banker will get this perhaps from the intranet web
portal of the bank created by a part of the bank’s enterprise application.

In this book we will encounter a uniform viewpoint on business rules, the
form-based metaphor. We will learn a general method for describing business
rules as functionalities, or features of a form-based system. The motivation
is not in any way the assumption that business rules must be executed with
form-based systems. It is rather the goal to have a common notation, which
allows comparisons of different business rules in a common language. If we
therefore model a business rule like the mortgage computer above as a part
of a form-based system, it is based solely on the assumption that it is possible
to model the system in such a way, but not on the belief that it is necessary
to do so.

One interesting advantage of this uniform modeling approach for form-
based systems is, indeed, that by subsuming business applications under this
model we single out a well-defined category of system properties in the follow-
ing, slightly tricky sense. By viewing every business rule as performed with
a form-based application, we abstract from the properties of the application,
which make no difference in this type of interface. For example, whether a
system is used from a touch screen on dedicated terminals, or as a web ap-
plication over the Internet, might not make a difference with respect to the
description of the form-based interface. These differences nevertheless can and
should be recognized, but they somehow belong to a different kind of property.
The key advantage is to gain a useful classification of different types of system

1.2 Modeling Enterprise Systems 5

requirements. We therefore introduce the term business logic requirement in
order to refer to such requirements, which we can express as requirements of
the system within our form-based metaphor. In other words, the subsump-
tion of applications under the form-based metaphor is our operative method
to separate the business logic requirements from the whole requirement mix.
Business logic requirements form the part of an organization’s business rules
that are to be mechanically executed by the enterprise system.

A full requirements description of a system will consist of the business logic
requirements gained in this way as well as all more general requirements.
In this book we focus solely on the domain of business logic requirements.
This does not reduce the importance of the other requirements in any way.
Making the modeling and implementation of business logic requirements more
efficient is an encouragement that more care should be taken for these other
requirements as well.

1.2 Modeling Enterprise Systems

In this book a semantically precise notion of form-based systems is explained,
and called the notion of submit/response style applications. This gives us an
exactly defined concept of form-based systems.

This notion of submit/response style systems is therefore the framework
in which we can model business rules, and it can be seen as a novel concept of
a virtual business machine, i.e., a machine, which is directly able to execute
business logic, regardless of whether it includes human interaction or not. We
can now forge the important notion with which we want to refer to business
logic requirements in their form as executable programs of this virtual ma-
chine. We call the program of this virtual machine the business logic of the
application.

These considerations lead to another key concept in our considerations,
namely executable specification. If our business logic can be conceived as the
program of a virtual business machine, then our specification method is noth-
ing less than a high-level programming language. In fact, some decades ago,
the concept of such languages for data-centric applications appeared so nat-
ural that the terminology “fourth generation languages” was coined for these
types of languages. This term “fourth generation language” can now be said
to be tied to the even more specialized look and feel of such a language, like
ABAP-4 in the SAP system. Like this example, fourth generation languages
are typically tightly integrated into single-vendor platforms. The modeling
method presented here can nevertheless be seen as an integration of practical
experiences from fourth generation languages into a state-of-the-art modeling
style. In principle it is therefore conceivable that a future business platform
running as a virtual machine on common platforms can interpret business
logic directly.

6 1 Introduction

1.3 High-Level Transactional Programming

A central topic in this book is the distinction between high-level program-
ming and specification. High-level programming is a programming paradigm,
which is on the abstraction level of specifications. Yet a high-level program-
ming paradigm must be effectively translatable in efficient code on standard
platforms.

The vision of high-level programming is certainly not restricted to the idea
of a fully automated translation. This idealized concept of the translation of
the functional specification into a running system on a current platform is
neither state-of-the art, nor the most desirable concept. The high-level pro-
gramming vision rather exploits the broad range of programming notions.
Consider higher programming languages, which indeed started as a kind of
abstract notation, but which were often not translated automatically, but
manually. The task of the programming language was to encode knowledge
about good program design.

The most intuitive use of a high-level program is perhaps as an input for a
generator. The generator translates the system description into a target code,
i.e., it can be compared to a compiler approach. However, the translation
process is more transparent, in that the target code can be customized. The
difference between a high-level programming paradigm and a general specifi-
cation paradigm is that the former allows only those specifications that are
known to be translatable into code. This is not a contradiction of the previous
statement that the translation can also be transformed manually. However,
one must be aware of that the code generated from the high-level program may
not be a complete implementation: it may well be that there are still system
parts that have to be developed manually on the target platform. One could
also say that there are also tasks of tuning, which have to be done manually,
since the problem is not to generate some code that fulfills the specification
and is executable, but to generate efficient code.

1.4 A Parsimonious Relational Notation

Throughout the book we use class diagrams for data modeling. We start our
examples with some currently discussed modeling approaches, e.g., UML and
OCL. From the problems encountered there we will advance to a new, simple
data modeling notion, the PD models. It has not just a simple format, but
also a precisely defined meaning, its semantics. This notation is especially
good for training and educational purposes, being an excellent primer for the
sometimes more abstruse and feature-laden notations used in industry. It is
particularly designed as a preparation of the diverse modeling landscape in
industry and research. In industry projects as well as in scholarly discussions
one might encounter a whole range of different data modeling notations, like
ER diagrams and UML diagrams, but also database schemes, which all turn

1.5 A Descriptive Approach to the Software Development Process 7

out to be related approaches to data modeling. The PD model notation in this
book is an introduction to the commonalities of all these notations. The PD
notation provides a good preparation for the very important skill nowadays
to be able to quickly grasp new notations.

You will be well prepared if you keep your mind open, and if you are
trained to identify the common concept behind these notations.

Industry notations, like UML, have the property that they must possess
deliberately ambiguous semantics, in order to capture a number of differing
notions under the umbrella of a unified notation – hence the name. In contrast,
the notion used in this book has a fixed format as well as semantics. Of course
you are encouraged to use the PD modeling notation presented here in your
projects. Hopefully you will experience the advantages of a lightweight yet
feature-rich approach that is tailored for today’s enterprise applications.

1.5 A Descriptive Approach to the Software
Development Process

Form-oriented analysis proposes artifacts for modeling. These artifacts are ac-
companied by recommendations on when and how to produce these artifacts.
However, these recommendations must not be misunderstood as prescriptions
– form-oriented analysis is a descriptive approach to software development.
This means, first and foremost, that it should not be used to restrict the
working software developer in any way. For example, we propose a couple of
artifacts for the visualization of our form-oriented information system mod-
els, i.e., screen diagrams, page diagrams, form storyboards, formcharts, which
differ with respect to granularity, comprehensibility, and preciseness.

Coarse grain modeling is motivated by certain demands of the require-
ments elicitation process, e.g., the need for lightweight communication with
the domain expert, or a desired jump start to modeling. Then, for the sake of
a convenient presentation the different kinds of artifacts are presented in this
book in the manner of a strict stage-wise process, as if we were proceeding
in a project from informal to more and more formal documents. However,
this should not convey the impression that the proposed artifacts can only be
exploited in a defined proceedings.

The arguments of form-oriented analysis aim at empowering the developer,
they aim at improving the modeling of enterprise systems under the overall
umbrella of artifact orientation. Ideally, form-oriented analysis provides the
conceptual underpinning for some personal best working practices that the
developer has already discovered by him- or herself, though in an ad hoc
manner, or that he or she has learned from a colleague – typically from a
senior developer.

In a wider sense, the descriptive approach has several properties, which
are not mutually exclusive:

8 1 Introduction

• Orthogonality with respect to process models.
• Focus on conceptual insight.
• Free approach.
• Holistic approach.

Software development methods can have a product model aspect and a pro-
cess model aspect. Different software development methods can put different
foci on these aspects. Actually, we argue that a concrete software development
method can be advantageous with respect to product modeling even without
reference to any process model. As we have already mentioned, form-oriented
analysis techniques and tools are orthogonal to process model aspects, too.

Form-oriented analysis focuses on conceptual insight. It tries to foster a
precise understanding of the certain widespread class of enterprise applica-
tions. This does by no means imply that we do not propose concrete formats,
concrete tools, and concrete activities. It just means that concrete formats,
concrete tools, and concrete activities are subject to concrete elaboration and
must not be overemphasized, i.e., they must not be considered more important
than the understanding of the system semantics.

The form-oriented analysis approach does not strictly follow any other
dominating paradigm. This does not mean that it is completely decoupled
from proven techniques and concepts defined so far in the software develop-
ment community. On the contrary, we believe that form-oriented concepts can
be also used in scenarios where other techniques are already successfully es-
tablished. It just means that form-oriented analysis is free from the dictates
of other paradigms and metaphors.

Similarly, form-oriented analysis is not restricted to a certain modeling
level or process stage, say, requirements specification, analysis or design. As
a holistic approach form-oriented analysis is open for equal discussions of
all kinds of problems the working software engineer is faced with. The only
restriction of form-oriented analysis is a self-restriction: it does not aim at
being a general purpose approach, but utilizes assumptions about the systems
that it is designed for.

2

The Form-Based System Paradigm

Enterprise systems encompass online transaction processing systems, enter-
prise resource planning systems, electronic data interchange, and e-commerce.
This means the system class of interest can contain a small web shop as well
as a huge system like the SABRE flight reservation system, which connected
59,000 travel agents in the year 2002 [155].

In this chapter we give an outline of our model for enterprise applications.
An enterprise system can be seen as an installed and running enterprise ap-
plication. The basic type of enterprise system we call a unit system: that is,
a system which we consider as a single unit for our purposes. From the user’s
perspective a unit system is a black box. It is characterized by the interfaces
through which it is accessed. Each unit system is a single unit of abstraction,
it is a single abstract data object. The interface of a unit system which is di-
rectly accessible for us is the human–computer interface for interaction with
the user. A unit system can also have an interface to other unit systems, and
we will call this a service interface . Of the two kinds of interfaces of a unit
system the human–computer interface is the more tangible one, therefore we
begin our outline of the system modeling approach with this type of interface.
In our method, the human–computer interface for communication with one
unit system is session based, and we call it the submit/response style interface.
One can conceive of another kind of interface which is sessionless and resem-
bles a mail client with its mailbox. We will discuss such an interface designed
for communication with multiple unit systems later in the book. But here we
concentrate on the session-based interface type. It captures the key concepts
behind several widespread interface types for enterprise applications, e.g., web
interfaces. In one sentence one can say that the submit/response style inter-
face models the human–computer interaction as an alternating exchange of
messages between the user and the computer. But before we try to understand
submit/response style systems in this way we look at them solely from the
perspective of the user.

10 2 The Form-Based System Paradigm

2.1 The Submit/Response Style Interface

We introduce the class of submit/response style interfaces by using a famil-
iar application as an example, namely an online bookshop as can be found
frequently in a similar form on the Web. Chapter 3 is devoted solely to an
informal description of this example bookstore.

We have designed the following considerations in such a way that the
reader can participate in the development of the ideas about the interface
types. This is intended to be neither a historic line of development nor a
necessary argument; it is just considered to be helpful, instructive, and easy
to follow.

Submit/response style interfaces show at each point in time a page to the
user, the current page. Two such pages, which are taken from our example
bookstore, are shown in Fig. 2.1, i.e., a page showing the contents of the user’s
shopping cart and a page for gathering personal data.

My Shopping Cart

Book Quantity Price

Quine: Word and Object 1 12.46

Wittgenstein: Tractatus 1 23.06

Varela: The Embodied Mind 2 44.68

Adams: Watership Down 7 62.30

Welcome Page
Logout

Search

Search for a book:

Delete

Delete

Delete

Delete

Buy items
in cart

Update

Customer Registration Welcome Page

E-mail Address:

Full Name:

Register

Password:

Repeat Pwd:

WhateverCard

01 2006

Card Type Credit Card No.

Street Address:

City:

State:

ZIP:

Country:

Expiration Date Cardholder

Fig. 2.1. Example pages of the online bookshop

A submit/response style interface allows the user to perform two kinds of
interactions with the interface: we call them page edits and page change. Page
changes are singular interactions which change the page, i.e., the current page
is replaced by a new page. Page edits are interactions with the current page,
namely the filling out of a form or resetting a form. Forms are the only editable
parts of the page, and are made of input elements. These input elements can
be quite sophisticated by themselves. A very sophisticated form element is a
text field that allows the input of formatted text, as can be found in some
interface technologies.

There is a hierarchy in these two kinds of interaction. Take the search
option as an example. First you enter keywords by page interaction. Then
you press the search button and the system shows the page with the search
results by performing a page change. The page edit is always a preparation for

2.1 The Submit/Response Style Interface 11

the page change in this style. We call this the two-staged interaction paradigm
of submit/response systems.

During the heyday of GUI-based client/server programming such interfaces
were often considered as bare metal legacy technology. The advent of the web
browser as a new thin client has shown many reasons why submit/response
style interfaces are here to stay. On the one hand there are proven system
architectures for submit/response style systems. Classical mainframe archi-
tectures like CICS are still in use and being constantly improved. Some ubiq-
uitous commercial off-the-shelf (COTS) products are successful because they
have a mature system architecture. They provide working solutions for enter-
prise applications, and they take into account the substantial non-functional
requirements of enterprise applications. New vendor-neutral and platform-
independent enterprise computing approaches like J2EE are emerging, tar-
geting the same driving forces such as the classical approaches.

But submit/response style systems do not just have proven software ar-
chitectures. Surprisingly, submit/response style interfaces can have cognitive
advantages, too. This means that submit/response style interaction can foster
usability in many cases, simply because it is often the natural solution with
respect to an automated enterprise functionality.

2.1.1 Proven System Architecture for Submit/Response Style
Systems

Enterprise applications are data-centric and transaction-based. The sub-
mit/response style interface is not tied to any specific technology. On the
contrary, the same characteristics can be found in many technologies, e.g.,
HTML-based clients and mainframe terminals. Even the screens of a GUI-
based COTS system follow the submit/response style interface metaphor.

An important class of systems with submit/response style interfaces are
systems with ultra-thin clients, encompassing terminals and HTML browsers,
see Fig. 2.2. Ultra-thin clients are used for creating an interface tier that does
not contain business logic in itself. Ultra-thin clients cache the user interaction
on one page in the client layer. The page sequence control logic – or workflow
controller – is also not hosted by the client layer but rather by the server
layer. Ultra-thin clients fit neatly into the transactional system architecture,
be it one of the classical proposals [23, 130] or a more recent proposal [181].
Transactional system architectures successfully target many problems: system
load, performance maintainability, scalability, security, and others.

The interaction with a system/response style system is a repeated alter-
nation between data processing and the presentation of a new screen. The
dialogue appears to the user as a sequence of editable screens: the dialogue
steps are screen transactions. The presentation layer of a system is responsible
for a preprocessing of data submitted by the user, the triggering of appropriate
business rules, and the presentation of the correct new screen. Given a multi-
tier system architecture, there is no requirement that this logic be hosted by

12 2 The Form-Based System Paradigm

PC-Memory

Web
Presentation

Layer
CGI

Application Server

Database

GET hypertext/dir/index.html HTTP/1.0

....<head> <title> Dummy </title></head>....

HTTP

PC

Device Buffer

3270 Terminal

Disk Disk

Application Program

TP-Monitor

Mainframe

3270 Data Stream
AID Cursor Address Data.....

Command Cursor Address Data.....

Browser

Fig. 2.2. Examples of ultra-thin client based submit/response style systems

the application server tier. In the SAP R/3 system [208], see Fig. 2.3, it is
actually hosted by the client tier. The SAP R/3 system architecture is opti-
mized with respect to the notion of commercial off-the-shelf software. In a full
version of the SAP R/3 system the vertical architecture depicted in Fig. 2.3
is completed by a horizontal architecture consisting of a production system, a
consolidation system, and a development system: the necessary customization
of the system is only possible in a defined safe way by deploying new modules
via a special transportation system.

Database

Application Server

ABAP/4 Interpreter

ABAP/4 GUI

TRPC

PBO input template PAI

module pool

PBO input template PAI

PBO input template PAI

process before output

process after input

screen program

transactional remote
procedure call

Fig. 2.3. SAP R/3 architecture – a client/server submit/response style system

2.1 The Submit/Response Style Interface 13

2.1.2 Cognitive Advantages of Submit/Response Style Systems

Form-based interfaces have clear advantages for the self-explanatory character
of a system. The usage of the system is intuitive, since it is guided by a
paper form metaphor. However, the importance of the submission process
is notable; therefore we want to characterize the metaphor as a submission
form metaphor. The difference between temporary input and submission, or
“sending,” is intuitive and fosters the user’s understanding of the system. The
form-based metaphor has a multi-tier structure of its own, without being fixed
to an implementation. The two classes of interactions structure the work of
the user into the work-intensive frequent page interactions and the punctual
and atomic interactions of the “serious” kind, namely the page changes which
also happen to be the conclusion and separation of logically disjoint bunches
of work. The submit/response style character puts the user in command of
the timing of system usage. It protects the user from irritating disruption of
his or her work by incoming information.

In form-based interfaces the submission of a form is an operation that has
exactly the semantics indicated by the metaphor. In computer science terms
we have compared the submission of an actual parameter list with a method
name. The submission form metaphor views interaction with the system as
filling out virtual paper forms and submitting them to a processing instance,
which represents the core system.

The metaphor has the qualified name submission form metaphor, be-
cause other form interface types can be found as well. For example, desktop
databases as found in office suites allow form style interfaces, which possess
page navigation buttons. Input in this form immediately changes the model.
We call such a form style interface a formlike view. Applications using formlike
views are in principle required to have synchronous views of the data: if two
formlike views currently show the same data, and the data are changed in one
formlike view, then the other formlike view has to be immediately updated.
Many implementations, however, have to stick to polling mechanisms, which
leads to latency effects in the update process. Well-known and even worse ex-
amples are file managers, which recognize state changes frequently only after
manual refresh. It is important to recognize that the necessary refresh in this
case is a bad implementation, while the reload mechanism of submit/response
style applications is a logically necessary feature.

In desktop databases the model state is the persistent state. Other appli-
cations with formlike views have non-persistent states, e.g., spreadsheets.

The submission form metaphor has the advantage of possessing a clear
semantics. The two-staged state change due to the two-tiered model is an
integral part of the metaphor. This is quite in contrast to, for example, the
important desktop metaphor. Consider the important drag and drop feature,
which is at the very heart of the desktop metaphor. Drag and drop means
regularly either copy or move, and hence can lead to two different effects.

14 2 The Form-Based System Paradigm

The submission form metaphor is accompanied by the response page prin-
ciple for showing responses of the core system. The submission of a form is a
page change, i.e., the page that hosted the form is hidden and a new page is
shown. This new page is the response from the server. The response page has
three important functions:

• Notifying the user of the immediate status of the submitted form.
• Showing new information to the user.
• Offering new interaction options.

The immediate status of the submitted form is the system’s immediate
response to the form. Depending on the business logic this may or may not
be the completion of the form processing.

• Consider the entry of a new date in a web calendar tool. The response
page is the new calendar view with a short notification message. The form
has been completely processed.

• Consider the submission of an order in an online brokerage system. The
response page is a notification of reception. The execution of the order,
however, takes place asynchronously.

• Consider the submission of an e-mail in a mail account on the Web. The
response page logically is only a notification of some overall validity of
the submitted data, e.g., the recipient’s address contains an at-sign. The
completion of the intended effect, i.e., the delivery of the e-mail, is not
acknowledged at all.

2.1.3 Semantics of Page Change

Each page can contain different forms. A form connects input elements to a
page change option, the submit button. Of course the intuition is that only
the page edit in the form that belongs to a submit button gives the intended
meaning of this command.

This meaning is captured in a message-based model, which we use for the
submit/response system. The user interface is considered as a distinct system,
which we call the conceptual session terminal, or terminal for short. It is very
much an abstraction of today’s web browser used as a client for an enterprise
application. As the name terminal suggests, the terminal is considered to
be connected with the unit system, which means that it can communicate
by messages and only by messages. The conceptual session terminal has a
state, namely the current page shown to the user, optionally including some
invisible information within that page, as well as the page edit the user has
performed so far on this page. The page edit is kept in the terminal until
the user performs a page change, which belongs to a form. Then the contents
of the input elements of this form are transmitted as a data record to the
unit system. The input elements of this form can contain the page edit of
the user, or data which was pre-filled on the page, so-called default data. The

2.1 The Submit/Response Style Interface 15

transmitted data record is tagged with the name of the form, and together this
message is like a remote procedure call. The name of the form is something
like the name of the procedure. It leads to an action on the unit system, and
this action always produces a result, given as a page description. This page
description is a message that is transmitted back to the terminal, and the
described page replaces the current page the user has seen before. This gives
in effect a page change. We call the new current page the response page to
the submission, the received message the response message, and if we do not
want to distinguish it, we call it the response. The page change is therefore
the submission of a parameterized command, and the new page is the result.
The terminal is locked between send and receive. The remote method call is
therefore a synchronous procedure call. This alternation of submissions and
responses has of course given rise to the term submit/response.

The parameter of the submission can of course be empty. There is only one
type of page change. Each page change can, however, transmit data, which
were not rendered on the page.

All page edits that have been performed on input elements which do not
belong to the submitted form are therefore lost; the state of the conceptual
session terminal after a page change is exclusively the response page.

Of course there are many other possible types of interfaces than the sub-
mit/response interface explained so far, e.g., interfaces which support several
pages at once. However, the submit/response style system has its advantages
in that it is quite expressive yet simple and primarily it is very regular. The
strict alternation between the user and system messages yields many advan-
tages for modeling. Therefore it is very suitable for the high abstraction level,
on which we want to focus during analysis. A key concept here, which con-
tributes to the whole method’s characteristics, is the notion that the user can
submit a whole compound data object with each message.

2.1.4 Dialogue Types

We have explained submit/response style interaction as the alternating inter-
change of messages. We now want to introduce static typing to these messages,
and this step alone will lead to a plethora of interesting new properties of our
interfaces.

First we want to introduce static types for the response pages. This means
that only a finite number of page types are allowed for each interface. It allows
us to give a natural yet rigorous meaning to the finite number of pages depicted
in screenshot diagrams (sometimes called non-executable GUI prototypes);
they simply represent the page types. Furthermore it allows us to give precise
semantics to the arrows in these diagrams representing possible page change
in the following way.

The current page has a type from a finite number of page types. We con-
ceive the type of the current page as a finite state aspect of the terminal. (A
finite state aspect is a reduction of the state of a system, which is of interest

16 2 The Form-Based System Paradigm

for the modeler. This is known from finite state modeling in many domains.
Consider the finite states a process can have in an operating system. Of course
each process can in principle have infinite states, but the finite states are the
reduction of interest for the modeler.) The terminal can then be seen as a
finite state machine. The arrows are naturally characterized as transitions.

We now turn to the user messages. They are statically typed as well.
Therefore there can be only a finite number of possible user messages. Each
form on a page must be assigned a single user message type. The page edit
on this form prepares an instance of this type. The page change is then used
for sending this instance as a method parameter. We identify the concept
or the type with the concept of the procedure name. Therefore the type of
the message already determines the processing action of the unit system. We
call this procedure of the unit system the server action. A form on a page is
therefore an editable message instance.

For each page type the number of page changes is constant or bound by
a constant. Consider a catalogue page which contains a list of books. Each
book can be put into the shopping cart with a single click. If we model these
interaction options as separate page changes, then the number of page changes
is not bound by a constant. We therefore conceive all these interaction options
as addressing the same page change, but providing a different parameter every
time. In this way the list of interaction options forms a single conceptual
interaction.

2.1.5 Conditional System Response

If a message is sent to the unit system, the system’s response is conditional,
depending on the message and on the system’s internal state. Of course the
system’s response is conditional with respect to the content of the page, e.g.,
in the case of selecting a book, the shopping cart as the system’s response
depends on the previous cart state as well as on the chosen book. But the
system’s response can be conditional with respect to the page type as well.
Take a system login dialogue as an example. The business logic says that if a
user has never bought anything, then after six months the username will be
deactivated and can be taken by another user. The submission of username
and password can therefore have a number of different effects.

• If the username belongs to a valid account and the password is valid, then
the welcome screen for registered users is shown.

• If the username belongs to a deactivated account and the password is valid,
then the user gets a screen informing him or her that the account has been
reactivated.

• If the username belongs to a valid account which has been taken over by
a user, and the password is the last password of an old user, then the
user gets a notification that his or her account has been collected and
redistributed. A new account is offered to him or her.

