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Mathematical Bases

1.1. Introduction to stochastic risk analysis
1.1.1. About the subject

The concept of risk is diverse enough and is used in many areas of
human activity. The object of interest in this book is the theory of
collective risk. Swedish mathematicians Cramér and Lundberg
established stochastic models of insurance based on this theory.

Stochastic risk analysis is a rather broad name for this volume. We
will consider mathematical problems concerning the Cramér-Lundberg
insurance model and some of its generalizations. The feature of this
model is a random process, representing the dynamics of the capital of a
company. These dynamics consists of alternations of slow accumulation
(that may be not monotonous, but continuous) and fast waste with the
characteristic of negative jumps.

All mathematical studies on the given subject continue to be
relevant nowadays thanks to the absence of a compact analytical
description of such a process. The stochastic analysis of risks which is
the subject of interest has special aspects. For a long time, the most
interesting problem within the framework of the considered model was
ruin, which is understood as the capital of a company reaching a
certain low level. Such problems are usually more difficult than those
of the value of process at fixed times.

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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1.1.2. About the ruin model

Let us consider the dynamics of the capital of an insurance
company. It is supposed that the company serves several clients, which
bring in insurance premiums, i.e. regular payments, filling up the cash
desk of the insurance company. Insurance premiums are intended to
compensate company losses resulting from single payments of great
sums on claims of clients at unexpected incident times (the so-called
insured events). They also compensate expenditures on maintenance,
which are required for the normal operation of a company. The
insurance company’s activity is characterized by a random process
which, as a rule, is not stationary. The company begins business with
some initial capital. The majority of such undertakings come to ruin
and only a few of them prosper. Usually they are the richest from the
very beginning. Such statistical regularities can already be found in
elementary mathematical models of dynamics of insurance capital.

The elementary mathematical model of dynamics of capital, the
Cramér-Lundberg model, is constructed as follows. It uses a random
process Ry (t > 0)

Nt
Rt=u+pt—Y U, [1.1]

n=1

where v > 0 is the initial capital of the company, p > 0 is the growth
rate of an insurance premium and pt is the insurance premium at time
t. (Up)22, is a sequence of suit sizes which the insurance company
must pay immediately. It is a sequence of independent and identically
distributed (i.i.d.) positive random variables. We will denote a
cumulative distribution function of U; (i.e. of all remaining) as
B(z) = P(U; < z) (x > 0). The function (N;) (t > 0) is a
homogeneous Poisson process, independent of the sequence of suit
sizes, having time moments of discontinuity at points (c,,)7 ;. Here,
0=0¢p <01 <oy <...;values T, = 0, — 01 (n > 1) are i.i.d.
random variables with a common exponential distribution with a
certain parameter 5 > 0.
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Figure 1.1 shows the characteristics of the trajectories of the process.

Xy

70 t

Figure 1.1. Dynamics of capital

This is a homogeneous process with independent increments
(hence, it is a homogeneous Markov process). Furthermore, we will
assume that process trajectories are continuous from the right at any
point of discontinuity.

Let 79 be a moment of ruin of the company. This means that at this
moment, the company reaches into the negative half-plane for the first
time (see Figure 1.1). If this event does not occur, this moment is set as
equal to infinity.

The first non-trivial mathematical results in risk theory were
connected with the function:

d(u) = Pu(o <o0) (u=0),

i.e. a probability of ruin on an infinite interval for a process with the
initial value u. Interest is also represented by the function ¢ (u,t) =
P, (19 < t). Itis called the ruin function on “finite horizon”.

Nowadays many interesting outcomes have been reported for the
Cramér-Lundberg model and its generalizations. In this volume, the
basic results of such models are presented. In addition, we consider its
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generalizations, such as insurance premium inflow and distribution of
suit sizes.

This is concentrated on the mathematical aspects of a problem. Full
proofs (within reason) of all formulas, and volume theorems of the
basic course are presented. They are based on the results of probability
theory which are assumed to be known. Some of the information on
probability theory is shortly presented at the start. In the last chapter
some management problems in insurance business are considered.

1.2. Basic methods
1.2.1. Some concepts of probability theory

1.2.1.1. Random variables

The basis of construction of probability models is an abstract
probability space (€2, F, P), where (2 is a set of elementary events; F
is a sigma-algebra of subsets of the set {2, representing the set of those
random events, for which it makes sense to define the probability
within the given problem; P is a probability measure on set €2, i.e.
non-negative denumerably additive function on F. For any event
A € F, the probability, P(A), satisfies the condition 0 < P(A) < 1.
For any sequence of non-overlapping sets (A4,)° (4, € F) the
following equality holds:

P (G An> =SP4,
n=1 n=1

and P(£2) = 1. Random events A; and A, are called independent if
P(A;, Ay) = P(A1 N Ay) = P(A;)P(Az). This definition is
generalized on any final number of events. Events of infinite system of
random events are called mutually independent if any of its final
subsystem consists of independent events.

A random variable is a measurable function £(w) (w € Q) with real
values. It means that for any real z, the set {w : {(w) < x} is a random
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event and hence, probability of it exists, designated as F¢(x). Thus, the
cumulative distribution function, F¢, is defined as follows :

Fe(x) =P <z) (—oo<z<o00).

It is obvious that this function does not decrease when x increases.
In this volume, we will deal with absolutely continuous distributions
and discreet distributions (sometimes with their mixtures).

For an absolutely continuous distribution, there exists its distribution
density f¢(x) = dF¢(x)/dx for all z € (—o0, 00) such that

/Z Je(x)dx = 1.

For discreet distributions, there exists a sequence of points (atoms)
(x,)$° for which non-negative probabilities p(z,) = P(§ = z,) are
defined as:

Z p(zn) = 1.
n=1

The random variable is called integer if it has a discreet distribution
with atoms in the integer points of a numerical axis, denoted by Z.

If R is the set of all real numbers, ¢ is a measurable function on
R, and £ is a random variable, then superposition ¥ (w) = ¢({(w))
(w € Q) is a random variable too. Various compositions of random
variables are possible, which are also random variables. Two random
variables £; and &5 are called independent, if for any z; and x5 events
{& < 1} and {& < 2} are independent.

Expectation (average) F¢ of a random variable ¢ is the integral of
this function on €2 with respect to the probability measure P, i.e.:

B¢ = [ ) Plaw) = [ ap
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(an integral of Lebesgue). By a cumulative distribution function, this
integral can be noted as an integral of Stieltjes:

E¢ = /_00 xdFe(x),

and for a random variable £ with absolute continuous distribution, it can
be represented as integral of Riemann:

E¢ = /_00 xfe(x)dx.

For a random variable £ with a discreet distribution, it is possible to
write an integral in the form of the sum:

Ef = Z -Tnp(xn)

n=1

When evaluating an expectation, it is necessary to be careful in case
the integral from the module of this random variable is equal to infinity.
Sometimes it useful to distinguish three cases: an integral equal to plus
infinity, an integral equal to minus infinity and an integral does not exist.

Let us note that it is possible to consider separately a cumulative
distribution function out of connection with random variables
generating them and probability spaces. However, for any
non-decreasing, continuous from the right, function F' such that
F(x) - 0asx — —oo and F(x) — 1 as x — oo (the cumulative
distribution function of any random variable possesses these
properties), it is possible to construct a probability space and with
random variable on this space, which has F' as its cumulative
distribution function on this probability space. Therefore, speaking
about a cumulative distribution function, we will always mean some
random variable within this distribution. It allows us to use equivalent
expressions such as “distribution moment”, “moment of a random
variable”, “generating function of a distribution” and ‘“‘generating
function of a random variable”.
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The following definitions are frequently used in probability theory.
The moment of nth order of a random variable £ is an integral F£™ (if
it exists). The central moment of nth order of a random variable £ is
an integral E({ — E€)™ (if it exists). The variance (dispersion) D¢ of a
random variable £ is its central moment of second order.

The generating function of a random variable is the integral
E exp(af), considered as a function of «. Interest represents those
generating functions which are finite for all « in the neighborhood of
zero. In this case, there is one-to-one correspondence between the set
of distributions and the set of generating functions. This function has
received the name because of its property “to make” the moments
under the formula:

_ d"Eexp(af)
B da™

E¢"
a=0

A random n-dimensional vector is the ordered set of n random
variables £ = (&1,...,&,). Distribution of this random vector (joint
distribution of its random coordinates) is a probability measure on
space R", defined by n-dimensional cumulative distribution function:

Fe(zy,...;zn)=P& <21, ..., & <zp) (s €R,i=1,...,n).

As the generating function of a random vector is called function of n
variables F exp(«, §), where o = (aq,...,a,) (o; € R) and (o, &) =
>, @;&;. The mixed moment of order m > 2 of a random vector & is
called E(&™ - - - &), where m; > 0, Y | m; = m. Covariance of
random variables &; and & is called central joint moment of the second
order:

cov(é1,&) = E(& — E&) (& — Eé).

1.2.1.2. Random processes

In classical probability theory, random process on an interval 7' C R
is called a set of random variables £ = (&) e, i.e. function of two



