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Preface 

Combinatorial optimization problems arise in all areas of technology, 
and they certainly have implications for many network problems, for 
instance, infrastructure deployment, resource management, routing, and 
QoS provisioning. To advance and promote the theory and applications 
of combinatorial optimization in communication networks, this volume 
addresses the unique intersection of the two areas. 

There are many combinatorial optimization books on the market and 
numerous research papers in the literature addressing specific network 
problems, such as routing optimization, scheduling, and resource alloca- 
tion. This book is the first to bridge the optimization and networking 
research communities. To improve the quality and coherence of the book, 
we carefully selected papers that represent state-of-the-art research, in- 
teracted with authors to make every chapter harmonically fit in with 
the same central theme-combinatorial optimization in communication 
networks-and finally the book took its current shape. 

The book is mainly concerned with network problems that involve 
one or more combinatorial optimization solution techniques. Having in 
mind a list of combinatorial optimization methods and a list of net- 
work problems, we see a high-degree bipartite graph between them. 
Two approaches were considered: optimization method oriented (start- 
ing from combinatorial optimization methods and finding appropriate 
network problems as examples) and network problem oriented (focus- 
ing on specific network problems and seeking appropriate combinatorial 
optimization methods to solve them). We finally decided to use the 
problem-oriented approach, mainly because of the availability of papers: 
most papers in the recent literature appear to address very specific net- 
work problems, and combinatorial optimization comes as a convenient 
problem solver. 

The three editors each bring a different perspective to this book: one 
is a world-renowned expert in operations research and complexity theory, 
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and has been active in wireless networks, optical networks, and switch- 
ing networks in recent years, the other two are active in wireless network 
research, with each having a different focus area. As a result, combina- 
torial optimization methods in all network technologies are collected in 
this book, with most papers focused on the wireless networking area. 

The book covers a collection of network problems that need com- 
binatorial optimization. Most chapters start from the problem to be 
addressed, introduce the required background information, describe the 
combinatorial optimization approach, and some even provide follow-up 
references for interested readers. It can be used as a handy reference 
book for research scientists in communication networks and operations 
research. When used as a textbook, it can be used for a graduate-level 
network course for specific network problems and their solutions resulting 
from some optimization techniques, or for a course on combinatorial op- 
timization, using the network problems as real-life examples to enhance 
student understanding. 

Maggie Xiaoyan Cheng 

Yingshu Li 

Ding-Zhu Du 



Introduction 

Aims 

Combinatorial optimization is concerned with the arrangement, group- 
ing, ordering, or selection of discrete objects from a finite set. Many 
problems involve seeking a best configuration of a set of parameters 
to achieve desired objectives. Combinatorial optimization exists every- 
where. In communication networks, combinatorial optimization is used 
in network design and management to meet various operational needs. 
Classical applications of combinatorial optimization in communication 
networks trace back to the use of shortest paths in the Internet routing 
and spanning trees in the bridged LAN configuration. A typical appli- 
cation of combinatorial optimization in networks usually involves math- 
ematical modeling of the problem, with an objective to reduce network 
deployment cost or operation cost, to provide better quality of service, 
or to improve the network performance. The recent boom in network 
research created many new problems that require new insights into their 
mathematical structures, novel approaches, and efficient solution tech- 
niques. The objective of this book is to expose such new findings and 
advance the theory and applications of combinatorial optimization in 
communication networks. 

Scope 

The scope of this book includes some important combinatorial optimiza- 
tion problems arising in optical networks, wireless ad hoc networks, sen- 
sor networks, mobile communication systems, and satellite networks. 



2 Introduction 

Example network problems covered include media access control, rout- 
ing optimization, topology control, resource allocation, and management, 
QoS provisioning in various wireless networks, light-path establishment 
in optical networks, etc. The specific combinatorial optimization tech- 
niques adopted by the authors are quite diverse, on the other hand. 
Instead of focusing on the combinatorial optimization techniques and ex- 
tending them to network problems, most authors adopted an approach 
of starting from a network problem, analyzing its intrinsic structure, 
studying its computational complexity, and then developing an efficient 
solution for it. 

Overview 

The book includes combinatorial optimization problems in wireless net- 
works, optical networks, and interconnection networks, as well as other 
network applications. Wireless network research is the major part, partly 
due to its high availability in recent literature, and partly because all 
three editors are currently active in this research community. Among the 
22 chapters, 12 chapters are dedicated to wireless networks, 4 chapters 
are dedicated to specific problems in optical networks and interconnec- 
tion networks, and the remaining 6 chapters are for other more general 
network applications that are not restricted to one particular network 
technology. Consequently, the book is divided into three logical parts: 
part I, wireless networks, part 11, optical and interconnection networks, 
and part 111, other network applications. 

Part I consists of 12 chapters, all in wireless networks. Chapter 1 in- 
troduces topology control algorithms to achieve better energy efficiency 
and network capacity for both homogeneous and heterogeneous wireless 
networks. Chapter 2 includes several lines of research in cellular sys- 
tems, including channel assignment, location management, base station 
placement, and code division multiple access, and it addresses combi- 
natorial optimization problems in these topics. Chapter 3 discusses the 
problem of optimally sharing a single serverlchannel among multiple 
users/queues in wireless communication systems. Chapter 4 introduces 
strategies to improve network performance by using multipath routing 
in ad hoc networks, and specifically addresses the end-to-end multipath 
routing and N-to-1 multipath routing, and presents the protocols to find 
multiple paths and policies on the usage of multiple paths. Chapter 5 
addresses several optimization problems in ad hoc networks, including 
the minimum size virtual backbone problem, transmission power control 
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problem, and sensor node localization problem. Chapter 6 introduces 
stochastic linear programming and its application in proactive resource 
allocation in heterogeneous wireless networks. Chapter 7 addresses ap- 
proaches to select working sensors in wireless sensor networks in order 
to maximize the total lifetime of the network, and meanwhile, satisfy- 
ing the coverage and connectivity requirements. Chapter 8 addresses 
QoS provisioning for adaptive multimedia in mobile wireless networks. 
It introduces an abstract general traffic model and an optimal call ad- 
mission control scheme that guarantees the QoS requirements and max- 
imizes the utilization. Chapter 9 provides a summary of optimal power 
assignment algorithms in DS-CDMA networks, introduces a new colli- 
sion model for DS-CDMA networks, and presents the collision proba- 
bility and throughput analysis under this model. Chapter 10 introduces 
information-directed routing that jointly optimizes for maximal informa- 
tion gain and minimal communication cost in sensor networks. Chapter 
11 includes call admission and handoff management strategies for mul- 
timedia LEO satellite networks. Chapter 12 introduces the time slot 
allocation problem in MFTDMA (Multi-Frequency Time-Division Mul- 
tiple Access) satellite networks, in which the throughput is optimized 
through a linear and integer programming approach. 

Part I1 consists of 4 chapters. Chapter 13 presents a new optimization 
technique for the lightpath establishment problem in optical networks 
that considers routing and wavelength assignment jointly. Chapter 14 
introduces complexity models for WDM switching networks and provides 
complexity bounds under different request models. Chapter 15 describes 
interconnection network models and summarizes the topological prop- 
erties of the most widely used networks. Chapter 16 includes a brief 
survey of some bounded degree Cayley networks on their routing, diam- 
eter, and fault tolerance properties, and presents an anonymous leader 
election algorithm in interconnection networks with bounded degree. 

Part I11 consists of 6 chapters. Chapter 17 addresses several opti- 
mization techniques including dynamic programming, integer linear pro- 
gramming, Steiner tree construction, clustering, and their applications 
in routing problems in packet switching networks, WDM optical net- 
works, and wireless ad hoc networks. Chapter 18 introduces an optimal 
scheduling algorithm that minimizes the ratio of the response time to its 
service time for on-demand data broadcasts. Chapter 19 includes opti- 
mal stream replication and bandwidth allocation problems in simulcast- 
ing systems for real-time video distribution. Chapter 20 presents a fast 
failure recovery scheme in high-speed networks that implements the min- 



4 Introduction 

imum cost source-based rerouting. Chapter 21 introduces a primal-dual 
algorithm for the dynamic facility location problem, which has appli- 
cations in many network problems such as network design, information 
flow routing, and cache distribution on the Internet. Finally, Chapter 22 
presents preliminary work exploring more efficient approaches for hard 
combinatorial optimization problems that have significant implications 
for communication networks. 



Part I 

Combinatorial Optimization in 
Wireless Networks 



Chapter 1 

Topology Control in Wireless Multihop Networks 

Ning Li and Jennifer C. Hou 
Department of Computer Science 
University of lllinois at Urbana-Champaign Urbana, IL 61801 
E-mail: {nli , jhou)@cs . uiuc. edu 

1 Introduction 

With the rapid growth of wireless communication infrastructures over the re- 
cent years, new challenges have been posed on the system and analysis of wire- 
less mobile ad hoc networks. Energy efficiency [I] and network capacity [2] 
are among the most important performance metrics, and topology control and 
management -how to determine the transmission power of each node so as to 
maintain network connectivity while consuming the minimum possible power 
and improving the network capacity with spatial reuse - has emerged to be 
one of the most important issues [I]. 

Specifically, in a wireless network where every node transmits with its max- 
imal transmission power, the network topology is implicitly built by the routing 
protocol. In particular, each node keeps a list of neighbor nodes that are within 
the transmission range. On the other hand, in a topology controlled wireless 
network, instead of transmitting using the maximum possible power, nodes 
collaboratively determine their transmission power and define the topology of 
the wireless network by the neighbor relation under certain criteria. That is, 
each node has the opportunity of choosing the set of neighbors it would like 
to communicate with, by adjusting its transmission power. The network topol- 
ogy is thus defined by having each node form its own proper neighbor relation, 
subject to maintaining network connectivity. 
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The importance of topology control lies in the fact that it critically affects 
the system performance in several ways. In addition to reducing energy con- 
sumption and improving network capacity, topology control also has an impact 
on contention for the medium. Collisions can be mitigated as much as possible 
by choosing the smallest transmission power subject to maintaining network 
connectivity [3], [4]. 

Many centralized or localized geometric structures have been used for to- 
pology control in wireless networks, for instance, Minimum Spanning Tree 
(MST) [5], Relative Neighborhood Graph (RNG) [6], Gabriel Graph (GG), 
Delaunay Triangulation [7], and Yao structure [8], just to name a few. In this 
chapter, we present several sparse geometric structures that are based on the 
MST and minimum spanning graph for topology control. We first introduce 
the Local Minimum Spanning Tree (LMST) [9], a localized topology control 
algorithm for homogeneous wireless networks where the maximum transmis- 
sion range of each node is the same. Then we present two localized topology 
control algorithms [lo], Directed Relative Neighborhood Graph (DRNG) and 
Directed Local Spanning Subgraph (DLSS), for heterogeneous wireless net- 
works where the maximum transmission range of each node may be different. 
We also consider the fault tolerance issue under topology control. Note that by 
reducing the number of wireless links in the network, topology control actu- 
ally decreases the degree of routing redundancy. As a result, the topology thus 
derived is more susceptible to node failuresldepartures. To deal with the fault 
tolerance issue, we introduce a centralized algorithm, the Fault-Tolerant Global 
Spanning Subgraph (FGSS), and a localized algorithm, the Fault-Tolerant Lo- 
cal Spanning Subgraph (FLSS) [1 ll. Both FGSS and FLSS preserve network 
k-connectivity. Simulation results show that the algorithms discussed in this 
chapter are not only more energy efficient than existing approaches, but also 
significantly improve the network capacity. 

The rest of this chapter is organized as follows. We define the network 
model in Section 2. After setting the stage for discussion, we present LMST 
for homogeneous networks in Section 3, and DRNG and DLSS for heteroge- 
neous networks in Section 4. We then discuss in Section 5 the issue of fault 
tolerance and introduce FGSS and FLSS. Finally, we present in Section 6 a per- 
formance study of all the topology control algorithms discussed in the chapter, 
and conclude the chapter in Section 7 with several research avenues for future 
work. 



1. Topology Control in Wireless Multi-hop Networks 

2 Network Model 

Let the topology of a multihop wireless network be represented by a sim- 
ple directed graph G = (V(G) ,  E(G) )  in the 2-D plane, where V ( G )  = 
(211,212,. . . , v,) is the set of nodes (vertices) and E(G) is the set of links 
(edges) in the network. Each node has a unique id (such as an IPIMAC ad- 
dress). Here we assume id(vi) = i  for simplicity. Although G is usually 
assumed to be geometric in the literature, here we only assume that G is a gen- 
eral graph, i.e., E(G) = { ( u ,  v )  : v can receive u's transmission correctly}. 
We also assume that the wireless channel is symmetric, and each node is able 
to gather its own location information via, for example, several lightweight lo- 
calization techniques for wireless networks [12], [13], [14]. In what follows, 
we first define the following terms and notations, and then outline the design 
requirements that one should meet to devise effective topology control algo- 
rithms. 

Definition 2.1 (Visible Neighborhood.) The visible neighborhood N: is the 
set of nodes that node u can reach by using the maximum transmission power; 
i.e., N: = {v E V ( G )  : (u,  v )  E E(G)). For each node u E V ( G ) ,  let G: = 
(v(G:), E(G;)) be the induced subgraph of G such that ~ ( a )  = N:. 

Definition 2.2 (Weight Function.) Given two edges (ul ,  v l ) ,  (u2, v2) E E(G) 
and the Euclidean distancefunction d( . ,  .), the weightfunction w : E * R sat- 
isjies: 

The weight function w ensures that two edges with different end-nodes 
have different weights. As most of the topology control algorithms introduced 
below are executed by each node in a decentralized manner, the weight function 
defined above is used to guarantee a unique outcome of the topology control 
algorithms. Also note that w(u, v )  = w(v, u) .  

Definition 2.3 (Neighbor Set.) Node v is an out-neighbor of node u (and u 
ALG 

is an in-neighbor of v )  under an algorithm ALG, denoted u --+ v, if and 
only i f  there exists an edge (u,  v )  in the topology generated by the algorithm. 
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ALG In particulal; we use u + v to denote the neighbor relation in G. u t - t  v 
ALG ALG 

if and only i f u  ---+ v and v u. The out-neighbor set of node u 
ALG is N % ~ ~ ( u )  = {v  E V ( G )  : u --+ v},  and the in-neighbor set of u is 

ALG 
NFLG (u )  = {V E V ( G )  : v u}. 

Definition 2.4 (Degree.) The out-degree of a node u under an algorithm ALG, 
denoted deg;ltG(u), is the number of out-neighbors of u; i.e., defl$(u) = 
I NzFG ( u )  1. Similarly, the in-degree of a node u, denoted de@ALG (u) ,  is the 
number of in-neighbors; i.e., deg&(u) = INTLG(u)I. 

Definition 2.5 (Topology.) The topology generated by an algorithm ALG is a 
directed graph GALG = (E(GALG),  ~ ( G A L G ) ) ,  where ~ ( G A L G )  = V ( G ) ,  

ALG 
and E(GALG) = {(u ,  V )  : u ---+ v ,  U ,  v E ~ ( G A L G ) } .  

Definition 2.6 (Radius.) The radius, &, of node u is dejined as the distance 
between node u and its farthest neighbor (in terms of Euclidean distance), i.e, 

Ru = m a x ~ ~ ~ d 2 t G ( ~ ) { d ( u ,  v ) ) .  

Definition 2.7 (Connectivity.) For any topology generated by an algorithm 
ALG, node u is said to be connected to node v (denoted u + v )  if there 

ALG exists a path (po = u,  pi, . . . , pm-1 ,pm = V )  such that pi -+ Pi+l, i = 

0,1,. . . , m - 1, where pk E V ( G A ~ G ) ,  k = 0,1,. . . , m. It follows that u + v 
i fu  + p and p =$ v for some p E V(GALG). 

Definition 2.8 (BiDirectionality.) A topology generated by an algorithm ALG 
is bidirectional, iffor any two nodes u ,  v E V(GALG), u E NyLtG(v) implies 
v E N % ~ ~  (u). 

Definition 2.9 (Bidirectional Connectivity.) For any topology generated by 
an algorithm ALG, node u is said to be bidirectionally connected to node v 
(denoted u # v )  i f  there exists a path (po = u ,  pl, . . . ,p,-1, p, = v )  such 

that pi A*pi+l, i = 0,1,.  . . , m - 1, where pk E ~ ( G A L G ) ,  k = 0,1, . . . , m. 
It follows that u @ v i f u  @ p and p # v for some p E ~ ( G A L G ) .  

Definition 2.10 (Addition and Removal.) The Addition operation adds an ex- 
tra edge ( v ,  u )  into GALG if (u ,  v )  E E(GALG) and ( v ,  u )  $ E(GALG). The 
Removal operation deletes any edge (u ,  v )  E E (GALG) if ( v ,  u )  f E (GALG). 

Both Addition and Removal operations attempt to create a bidirectional 
topology by either converting unidirectional edges into bidirectional ones or 
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removing all unidirectional edges. The resulting topology after Addition or 
Removal is alway bidirectional, if the transmission range for each node is the 
same. If the transmission range for each node is not the same, the result of Re- 
moval is still bidirectional, but the result of Addition may not be bidirectional. 

Requirements for effective topology control algorithms. An effective to- 
pology control algorithm should meet several requirements [9] 

(1) The algorithm should preserve network connectivity (or k-connectivity for 
the purpose of fault tolerance). This is the fundamental requirement of 
topology control. 

(2) Because there is usually no central authority in a multihop wireless net- 
work, each node has to make its own decision based on the informa- 
tion collected from the network. That is, the topology control algorithm 
should be distributed. 

(3) As the network topology may change as a result of mobility andlor node 
failure, a topology control algorithm may have to be executed multiple 
times in response to mobility or network dynamics. It is thus desirable 
that the algorithm depend only on the information collected locally so as 
to reduce the control message overhead and the delay incurred in topol- 
ogy management. 

(4) It is desirable if all the links in the network topology induced by the topol- 
ogy control algorithm are bidirectional. Bidirectional links guarantee the 
existence of reverse paths, and facilitate link-level acknowledgment [3] 
and handshaking mechanisms, such as the floor acquisition mechanism 
request-to-send/clear-to-send (RTSICTS). 

3 Topology Control in Homogeneous Networks 

In this section, we consider a homogeneous wireless network where every node 
has the same transmission range dmax. As a result, the network topology G be- 
comes an undirected graph. The homogeneity assumption has been commonly 
used in most of the topology control algorithms in the literature, perhaps except 
for [lo, 151. We now introduce a localized topology control algorithm, Local 
Minimum Spanning Tree (LMST) [9], for homogeneous networks. 
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3.1 LMST: Local Minimum Spanning Ree 

The proposed algorithm consists of three steps: information collection, topol- 
ogy construction, and construction of topology with only bidirectional links. 

The information needed by each node u in the topology construction pro- 
cess is the information of all nodes in its visible neighborhood, %. This can 
be obtained by having each node broadcast periodically a Hello message using 
its maximal transmission power. The information contained in a Hello message 
should at least include the id and the position of the node. The time interval be- 
tween two broadcasts of Hello messages depends on the level of node mobility, 
and can be determined using a probabilistic model in [9]. 

After obtaining the neighborhood information, each node u builds its local 
minimum spanning tree Tu that spans all the nodes within its visible neigh- 
borhood N:. The time it takes to build the MST varies from O ( m  log n) (the 
original Prim's algorithm [16]) to almost linear of m (the optimal algorithm 
[17]), where n is the number of vertices and m is the number of edges. Node 
v is a neighbor of node u if and only if (u ,  v )  is a link on the local MST built 
by u.  The network topology under LMST is all the nodes in V and their indi- 
vidually perceived neighbor relations. Note that the topology is not a simple 
superposition of all local MSTs. 

Definition 3.1 (LMST.) In the Local Minimum Spanning Tree (LMST), node 
L M S T  

v is a neighbor of node u, denoted u - v, ifand only if ( u ,  v )  E E(Tu).  
That is, v  is a neighbor of u if and only i f v  is on u 's  local MST Tu, and is one 
hop away from u. 

Because the neighbor relation is determined locally by each node, some 
L M S T  

links in the final topology may be unidirectional; i.e., u 4 v does not nec- 
LM ST 

essarily imply v + u. An example is given in Figure 1, where d(u,  v )  = 
d < dmax, d(u,  wq) < dmax, d(u, wi) > dmax,i = 1,2,3, and d(v ,  w j )  < 

L M S T  L M S T  
dmax, j = 1,2,3,4. Because N: = {u ,  v ,  w4) ,  u 4 v and u 4 

L M S T  
wq. Also N: = {u,v ,  w l ,  wa, w ~ ,  w4);  hence v + wl. Here link ( u ,  v )  
is unidirectional. We can apply either Addition or Removal to obtain a bidirec- 
tionally connected topology. 

Definition 3.2 (Topology Glf;LG.) The topology G2LG generated by an algo- 
rithm ALG is an undirected graph GLG = ( ~ ( G ~ L G ) ,  E ( G ~ L G ) ) >  where 
v ( G z L S s )  = ~ ( G A L G ) ,  and I3iLG = { ( u , ~ )  : ( u , v )  E E(GALG) or 
( v ,  u )  E E(GALG)).  
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Figure 1 :  Links in the topology derived by LMST may be unidirectional. 

Definition 3.3 (Topology GILG.) The topology GFLss generated by an algo- 
rithm ALG is an undirected graph GALG = (V(GALG), E(GALG)), where 
V ( G i L G )  = ~ ( G A L G ) ,  and EiLG = {(u ,  v )  : (u ,  v )  E E(GALG) and 
( v ,  U )  E E(GALG)). 

3.2 Properties of LMST 

In this section, we prove several desirable properties of LMST, including its 
connectivity and degree bound. The following lemma is important to the proof 
of connectivity. 

Lemma 3.4 For any edge (u ,  v )  E E(G),  u H v in GLMST. 

Proof. Let all the edges (u ,  v )  E E(G)  be sorted in the ascending order of 
the weight; i.e., w(ul ,  v l )  < w(uz,  v z )  < . < w(ul,  v l ) ,  where 1 is the total 
number of edges in G. We prove by induction. 

1 .  Basis: The first edge (ul ,  v l )  satisfies w(ul ,  v l )  = min(,,,),EcG) {w(u,  v ) ) .  
L M S T  Because the shortest edge is always on the local MST, we have ul-vl, 

which means ul H vl. 

2. Induction: Assume the hypothesis holds for all edges (q, vi) ,  1 5 i < k ,  

we prove uk H vk in GLMST. If uk vk, then uk H vk. Other- 
wise, without loss of generality, assume uk + vk. In the local topol- 
ogy construction of uk, before edge (uk,vk)  is inspected, there must 
already exist a path p = (wo = uk, wl ,  w2,. . . , wm-I, wm = vk) 
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from uk to vk, where (wi, wi+1) E E(Tuk) ,  i = 0,1, . . . , m - 1. Be- 
cause edges are inserted in the ascending order of the weight, we have 
w (wi , wi+l) < w (uk , vk ) .  Applying the induction hypothesis to each 
pair (wi, ~ i + ~ ) ,  i = 0,1, .  . . , m - 1, we have wi H wi+l. Therefore, 
uk H V k .  0 

Lemma 3.4 shows that, for any edge (u ,  v )  E E(G) ,  either u v ,  
or u and v are bidirectionally connected to each other in G L ~ ~ ~  via links of 
smaller weight. 

Theorem 3.5 (Connectivity of LMST.) IfG is connected, then GLMST, GiMST 
and are all connected. 

Proof. We only need to prove that GMST preserves the connectivity of G, 
for E ( G i M S T )  C E(GLMST)  C E ( G E ~ ~ ~ ) .  Suppose G is connected. 
For any two nodes u ,  v  E V ( G ) ,  there exists at least one path p = (q = 
U ,  w l ,  wa, . . . , w,-l, w, = v )  from u to v ,  where (wi, wi+l) E E ( G ) ,  i = 
0,1, .  . . ,m - 1. Because wi H wi+l by Lemma 3.4, we have u H v in 
GLMST.  Because p is bidirectional in GLkIST, the removal of unidirectional 
links does not affect the existence of p. Therefore, u H v in i.e., 
GEMST preserves the connectivity of G. 0 

It has been observed that any minimum spanning tree of a finite set of points 
in the plane has a maximum node degree of six [IS]. We prove this property 
independently for LMST. We only need to prove the degree bound for qMST 
because the degree bound of GLMST or GiMST can only be lower. 

Lemma 3.6 Given three nodes u ,  v ,  p  E V ( G )  satisfying w(u,  p) < w(u ,  v )  
and w(p, v )  < w(u,  v ) ,  then u -tt v and v + u in ~ i ~ ~ ~ .  
Proof. We only need to consider the case where ( u , v )  E E ( G )  because 
( u ,  v )  4 E ( G )  would imply u + v and v + u. Consider the local topology 
construction of u and v. Before we insert ( u ,  v )  into T, or Tv, the two edges 
( u ,  p) and (p, v )  have already been processed because w (u ,  p) < w (u ,  v )  and 
w(p, v )  < w(u,  v ) .  Thus u H p and p H v by Lemma 3.4, which means 
u H v.  Therefore, ( u ,  v )  should be inserted into neither T, nor Tv; i.e., u + v 
and v + u in ~ i ~ ~ ~ .  0 

Before stating the next corollary, we give the definition of the Relative 
Neighborhood Graph (RNG). 
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Figure 2: The definition of cone(u, a ,  v ) .  

Definition 3.7 (Neighbor Relation in RNG.) For RNG [19], [20], u %G v i f  
and only ifthere does not exist a third node p such that w ( u ,  p) < w ( u ,  v )  and 
w(p ,  v )  < w ( u ,  v ) .  Or equivalently, there is no node inside the shaded area in 
Figure 3(a). 

The following corollary is a byproduct of Lemma 3.6. 

Corollary 3.8 The topology by LMST is a subgraph of the topology by RNG; 
i.e., GLMST 2 GRNG. 

Definition 3.9 A cone(u, a, v )  is the unbounded shaded region shown in Fig- 
ure 2. 

Theorem 3.10 (Degree Bound) The out-degree of a node in GT is bounded 

by six; i.e., degTLsT+(u) 5 6,Vu E v ( G ~ , ~ ~ ) .  

Proof. First we prove by contradiction that if v E N?GsT+(u), then there can- 
not exist any other node w € NpAsT+(u) that lies inside Cone(u ,  2 ~ 1 3 ,  v ) .  
Assume that such a node w exists; then Lwuv < 7r/3. If w (u ,  w )  > w (u ,  v ) ,  
then Luvw > 7r/3 > Lwuv.  We have W ( U ,  W )  > W ( V ,  w ) ,  which implies 
u - w by Lemma 3.6. If w ( u ,  w )  < w ( u , v ) ,  then Luwv > 7r/3 > Lwuv.  
We have W ( U ,  v) > W ( V ,  w ) ,  which implies u * v by Lemma 3.6. Both 
scenarios contradict the assumption that v ,  w E y ! s T +  ( u ) . ~ , ~  

Consider any node u E v ( G i M S T ) .  Put the nodes in NLMST+(u)  in or- 
der such that for the ith node wi and the jth node wj ( j  > i), ,w(u, w j )  > 
w(u ,  w i ) .  We have proved that Lwiuwj 2 n / 3 ;  i.e., node ,wj cannot reside 
inside Cone(u ,  2 ~ 1 3 ,  w i ) .  Therefore, node u cannot have any neighbor other 
than node wi inside Cone(u ,  2 ~ 1 3 ,  w i ) .  By induction on the rank of nodes in 
N?ksT+(u), the maximal number of neighbors that u can have is no greater 
than six; i.e., degPjsT+ ( u )  5 6. 
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4 Topology Control in Heterogeneous Networks 

As mentioned in Section 3, most of the topology control algorithms in the lit- 
erature assume homogeneous networks. However, this may not always hold in 
practice due to various reasons. First, even devices of the same type may have 
slightly different transmission ranges. Second, there exist devices of dramati- 
cally different capabilities in the same network. Third, the transmission range 
may be time-varying or affected by environmental stimuli. 

In this section, we consider a heterogeneous wireless network where the 
maximum transmission range of each node may be different. In this case the 
network topology G becomes a directed graph. Let rmin and rmax be the 
smallest and the largest transmission ranges among all nodes in the network, 
respectively. We first show that most of the topology control algorithms that 
are devised under the homogeneity assumption cannot be directly applied to 
heterogeneous networks. Then we introduce two localized topology control al- 
gorithms, Directed Relative Neighborhood Graph (DRNG) and Directed Local 
Spanning Subgraph (DLSS). 

4.1 Motivations 

In this section, we give several examples that show topology control algorithms 
devised under the homogeneity assumption, e.g., CBTC [21], RNG [6], and 
LMST, may render disconnectivity in heterogeneous networks [lo], thus mo- 
tivating the need for new topology control algorithms for heterogeneous net- 
works. 

CBTC and RNG. Two of the other well-known topology control algorithms 
for homogeneous networks are Cone-Based Topology Control (CBTC) [21] and 
Relative Neighborhood Graph RNG [6]. CBTC(a) is a two-phase algorithm in 
which each node finds the minimum power p such that transmitting with p en- 
sures that it can reach some node in every cone of degree a. The algorithm has 
been analytically shown to preserve network connectivity if a < 5 ~ 1 6 .  It has 
also ensured that every link between nodes is bidirectional. Several optimiza- 
tions to the basic algorithm are also discussed, which include: (i) a shrink-back 
operation can be added at the end to allow a boundary node to broadcast with 
less power, if doing so does not reduce the cone coverage; (ii) if a < 2 ~ 1 3 ,  
asymmetric edges can be removed while maintaining the network connectiv- 
ity; and (iii) if there exists an edge from u to q and from u to v2, respec- 
tively, the longer edge can be removed while preserving connectivity, as long 
as d(v1, v2) < max{d(u, v l ) ,  d(u, 212)). 
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(a) Relative Neighborhood Graph (b) Modijied Relative Neighbor- 
hood Graph (MRNG) 

(c)  Directed Relative Neighbor- 
hood Graph (DRNG) 

Figure 3: The definitions of RNG, MRNG, and DRNG. 

To facilitate the introduction of RNG, we give the definition of the Relative 
Neighborhood Graph (RNG) below. 

Definition 4.1 (Neighbor Relation in RNG.) For RNG [19],[20], u  v if 
and only if there does not exist a third node p such that w  (u ,  p )  < w  (u, v) and 
w(p, v) < ~ ( u ,  v). Or equivalently, there is no node inside the shaded area in 
Figure 3(a). 

The notion of RNG is proposed in [6] to facilitate topology initialization of 
wireless networks. Based on local knowledge, each node makes decisions to 
derive the network topology based on RNG. The network topology thus derived 
has been reported to exhibit good overall performance in terms of power usage, 
interference, and reliability. 

Counterexamples. As shown in Figure 4, the network topology derived un- 
der CBTC(;T)  [21] (without optimization) may not preserve connectivity in 
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(a) Original topology 
(without topology con- 
trol) is strongly con- 
nected 

(b) Topology by 
CBTC(%) without 
optimization is not 
strongly connected: 
there is no path from 
'U2 to 'U6 

-- 

(c) Topology by DLSS 
is strongly connected 

Figure 4: An example that shows CBTC(F) may render disconnectivity in 
heterogeneous networks. There is no path from ZQ to vs due to the loss of edge 
(v2, v6), which is discarded by y because v5 and v7 have already provided the 
necessary coverage. 

(a) Original topology 
(without topology con- 
trol) is strongly con- 
nected 

(b) Topology by RNG 
is not strongly con- 
nected: there is no path 
from u5 to UI  

(c) Topology by DLSS 
is strongly connected 

Figure 5: An example that shows RNG may render disconnectivity in heteroge- 
neous networks. There is no path from vj to vl due to the loss of edge (y , vl), 
which is discarded because J(v5,vl)l < I(v2,vl)l, and I(v5,v2)I < I(v2,vl)J. 

a heterogeneous network. (The arrows in the figure indicate the direction of 
the links.) Similarly, as shown in Figure 5, the network topology derived under 
RNG may be disconnected in a heterogeneous network. As RNG is defined for 
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undirected graphs only, we may modify its definition for directed graphs. 

Definition 4.2 (MRNG.) For Modified Relative Neighborhood Graph (MRNG), 
M R N G  

u  + v  ifand only ifthere does not exist a third node p  such that w (u,  p) < 
W ( U ,  v ) , d ( u ,  P) 5 ru and d p ,  v )  < 4 %  v ) ,  d (v ,  P )  I r"J (Figure 3(b)). 

In spite of the modification, as shown in Figure 6, the topology derived under 
MRNG may still be disconnected in a heterogeneous network. 

(a) Original topology 
(without topology con- 
trol) is strongly con- 
nected 

(b) Topology by 
MRNG is not strongly 
connected: there is no 
path from v5 to vl  

(c) Topology by DLSS 
is strongly connected 

Figure 6: An example that shows MRNG may render disconnectivity in het- 
erogeneous networks. There is no path from .rg to vl due to the loss of edge 
( v z ,  v l ) ,  which is discarded because I ( @ ,  u s ) /  < I(v2, V I ) ~ ,  and [ ( v I ,  u s ) [  < 
1 ( 7 J 2 , ~ 1 ) 1 .  

One possible extension to LMST is for each node to build a local directed 
minimum spanning tree [22], [23], [24] and keep only neighbors within one 
hop. Unfortunately, as shown in Figure 7, the resulting topology does not pre- 
serve strong connectivity. In the next subsection, we elaborate on how to revise 
LMST and RNG so that strong connectivity is preserved in heterogeneous net- 
works. 

4.2 Localized Algorithms: DRNG and DLSS 

In this section, we present two localized topology control algorithms, Directed 
Relative Neighborhood Graph (DRNG) and Directed Local Spanning Sub- 
graph (DLSS), for heterogeneous networks [lo]. Both algorithms are com- 
posed of three steps: information collection, topology construction, and con- 
struction of topology with only bidirectional links. The first and the last steps 
are essentially the same as those described in Section 3.1. Therefore, we only 
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(a) Original topology 
(without topology con- 
trol) is strongly con- 
nected 

(c) The local directed 
MST rooted at v7 

(b) The local directed 
MST rooted at va 

(d) The resulting topol- 
ogy is not strongly con- 
nected: there is no path 
from 07 to v4 

Figure 7: An example that shows the algorithm in which each node builds a 
local directed minimum spanning tree and only keeps the one-hop neighbors 
may result in disconnectivity. 

elaborate on the step of topology construction here. Essentially, instead of 
building a directed local minimum spanning tree (as in LMST) or using MRNG 
(as in RNG-based topology control) to define the neighbor relation, a node will 
use the following definition. 

Definition 4.3 (DRNG.) For Directed Relative Neighborhood Graph (DRNG), 
DRNG 

v + u i f  and only i f  v E N: and there does not exist another node 
p E N: such that w(u, p) < w(u, v) and w (p, v )  < w(u, v), d(p, v)  5 rp 
(see Figure 3(b)). 

DLSS  Definition 4.4 (DLSS.) For Directed Local Spanning Subgraph (DLSS), v + 
u ifand only i f  ( u ,  v) E E(Su), where Su is the output of DLSS(u) (Figure 8). 
Hence node v is a neighbor of node u i f  and only if node v is on node U S  
directed local spanning graph &, and is one hop away from node u. 
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Procedure: DLSS(u) 
Input: G:, the induced subgraph of G that spans the visible neighborhood of u; 
Output: Su = (V(Su) ,  E(Su)) ,  the local spanning subgraph of GL; 
begin 
1: V ( S u )  := V ,  E(Su)  := 8; 
2: Sort all edges in E(G:) in the ascending order of weight 
3: for each edge (uo, vo) in the order 
4: if uo is not connected to vo in Su 
5 : E(Su) := E(Su) U { ( ~ o l ~ o ) ) ;  

6: endif 
7: end 
end 

Figure 8: DLSS Algorithm. 

DRNG and DLSS are natural extensions of RNG and LMST for heteroge- 
neous networks, respectively. Conceptually, in DLSS instead of computing a 
directed local MST that minimizes the total cost of all the edges in the sub- 
graph (Section 4.1), each node computes a directed local subgraph (Figure 10) 
that minimizes the maximum cost among all edges in the subgraph. 

4.3 Properties of DRNG and DLSS 

In this section, we discuss several desirable properties of DRNG and DLSS by 
presenting a sequence of lemmas and theorems. In particular, Lemma 4.5, The- 
orem 4.6, and Lemma 4.7 can be proved by keeping in mind that G is a directed 
graph and following the same line of argument in Section 3.1. Note that we can 
only prove that u =+ v in Lemma 4.5, because uk -+ vk does not guarantee 
that vk + uk. Theorem 4.6 can be proved with the use of Lemma 4.5, in the 
same fashion Theorem 3.5 was proved with the use of Lemma 3.4. 

Lemma 4.5 For any edge (u,  v )  E E(G), we have u * v in GDLSS. 

Theorem 4.6 (Connectivity of DLSS.) GDLss preserves the connectivity of 
G, i.e., GDLss is strongly connected ifG is strongly connected. 

Lemma 4.7 Given three nodes u,  v,p E V(GDLss) satisfying w(u, p )  < 
W ( U ,  v )  and w(p, v )  < w(u, v), d(p, v )  5 rp, then u + v in GDLSS. 

By leveraging Theorem 4.6 to prove that DRNG preserves strong connec- 
tivity, we first prove the following lemma. 
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Lemma 4.8 The edge set of GDLSS is a subset of the edge set of GDRNG, i.e., 
E(GDLSS)  C E(GDRNG). 

Proof. We prove by contradiction. For any edge (u ,  v )  E E(GDLss), as- 
sume (u ,  v )  $ E(GDRNG).  From the definition of DRNG, there must ex- 
ist a third node p such that w(u,p)  < W ( U ,  v ) ,  d(u,p) 5 ru and w(p, v )  < 
w(u,v) ,d(p,v)  5 rp.  By Lemma 4.7, u -n v in GDLSS; i.e., (u , v )  f 
E(GDLss).  CI 

The following theorem that proves DRNG preserves strong connectivity is 
a direct result of Theorem 4.6 and Lemma 4.8. 

Theorem 4.9 (Connectivity of DRNG) IfG is strongly connected, then GDRNG 
is also strongly connected. 

Let Disk(u, r )  denote the disk of radius r ,  centered at node u. Then the 
following lemma is a direct result of the definition of DRNG. 

Lemma 4.10 Given three nodes u, v,  p E V(GDRNG) satisfying w (u ,  p) < 
W ( U ,  V )  and ~ ( p ,  v )  < w(u, v) ,  d(p, v )  5 rp, then u + v in GDRNG. 

Now to derive the in-degree bound, we state the following corollary (which 
is a direct result of Lemma 4.7 and Lemma 4.10). 

Corollary 4.11 Ifv is an out-neighbor of u  in GDLss or GDRNG, and d(u, v )  2 
rmin, then u can not have any other out-neighbor inside Disk(v, rmin). 

Based on the above corollary, the following two theorems that give the in- 
degree bound of GDLss and GDRNG can be proved by following the same line 
of arguments found in Theorem 3.10. 

Theorem 4.12 For any node u in GDLss or GDRNG, the number of out- 
neighbors that are inside Disk(u, rmi,) is at most 6. 

Theorem 4.13 (In Degree Bound.) The in-degree of any node in GDLss or 
G D ~ N G  is bounded by 6. 

To derive the out-degree bound, we prove the following theorem. 

Theorem 4.14 (Out-Degree Bound.) The out-degree of any node in GDLSS 
or GDRNG is bounded by a constant that depends only on rmax and rmin. 


