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Series Preface 
Mechanical engineering, and engineering discipline born of the needs of the indus- 
trial revolution, is once again asked to do its substantial share in the call for indus- 
trial renewal. The general call is urgent as we face profound issues of productivity 
and competitiveness that require engineering solutions, among others. The Me- 
chanical Engineering Series is a series featuring graduate texts and research mono- 
graphs intended to address the need for information in contemporary areas of me- 
chanical engineering. 

The series is conceived as a comprehensive one that covers a broad range of 
concentrations important to mechanical engineering graduate education and re- 
search. We are fortunate to have a distinguished roster of consulting editors, each 
an expert in one of the areas of concentration. The names of the consulting editors 
are listed on page vi of this volume. The areas of concentration are applied me- 
chanics, biomechanics, computational mechanics, dynamic systems and control, 
energetics, mechanics of materials, processing, thermal science, and tribology. 



As a research advisor to graduate students working on automotive 
projects, I have frequently felt the need for a textbook that summarizes 
common vehicle control systems and the dynamic models used in the 
development of these control systems. While a few different textbooks on 
ground vehicle dynamics are already available in the market, they do not 
satisfy all the needs of a control systems engineer. A controls engineer 
needs models that are both simple enough to use for control system design 
but at the same time rich enough to capture all the essential features of the 
dynamics. This book attempts to present such models and actual automotive 
control systems from literature developed using these models. 

The control system topics covered in the book include cruise control, 
adaptive cruise control, anti-lock brake systems, automated lane keeping, 
automated highway systems, yaw stability control, engine control, passive, 
active and semi-active suspensions, tire models and tire-road friction 
estimation. A special effort has been made to explain the several different 
tire models commonly used in literature and to interpret them physically. 

As the worldwide use of automobiles increases rapidly, it has become 
ever more important to develop vehicles that optimize the use of highway 
and fuel resources, provide safe and comfortable transportation and at the 
same time have minimal impact on the environment. To meet these diverse 
and often conflicting requirements, automobiles are increasingly relying on 
electromechanical systems that employ sensors, actuators and feedback 
control. It is hoped that this textbook will serve as a useful resource to 
researchers who work on the development of such control systems, both in 



the automotive industry and at universities. The book can also serve as a 
textbook for a graduate level course on Vehicle Dynamics and Control. 

An up-to-date errata for typographic and other errors found in the book 
after it has been published will be maintained at the following web-site: 

http://www.menet.umn.edu/-raiamani/vdc.html 
I will be grateful for reports of such errors from readers. 

Rajesh Rajamani 
Minneapolis, Minnesota 

May 2005 
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Chapter 1 

INTRODUCTION 

The use of automobiles is increasing worldwide. In 1970, 30 million 
vehicles were produced and 246 million vehicles were registered worldwide. 
By 2005, 65 million vehicles are expected to be produced and more than 800 
million vehicles could be registered (Powers and Nicastri, 2000). 

The increasing worldwide use of automobiles has motivated the need to 
develop vehicles that optimize the use of highway and fuel resources, 
provide safe and comfortable transportation and at the same time have 
minimal impact on the environment. It is a great challenge to develop 
vehicles that can satisfy these diverse and often conflicting requirements. To 
meet this challenge, automobiles are increasingly relying on 
electromechanical sub-systems that employ sensors, actuators and feedback 
control. Advances in solid state electronics, sensors, computer technology 
and control systems during the last two decades have also played an enabling 
role in promoting this trend. 

This chapter provides an overview of some of the major 
electromechanical feedback control systems under development in the 
automotive industry and in research laboratories. The following sections in 
the chapter describe developments related to each of the following five 
topics: 

a) driver assistance systems 
b) active stability control systems 
c) ride quality improvement 
d) traffic congestion solutions and 
e) fuel economy and vehicle emissions 
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DRIVER ASSISTANCE SYSTEMS 

On average, one person dies every minute somewhere in the world due to 
a car crash (Powers and Nicastri, 2000). In addition to the emotional toll of 
car crashes, their actual costs in damages equaled 3% of the world GDP and 
totaled nearly one trillion dollars in 2000. Data from the National Highway 
Safety Transportation Safety Association (NHTSA) show that 6.335 million 
accidents (with 37,081 fatalities) occurred on US highways in 1998 
(NHTSA, 1999). Data also indicates that, while a variety of factors 
contribute to accidents, human error accounts for over 90% of all accidents 
(United States DOT Report, 1992). 

A variety of driver assistance systems are being developed by automotive 
manufacturers to automate mundane driving operations, reduce driver 
burden and thus reduce highway accidents. Examples of such driver 
assistance systems under development include 

a) collision avoidance systems which automatically detect slower 
moving preceding vehicles and provide warning and brake assist to 
the driver 

b) adaptive cruise control (ACC) systems which are enhanced cruise 
control systems and enable preceding vehicles to be followed 
automatically at a safe distance 

c) lane departure warning systems 
d) lane keeping systems which automate steering on straight roads 
e) vision enhancement/ night vision systems 
f) driver condition monitoring systems which detect and provide 

warning for driver drowsiness, as well as for obstacles and 
pedestrians 

g) safety event recorders and automatic collision and severity 
notification systems 

These technologies will help reduce driver burden and make drivers less 
likely to be involved in accidents. This can also help reduce the resultant 
traffic congestion that accidents tend to cause. 

Collision avoidance and adaptive cruise control systems are discussed in 
great depth in Chapters 5 and 6 of this book. Lane keeping systems are 
discussed in great detail in Chapter 3. 

ACTIVE STABILITY CONTROL SYSTEMS 

Vehicle stability control systems that prevent vehicles from spinning, 
drifting out and rolling over have been developed and recently 
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commercialized by several automotive manufacturers. Stability control 
systems that prevent vehicles from skidding and spinning out are often 
referred to as yaw stability control systems and are the topic of detailed 
description in Chapter 8 of this book. Stability control systems that prevent 
roll over are referred to as active roll stability control systems. An integrated 
stability control system can incorporate both yaw stability and roll over 
stability control. 

Vehicle slip f\ Track on low road 

' Track on high p road \ \ \ 

Figure 1-1. The functioning of a yaw stability control system 

Figure 1-1 schematically shows the function of a yaw stability control 
system. In this figure, the lower curve shows the trajectory that the vehicle 
would follow in response to a steering input from the driver if the road were 
dry and had a high tire-road friction coefficient. In this case the high 
friction coefficient is able to provide the lateral force required by the vehicle 
to negotiate the curved road. If the coefficient of friction were small or if 
the vehicle speed were too high, then the vehicle would be unable to follow 
the nominal motion required by the driver - it would instead travel on a 
trajectory of larger radius (smaller curvature), as shown in the upper curve of 
Figure 1-1. The function of the yaw control system is to restore the yaw 
velocity of the vehicle as much as possible to the nominal motion expected 
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by the driver. If the friction coefficient is very small, it might not be 
possible to entirely achieve the nominal yaw rate motion that would be 
achieved by the driver on a high friction coefficient road surface. In this 
case, the yaw control system would partially succeed by making the 
vehicle's yaw rate closer to the expected nominal yaw rate, as shown by the 
middle curve in Figure I - 1. 

Examples of yaw stability control systems that have been 
commercialized on production vehicles include the BMW DSC3 (Leffler, et. 
al., 1998) and the Mercedes ESP, which were introduced in 1995, the 
Cadillac Stabilitrak system (Jost, 1996) introduced in 1996 and the 
Chevrolet C5 Corvette Active Handling system in 1997 (Hoffman, et. al., 
1 998). 

While most of the commercialized systems are differential-braking 
based systems, there is considerable ongoing research on two other types of 
yaw stability control systems: steer-by-wire and active torque distribution 
control. All three types of yaw stability control systems are discussed in 
detail in Chapter 8 of this book. 

A yaw stability control system contributes to rollover stability just by 
helping keep the vehicle on its intended path and thus preventing the need 
for erratic driver steering actions. There is also considerable work being 
done directly on the development of active rollover prevention systems, 
especially for sport utility vehicles (SUVs) and trucks. Some systems such 
as Freightliner's Roll Stability Advisor and Volvo's Roll Stability Control 
systems utilize sensors on the vehicle to detect if a rollover is imminent and 
a corrective action is required. If corrective action is required, differential 
braking is used both to slow the vehicle down and to induce an understeer 
that contributes to reduction in the roll angle rate of the vehicle. Other types 
of rollover prevention technologies include Active Stabilizer Bar systems 
developed by Delphi and BMW (Strassberger and Guldner, 2004). In this 
case the forces from a stabilizer bar in the suspension are adjusted to help 
reduce roll while cornering. 

RIDE QUALITY 

The notion of using active actuators in the suspension of a vehicle to 
provide significantly improved ride quality, better handling and improved 
traction has been pursued in various forms for a long time by research 
engineers (Hrovat, 1997, Strassberger and Guldner, 2004). Fully active 
suspension systems have been implemented on Formula One racing cars, for 
example, the suspension system developed by Lotus Engineering (Wright 
and Williams, 1984). For the more regular passenger car market, semi- 
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active suspensions are now available on some production vehicles in the 
market. Delphi's semi-active MagneRide system first debuted in 2002 on 
the Cadillac Seville STS and is now available as an option on all Corvette 
models. The MagneRide system utilizes a magnetorheological fluid based 
shock absorber whose damping and stiffness properties can be varied rapidly 
in real-time. A semi-active feedback control system varies the shock 
absorber properties to provide enhanced ride quality and reduce the 
handling1 ride quality trade-off. 

Most semi-active and active suspension systems in the market have been 
designed to provide improved handling by reducing roll during cornering. 
Active stabilizer bar systems have been developed, for example, by BMW 
and Delphi and are designed to reduce roll during cornering without any 
deterioration in the ride quality experienced during normal travel 
(Strassberger and Guldner, 2004). 

The RoadMaster system is a different type of active suspension system 
designed to specifically balance heavy static loads 
(www.activesuspension.com). It is available as an after-market option for 
trucks, vans and SUVs. It consists of two variable rated coil springs that fit 
onto the rear leaf springs and balance static forces, thus enabling vehicles to 
carry maximum loads without bottoming through. 

The design of passive, active and semi-active suspensions is discussed in 
great depth in Chapters 6,7 and 8 of this book. 

TECHNOLOGIES FOR ADDRESSING TRAFFIC 
CONGESTION 

Traffic congestion is growing in urban areas of every size and is expected 
to double in the next ten years. Over 5 billion hours are spent annually 
waiting on freeways (Texas Transportation Institute, 1999). Building 
adequate highways and streets to stop congestion from growing further is 
prohibitively expensive. A review of 68 urban areas conducted in 1999 by 
the Texas Transportation Institute concluded that 1800 new lane miles of 
freeway and 2500 new lane miles of streets would have to be added to keep 
congestion from growing between 1998 and 1999 ! This level of 
construction appears unlikely to happen for the foreseeable future. Data 
shows that the traffic volume capacity added every year by construction lags 
the annual increase in traffic volume demanded, thus making traffic 
congestion increasingly worse. The promotion of public transit systems has 
been difficult and ineffective. Constructing a public transit system of 
sufficient density so as to provide point to point access for all people 
remains very difficult in the USA. Personal transportation vehicles will 
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therefore continue to be the transportation mode of choice even when traffic 
jams seem to compromise the apparent freedom of motion of automobiles. 

While the traffic congestion issue is not being directly addressed by 
automotive manufacturers, there is significant vehicle-related research being 
conducted in various universities with the objective of alleviating highway 
congestion. Examples include the development of automated highway 
systems, the development of "traffic friendly" adaptive cruise control 
systems and the development of tilt controlled narrow commuter vehicles. 
These are discussed in the following sub-sections. 

1.4.1 Automated highway systems 

A significant amount of research has been conducted at California PATH 
on the development of automated highway systems. In an automated 
highway system (AHS), vehicles are fully automated and travel together in 
tightly packed platoons (Hedrick, Tomizuka and Varaiya, 1994, Varaiya, 
1993, Rajamani, Tan, et. al., 2000). A traffic capacity that is up to three 
times the capacity on today's manually driven highways can be obtained. 
Vehicles have to be specially instrumented before they can travel on an 
AHS. However, once instrumented, such vehicles can travel both on regular 
roads as well as on an AHS. A driver with an instrumented vehicle can take 
a local road from home, reach an automated highway that bypasses 
congested downtown highway traffic, travel on the automated highway, 
travel on a subsequent regular highway and reach the final destination, all 
without leaving hislher vehicle. Thus an AHS provides point to point 
personal transportation suitable for the low density population in the United 
States. 

The design of vehicle control systems for AHS is an interesting and 
challenging problem. Longitudinal control of vehicles for travel in platoons 
on an AHS is discussed in great detail in Chapter 7 of this book. Lateral 
control of vehicles for automated steering control on an AHS is discussed in 
Chapter 3. 

1.4.2 "Traffic-friendly" adaptive cruise control 

As discussed in section 1.1, adaptive cruise control (ACC) systems have 
been developed by automotive manufacturers and are an extension of the 
standard cruise control system. ACC systems use radar to automatically 
detect preceding vehicles traveling in the same lane on the highway. In the 
case of a slower moving preceding vehicle, an ACC system automatically 
switches from speed control to spacing control and follows the preceding 
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vehicle at a safe distance using automated throttle control. Figure 1-2 
shows a schematic of an adaptive cruise control system. 

without preceding vehicle malntaln constant speed 

wlth precedlng vehicle malntain safe distance 

radar 

Figure 1-2. Adaptive cruise control 

ACC systems are already available on production vehicles and can 
operate on today's highways. They are being developed by automotive 
manufacturers as a driver assistance tool that improves driver convenience 
and also contributes to safety. However, as the penetration of ACC vehicles 
as a percentage of total vehicles on the road increases, ACC vehicles can 
also significantly influence the traffic flow on a highway. 

The influence of adaptive cruise control systems on highway traffic is 
being studied by several research groups with the objective of designing 
ACC systems to promote smoother and higher traffic flow (Liang and Peng, 
1999, Swaroop, 1999, Swaroop 1998, Rajamani, 2003). Important issues 
being addressed in the research include 

a) the influence of inter-vehicle spacing policies and control 
algorithms on traffic flow stability 

b) the development of ACC algorithms to maximize traffic flow 
capacity while ensuring safe operation 

c) the advantages of using roadside infrastructure and communication 
systems to help improve ACC operation. 

The design of ACC systems is the focus of detailed discussion in Chapter 
6 of this book. 

1.4.3 Narrow tilt-controlled commuter vehicles 

A different type of research activity being pursued is the development of 
special types of vehicles to promote better highway traffic. A research 


