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Foreword

What exactly is Approximate Commutative Algebra? Where precisely can the ap-
proximateness arise? Don’t think that it just means

xy =0.9999 yx

and be aware there are certainly some important places where approximation and
vagueness are definitely not allowed: e.g. in the theorems!

The name ApCoA is an acronym for “Approximate Commutative Algebra”. It
has received some criticism for its self-contradictory nature: algebra is exact, so it
cannot be approximate — but it is for this very same reason that we like it! Our
explicit goal is precisely that of building a bridge between the approximate data of
the real world and the exact structures of commutative algebra. We believe that the
nine papers contained in this volume give an excellent insight into this emerging
field of research, and will contribute to the building of this important bridge.

The original stimulus for this book was the first ApCoA workshop hosted in
February 2006 by the Radon Institute of Computational and Applied Mathematics
(RICAM) of the Austrian Academy of Science and the Research Institute for Sym-
bolic Computation (RISC) of the Johannes Kepler University in Linz, Austria. As
interest spread and many new ideas and results sprang up, it quickly became clear
that a second ApCoA workshop was warranted. This second workshop was part of
the RISC Summer 2008 event, and was again co-organized by RICAM. Most of the
articles in this book grew out of the presentations given at this second workshop.



Preface

We have gathered together in this volume nine articles offering highly varied points
of view as to what Approximate Commutative Algebra (ApCoA) comprises. These
diverse perspectives furnish an accessible overview of the current state of research
in this burgeoning area. We believe that bringing together these surveys creates a
single reference point which will be of benefit both to existing practitioners who
wish to expand their horizons, and also to new researchers aspiring to enter this
exciting and rapidly developing field. The presentations are intended also to appeal
to the interested onlooker who wants to stay informed about recent developments in
the field.

The contributions to this book come from active university researchers with a
keen interest in ApCoA. Some of them have extensive experience in the field, while
others are relative newcomers bringing with them new tools and techniques. The
survey articles by their very nature can only scratch the surface, but each one comes
with its own bibliography for those who desire to delve more deeply into the numer-
ous topics discussed.

To help the reader orient himself, the paragraphs below summarise the scope of
each of the contributed articles. Read and enjoy!

Kreuzer, Poulisse, Robbiano
From Oil Fields to Hilbert Schemes

New techniques for dealing with problems of numerical stability in computations
involving multivariate polynomials allow a new approach to real world problems.
Using a modelling problem for oil field production optimization as a motivation, the
paper presents several recent developments involving border bases of polynomial
ideals. To get a deeper understanding for the algebra underlying this approximate
world, recent advances concerning border basis and Grobner basis schemes are dis-
cussed. For the reader it will be a long, tortuous, sometimes dangerous, yet hopefully
fascinating journey from oil fields to Hilbert schemes.

vii
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Bates, Hauenstein, Peterson, Sommese
Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate
Polynomials

Let A be a matrix whose entries are algebraic functions defined on a reduced quasi-
projective algebraic set X, e.g. multivariate polynomials defined on X := CV. The
sets Sg(A), consisting of x € X where the rank of the matrix function A(x) is at
most k, arise in a variety of contexts: for example, in the description of both the
singular locus of an algebraic set and its fine structure; in the description of the
degeneracy locus of maps between algebraic sets; and in the computation of the
irreducible decomposition of the support of coherent algebraic sheaves, e.g. supports
of finite modules over polynomial rings. The article presents a numerical algorithm
to compute the sets S;(A) efficiently.

Wau, Reid, Golubitsky
Towards Geometric Completion of Differential Systems by Points

Numerical Algebraic Geometry represents the irreducible components of algebraic
varieties over C by certain points on their components. Such witness points are
efficiently approximated by Numerical Homotopy Continuation methods, as the in-
tersection of random linear varieties with the components. The paper outlines chal-
lenges and progress for extending such ideas to systems of differential polynomials,
where prolongation (differentiation) of the equations is required to yield existence
criteria for their formal (power series) solutions.

Scott, Reid, Wu, Zhi
Geometric Involutive Bases and Applications to Approximate Commutative Algebra

This article serves to give an introduction to some classical results on Involutive
Bases for polynomial systems. Further, it surveys recent developments, including a
modification of the above: geometric projected involutive bases, for the treatment of
approximate systems, and their application to ideal membership testing and Grobner
basis computation.

Zeng
Regularization and Matrix Computation in Numerical Polynomial Algebra

Numerical polynomial algebra emerges as a growing field of study in recent years
with a broad spectrum of applications and many robust algorithms. Among the
challenges faced when solving polynomial algebra problems with floating-point
arithmetic, the most frequently encountered difficulties include the removal of ill-
posedness and the handling of large matrices. This survey develops regularization
principles that reformulate the algebraic problems for their well-posed approximate
solutions, derives matrix computations arising in numerical polynomial algebra, as
well as a subspace strategy that substantially improves the computational efficiency
by reducing the matrix sizes. These strategies have been successfully applied to nu-
merical polynomial algebra problems such as GCD, factorization, elimination and
determination of multiplicity structure.
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Shekhtman
Ideal Interpolation: Translation to and from Algebraic Geometry

This paper discusses four themes that surfaced in multivariate interpolation and
which seem to have analogues in algebraic geometry. The hope is that mixing these
two areas together will benefit both. In Approximation Theory (AT) the limits of
Lagrange projectors correspond to components of the Hilbert scheme of points in
Algebraic Geometry (AG). Likewise, error formulas in (AT) may correspond to ideal
representations in (AG), and so on.

Riccomagno, Wynn
An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint

There is a need to make a closer connection between classical response surface
methods and their experimental design aspects, including optimal design, and alge-
braic statistics, based on computational algebraic geometry of ideals of points. This
is a programme which was initiated by Pistone and Wynn (Biometrika, 1996) and is
expanding rapidly. Particular attention is paid to the problem of errors in variables
which can be taken as a statistical version of the ApCoA research programme.

Stetter
ApCoA = Embedding Commutative Algebra into Analysis: (my view of computa-
tional algebra over C)

This paper deals with the philosophical problem of understanding what ApCoA
should mean and, most importantly, what it should do. The main position is that
ApCoA comprises consideration of problems of Commutative Algebra over the
complex or real numbers, admission of some data of limited accuracy, and use of
floating-point arithmetic for the computation of numerical results. In the presence of
empirical data, i.e. with nearly all computational problems arising from real world
applications, the analytic viewpoint is indispensable. The spread of the data may
include singular or degenerate situations which would be overlooked if the neigh-
bourhood of a specified problem were neglected.

Kaltofen
Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-
Squares

Errors in the coefficients due to floating point round-off or through physical mea-
surement can render exact symbolic algorithms unusable. Hybrid symbolic-numeric
algorithms compute minimal deformations of those coefficients that yield non-trivial
results, e.g. polynomial factorizations or sparse interpolants. The question is: are the
computed approximations the globally nearest to the input? This paper presents a
new alternative to numerical optimization, namely the exact validation via symbolic
methods of the global minimality of our deformations.
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Chapter 1
From OQil Fields to Hilbert Schemes

Martin Kreuzer, Hennie Poulisse, and Lorenzo Robbiano

Abstract New techniques for dealing with problems of numerical stability in com-
putations involving multivariate polynomials allow a new approach to real world
problems. Using a modelling problem for the optimization of oil production as a
motivation, we present several recent developments involving border bases of poly-
nomial ideals. After recalling the foundations of border basis theory in the exact
case, we present a number of approximate techniques such as the eigenvalue method
for polynomial system solving, the AVI algorithm for computing approximate bor-
der bases, and the SOI algorithm for computing stable order ideals. To get a deeper
understanding for the algebra underlying this approximate world, we present re-
cent advances concerning border basis and Grobner basis schemes. They are open
subschemes of Hilbert schemes and parametrize flat families of border bases and
Grobner bases. For the reader it will be a long, tortuous, sometimes dangerous, and
hopefully fascinating journey from oil fields to Hilbert schemes.

Key words: oil field, polynomial system solving, eigenvalue method, Buchber-
ger-Moller algorithm, border basis, approximate algorithm, border basis scheme,
Grobner basis scheme, Hilbert scheme
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Introduction

Why did the chicken cross the road?
To boldly go where no chicken has gone before.
(James Tiberius Kirk)

A Bridge Between Two Worlds. Oil fields and Hilbert schemes are connected
to very different types of ingredients for algorithmic and algebraic manipulation:
continuous and discrete data. This apparent dichotomy occurs already in a single
polynomial over the real number field. It consists of a discrete part, the support, and
a continuous part, the set of its coefficients. The support is well understood and the
source of a large amount of literature in classical algebra. On the other hand, if the
coefficients are not exact real numbers but approximate data, the very notion of a
polynomial and all algebraic structures classically derived from it (such as ideals,
free resolutions, Hilbert functions, etc.) tend to acquire a blurred meaning.

An easy example is the following. Consider three distinct non-aligned points in
the affine plane over the reals. First of all, if the coordinates are not exact, it is not
even clear what we mean by “non-aligned”; a better description might be “far from
aligned”. The vanishing ideal of the three points is generated by three quadratic
polynomials. However, if we change some of the coefficients of these polynomials
by a small amount, almost surely we get the unit ideal, since the first two conics still
intersect in four points, but the third will almost certainly miss all of them.

How can we cope with this situation? And why should we? The first, easy an-
swer is that approximate coefficients are virtually inevitable when we deal with real
world problems. In this paper we concentrate on a specific problem where vectors
with approximate components encode measurements of physical quantities taken in
an oil field. Based on actual industrial problems in the field of oil production, we
want to popularize the idea that good models of many physical phenomena can be
constructed using a bottom-up process. The heart of this method is to derive mathe-
matical models by interpolating measured values on a finite set of points. This task
can be solved if we know the vanishing ideal of the point set and a suitable vector
space basis of its coordinate ring.
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This leads us to the next question. Given a zero-dimensional ideal [ in a polyno-
mial ring over the reals, if we assume that the coefficients of the generating polyno-
mials are inexact, is it still an ideal? What is the best way of describing this situation?
The fact that Grobner bases are not suitable for computations with inexact data has
long been well-known to numerical analysts (see [30]). This is due to the rigid struc-
ture imposed by term orderings. Other objects, called border bases, behave better.
They have emerged as good candidates to complement, and in many cases substitute
for, Grobner bases (see [17], [21], [22], [26], [29]). But possibly the most important
breakthrough is the recent discovery of a link between border bases and Hilbert
schemes. We believe that it may provide a solid mathematical foundation for this
new emerging field which tries to combine approximate methods from numerical
analysis with exact methods from commutative algebra and algebraic geometry.

You got to be careful if you don’t know where you're going
because you might not get there.
(Yogi Berra)

Our Itinerary. In the first part of the introduction we have already suggested the
existence of an unexpected bridge between oil fields and Hilbert schemes. Let us
now be more specific about the content of the paper and indicate how it tries to build
that bridge. Section 1 provides an introduction to one of the main problems arising
in oil fields, namely the control of the production. Since we assume that our typical
reader is not an expert geologist, we provide some background about the physical
nature of an oil reservoir, illustrate the main production problem, and describe a
new mathematical approach to solve it. We call it “new”, since in our opinion it is
very different from the standard view on how to use mathematical models in such a
context.

Border bases, the main technical tool we use later, are described in Section 2.
This material is mainly taken from [21], Section 6.4 and [17]. We describe the defi-
nition and the main properties of border bases and compare them to Grobner bases
using suitable examples. Several important results about border bases are described,
in particular their characterization via the commutativity of the formal multiplica-
tion matrices due to B. Mourrain (see [26]). A brief excursion is taken into the realm
of syzygies, their relation to the border web, and their importance in another funda-
mental characterization of border bases based on the work of H. Stetter (see [30]).

A useful aspect of border basis theory is that we try to specify a “nice” vector
space basis of the quotient ring R[xy,...,x,]/I. This sort of basis plays a funda-
mental role in the problem of solving polynomial systems. Notwithstanding the fact
that solving polynomial systems is not a main topic in our presentation, we decided
to use Section 3 to give a description of a technique which comes from numerical
analysis and uses linear algebra methods, in particular eigenvalues and eigenvectors
(see [4], [5], and [9]). The importance of a special kind of matrices, called non-
derogatory matrices, is illustrated by Example 1.3.9 and also used in [19] in the
context of border basis theory.

Sections 4 and 5 are the computational heart of the paper. They describe two
somehow complementary algorithmic approaches to the problem of computing the
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“approximate vanishing ideal” of a finite set of approximate (empirical) points and a
basis of the corresponding quotient ring. In particular, the first part of Section 4 deals
with the AVI algorithm and is based on the presentation in [14]. The AVI algorithm
makes extensive use of the singular value decomposition (SVD) described in Sub-
section 4.A and of the stable reduced row echelon form explained in Subsection 4.B.
Its main outputs are an order ideal of monomials & and an approximate ¢ -border
basis, a concept introduced in Subsection 4.C. The AVI algorithm is then applied
in Subsection 4.D to the concrete construction of polynomial models describing the
production of a two-zone oil well.

Section 5 deals with the SOI algorithm which treats the following problem: given
a finite set of points X whose coordinates are given with limited precision, find, if
there exists one, an order ideal & such that the residue classes of its elements form
a stable basis of the quotient ring P/.# (X) where P = R[xy,...,x,] and #(X) is
the vanishing ideal of X. Here stable means that the residue classes of the elements
in ¢ form a basis of the quotient ring for every small perturbation of the set X.
This section summarizes the results of [2]. In Subsection 5.B we describe several
easy, but illustrative examples and compare the behaviour of the SOI and the AVI
algorithm in these cases. The topic studied in Sections 4 and 5 is an active area of
research, and several further approaches have been suggested (see for instance [10]
and [25]).

Having done all the dirty work (oil fields are not places to be dressed formally),
it is time to leave the sedimentary rocks and to look at the problems concerning
approximate data from a more general perspective. Polynomials with empirical co-
efficients can be viewed as families of polynomials. So, the next question is whether
we can describe families of polynomial ideals algebraically. The answer is yes! The
possibility of parametrizing families of schemes by one big scheme is a remarkable
feature of algebraic geometry. Hilbert schemes are the most widely known instance
of this phenomenon, and consequently they have been studied thoroughly. More-
over, the Hilbert scheme of all zero-dimensional ideals in P of colength s can be
covered by affine open subschemes which parametrize all subschemes Spec(P/I)
of the affine space A% with the property that P/I has a fixed vector space basis. It
is interesting to note that the construction of such subschemes is performed using
border bases (see for instance [15], [16], and [24]). Also Grobner bases can be used,
since they provide tools for constructing suitable stratifications of Hilbert schemes.

Section 6 is devoted to the explanation of these ideas. Its main sources are the
two papers [22] and [28]. In Subsection 6.A we start with an informal explanation of
two examples (see Examples 1.6.1 and 1.6.2) which are very easy but nevertheless
suitable to illustrate the topic. Then we move to Subsection 6.B where we introduce
border basis schemes and their associated border basis families. We show the diffi-
culties of generalizing one of the fundamental tools of Grobner basis theory to the
border basis setting, namely the flat deformation to the leading term ideal. Indeed,
the problem is only partially solved and still open in general. The final part of the
subsection contains Example 1.6.14 where explicit defining equations are given for
one particular border basis scheme, and the connection to the approximate border
bases of Section 4 is made.
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The final Subsection 6.C is devoted to Grobner basis schemes and summarizes
the presentation in [28]. It is shown that Grobner basis schemes and their associ-
ated universal families can be viewed as weighted projective schemes (see Theo-
rem 1.6.19), a fact that constitutes a remarkable difference between Grobner and
border basis schemes. A comparison between the two types of schemes is given
by Theorem 1.6.20 and Corollary 1.6.21, and their equality is examined in Propo-
sition 1.6.24. Throughout the section we highlight the connection between border
basis schemes, Grobner basis schemes, and Hilbert schemes.

At that point the journey from oil fields to Hilbert schemes is over. To get you
started with this itinerary, let us point out that, unless specifically stated other-
wise, our notation follows the two books [20] and [21]. The algorithms we discuss
have been implemented in the computer algebra system CoCoA(see [8]) and in the

ApCoCoA library (see [3]).

1.1 A Problem Arising in Industrial Mathematics

Are oil fields commutative?

Are they infinite?

What is their characteristic?

Are they stable?

What are their bases?

(from “The Book of Mathematical Geology”)

1.1.A. Oil Fields, Gas Fields and Drilling Wells. Research in relation to oil reser-
voirs faces many times the same kind of difficulty: the true physical state of an
intact, working reservoir cannot be observed. Neither in an experiment of thought,
for instance a simulation, nor in a physical experiment using a piece of source rock
in a laboratory, the reservoir circumstances can be imitated exactly. This means that
the physical laws, i.e. the relations between the physical quantities, are not known
under actual reservoir circumstances.

To shed some additional light upon this problem, let us have a brief look at oil
field formation and exploitation. The uppermost crust of the earth in oil and gas-
containing areas is composed of sedimentary rock layers. Since the densities of oil
and gas are smaller than the density of water, buoyancy forces them to flow upward
through small pores in the reservoir rock. When they encounter a trap, e.g. a dome
or an anticline, they are stopped and concentrated according to their density: the gas
is on top and forms the free gas cap, the oil goes in the middle, and the (salt) water
is at the bottom. To complete the trap, a caprock, that is a seal which does not allow
fluids to flow through it, must overlie the reservoir rock.

Early drillings had some success because many subsurface traps were leaking.
Only by the early 1900s it became known that traps could be located by mapping
the rock layers and drilling an exploration well to find a new reservoir. If commercial
amounts of oil and gas turn out to be present, a long piece of steel pipe (called the
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production tubing) is lowered into the bore hole and connected to the production
facilities.

In a gas well, gas flows to the surface by itself. There exist some oil wells, early
in the development of an oil field, in which the oil has enough pressure to flow up the
surface. Most oil wells, however, do not have enough pressure and a method called
artificial lift may then be used. This means that gas is injected into the production
tubing of the well. The injected gas mixes with the oil and makes it lighter, thereby
reducing the back pressure of the reservoir. On the surface the fluids are transported
through long pieces of tubing to a large vessel called separator where the three
physical phases — oil, water and gas — are separated.

During the exploitation of a reservoir, the pressure of the fluid still in the reser-
voir drops. This decrease of the reservoir pressure over time is depicted by the de-
cline curve. The shape of the decline curve and the total volume of fluid that can
be produced from a reservoir (which is called the ultimate recovery) depend on the
reservoir drive, the natural energy that pushes the oil or the gas through the sub-
surface and into the inflow region of the well. The ultimate recovery of gas from a
gas reservoir is often about 80% of the gas in the reservoir. Oil reservoirs are far
more variable and less efficient: on average, the ultimate recovery is only 30% . This
leaves 70% of the oil remaining in the pressure depleted reservoir which cannot be
produced anymore.

Thus, on the most abstract level, the problem we want to address is how to in-
crease the ultimate recovery of an oil reservoir.

1.1.B. Production from Multi-Zone Wells. A well may produce from different
parts, called pockets or zones, of an oil reservoir. The total production of such a well
consists of contributions from the different zones. The separate contributions can be
controlled by valves, called the down-hole valves, which determine the production
volume flowing into the well tubing at the locations of the different zones. For such a
multi-zone well, there may be interactions between the zones in the reservoir. Most
certainly, the different contributions will interact with each other when they meet
in the common production tubing of the multi-zone well. This situation is called
commingled production.

In this paper we consider a multi-zone well consisting of two producing and
interacting zones. Like in a single oil well, the common production flows to the
bulk separator where the different phases are separated and the production rates of
the separated phases are measured. Besides the phase productions, measurements
like pressures, temperatures and injected “lift-gas” are collected; down-hole valves
positions are also recorded. A typical set of production variables for a such multi-
zone well is:

1. the opening of the valve through which the oil from the first zone is entering the
multi-zone well; the opening of the valve is measured in percentages: 0% means
that the valve is closed; 100% means that the valve is completely open;

2. the opening of the valve through which the oil from the second zone is entering
the multi-zone well;
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3. the pressure difference over the down-hole valve of the second zone which is a
measure for the inflow from the reservoir into the well at the valve position; if
the valve is closed we assume this value to be zero;

4. the pressure difference over the down-hole valve of the first zone when the valve
in that zone is open; if the valve is closed we assume this value to be zero;

5. the volume of gas produced simultaneously with the oil;

the pressure difference between the inflow locations in the production tubing;

7. the pressure difference which drives the oil through the transportation tubing.

o

One might be tempted to think that the total oil production of a multi-zone well
is the sum of the productions of each zone when producing separately. This is in any
case the current state of the art, where the total production is regressed against the
separate productions, that is the total production is written as a linear combination
of the separate productions. The coefficients in this linear sum are called reconcil-
iation factors. The oil produced by one of the zones may push back the oil which
tries to flow into the well at the other zone. Likewise, the gas which is produced si-
multaneously with the oil may have stimulating or inhibiting effects on the inflow of
the oil with respect to the situation of single zone productions. With reference to the
remarks above, this behavior does not sound very linear. Indeed, in Section 4.D we
will use our algebraic approach in a two-zone well example to demonstrate that the
total production is not a linear combination of the separate productions. We believe
that the reason of the (usually) low ultimate recovery of a multi-zone well is due to
the fact that the interactions among the different producing zones are unknown.

This leads us to a first concretization of the problem we want to study: find a
model for the total production of an oil well which takes the interactions into account
and describes the behavior correctly on longer time scales.

1.1.C. Algebraization of the Production Problem. Before plunging into the cre-
ation of an algebraic setting for the described production problem, let us spend a few
words on why we believe that approximate computational algebra is an appropriate
method to deal with it.

The available data correspond to a finite set of points X in R”. Their coordinates
are noisy measurements of physical quantities associated with the well: pressures,
oil and gas production, valve positions, etc. These points represent the behavior of
the well under various production conditions. The combination of the contribution
of the individual zones to the total production is a sum which has to be corrected by
taking into account the effect of the interactions. As in many other situations (for
instance, in statistics), the interactions are related to products of the collected data
series. Many of the known physical laws and model equations are of a polynomial
nature. And even if they are not, some elementary insights into the system (e.g. that
the result depends exponentially on a certain data series) allow us to prepare the data
series appropriately (e.g. by computing their logarithms). Consequently, the starting
point for us is the polynomial ring P = R[xy,...,x,].

In the following we will deal with the case of a two-zone well. The production
situation is depicted schematically in Figure 1.1. The notation AP refers to pressure
differences.
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Fig. 1.1 Schematic representation of a two-zone well.

The valves indicated in this figure are used to influence the inflow of the fluids
at the two locations into the production tubing of the well. If a valve is closed, there
is no inflow from the reservoir at the location of the valve. If the valve is open, the
inflow depends on the valve opening and the interactions with the fluids which enter
the well through the other inflow opening. In particular, a valve in open position
does not imply that there is inflow from the reservoir into the well at its location.

Next we try to formulate the problems associated with this production system
more explicitly. Notice that the reservoir is a very special physical system in that it
is not possible to check “how it works” using a computer simulation experiment or
a physical model laboratory experiment. Traditional modelling techniques assume
that equations which describe the flow of the fluids through the reservoir are avail-
able. Their limited success is in our view due to the fact that there is no proper rep-
resentation of the interactions occurring in the production situation. Without these,
actions taken to influence the production may have devastating consequences in that
the “wrong” effects are stimulated. It is fair to state that the existing low ultimate
recovery rates are to a large extent caused by the fact that the interactions in produc-
tion units have not been acknowledged properly.

As a starting point, let us formulate the production problem in intuitive rather
than in precise mathematical terms.
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Problem 1. Assume that no a priori model is available to describe the production
of the two-zone well of Figure 1.1 in terms of measurable physical quantities which
determine the production. Find an algebraic model of the production in terms of the
determining, measurable physical quantities which specifically models the interac-
tions occurring in this production unit.

Now let us phrase this problem using the polynomial ring P = R[x|,...,x,]. The
first step is to associate the indeterminates x; with physical quantities in the produc-
tion problem in the sense that when the indeterminate x; is evaluated at the points
of X, the evaluations are the measurements of the physical quantity associated to x;.
In the sequel we use n =5 and the following associations, where the physical quan-
tities are the ones referenced in Figure 1.1.

X1 2 APifiow,

x2 : APifiow,

x3 : Gas production
X4t APy

X5 : APmmsport

Table 1.1 Physical interpretation of the indeterminates.

Note that we have not listed an indeterminate associated to the oil production.
The explanation for this is that the physical quantities listed in the above table may
all be interpreted as driving forces for the oil production. For the pressure differences
AP this is clear. But it holds also for the gas production. When a large amount of
gas is produced in the deeper parts of the reservoir, it disperses in the fluid mix-
ture, makes it lighter, and in this way stimulates oil production through this lifting
process. Thus the physical quantities listed in the above table may all be viewed as
the causing quantities, or inputs, and the oil production is their effect, or output. So,
basically we make the following crucial assumption.

Assumption. There exists a causal relationship between the production and the
driving forces. Using suitable inputs, this causal relationship is of polynomial na-
ture.

Denoting the production by f, the algebraic translation of the causal relationship
assumption is f € R[xj,...,x5] where the indeterminates x; are labeled as in the
above table. That is, the production is not associated with an indeterminate, but
with a polynomial, and the production measurements are the evaluations of this
polynomial over the set X. Hence the statement of Problem 1 can be reformulated
as follows.

Problem 2. Find the polynomial f € R[xj,...,xs], using only the evaluations X of
the quantities x; and the evaluations of f'!
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The information registered in the set X refers to the situation where at most
one of the valves is closed. The only possible inflows from the reservoir into the
production tubing of the two-zone well are at the location of Zone 1, or of Zone 2,
or both. Moreover, in all three situations data have been collected at different valve
openings. Furthermore, in order for the data in X to deserve the qualification driving
forces, some pre-processing has been applied: with reference to Figure 1.1, if valve;
is closed, it may very well be that the pressure difference APg,,, is not zero, but it
does not have the meaning of a driving force over the valve opening because there
is no flow over the valve. Hence in the data set X, we set AP0, to zero for this
situation. Of course, we do the same for valve; with respect to APy, . Finally,
if the valve associated with the deepest zone valve; is closed, there is no transport
of fluids in the lowest part of the production tubing of the well. That is, for AP,
really to have the significance of a driving force, it is set to zero if valve; is closed.

Notice also that all data are based on measurements, i.e. they may contain mea-
surement errors. Consequently, we can only expect that the desired polynomial f
vanishes approximately at the points of X. In Section 4 we will return to this in-
stance of the production problem and solve it with the methods we are going to
present.

1.2 Border Bases

Ideally, inside the border
there is order.
(Three anonymous authors)

1.2.A. Motivation and Definition. The problems considered in the previous sec-
tion lead us to study zero-dimensional ideals in P = K[xy,...,x,] where K is a field.
The two most common ways to describe such an ideal / are by either providing a
special system of generators (for instance, a Grobner basis) of / or by finding a
vector space basis &' of P/I and the matrices of the multiplications by the inde-
terminates with respect to ¢'. One possibility to follow the second approach is to
use 0 =T"\LT4(I), the complement of a leading term ideal of 7. By Macaulay’s
Basis Theorem, such a set & is a K -basis of P/I. Are there other suitable sets &'?

A natural choice is to look for sets of terms. We need to fix how a term b; in the
border 00 = (x{OU---Ux,0)\ O of O isrewritten as a linear combination of the
terms in . Thus, for every b; € d, a polynomial of the form

u
gj=bj— X cijti
i=1

with ¢;; € K and t; € 0 should be contained in /. Moreover, we would not like that
xrg;j € 1. Hence we want xb; ¢ €. Therefore the set T" \ & should be a monoideal.
Consequently, &' should be an order ideal, that is it should be closed under forming
divisors. Let us formulate precise definitions.
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Definition 1.2.1. Let & be a finite set of terms in T".

a) The set & is called an order ideal if 1 € & and ¢’ | ¢t implies ' € 0.

b) Let & be an order ideal. The set d0 = (x;0U---Ux,0)\ O is called the
border of 0.

c) Let & = {t1,...,t;} be an order ideal and & = {by,...,by} its border. A set
of polynomials {g,...,gv} C I of the form
u
gj=bj— ‘21 Cijli
=

with ¢;; € K and 1; € 0 is called an &' -border prebasis of /.
d) An O-border prebasis of I is called an & -border basis of [ if the residue
classes of the terms in ¢ are a K -vector space basis of P/I.

The following example will be used frequently throughout this paper.

Example 1.2.2. In the ring P = R[x,y], consider the ideal I = (f}, f>) where

fi=32 4y —1
h=x+y -1

The zero set of 7 in A%(R) consists of the four points X = {(+10.8, £1/0.8)}.
This setting is illustrated in Figure 1.2.

Fig. 1.2 Two ellipses intersecting in four points.

We use 0 = DegRevLex and compute LT (1) = (x?,y?). Thus the order ideal
O ={1,x,y,xy} represents a basis of P/I. Its border is d0 = {x?, x*y, xy?, y*}.
The following figure illustrates the order ideal ¢ and its border.

An O -border basis of I is given by G = {g1,82,83,84} where



