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1

Mathematical Bases

1.1. Introduction to stochastic risk analysis

1.1.1. About the subject

The concept of risk is diverse enough and is used in many areas of

human activity. The object of interest in this book is the theory of

collective risk. Swedish mathematicians Cramér and Lundberg

established stochastic models of insurance based on this theory.

Stochastic risk analysis is a rather broad name for this volume. We

will consider mathematical problems concerning the Cramér-Lundberg

insurance model and some of its generalizations. The feature of this

model is a random process, representing the dynamics of the capital of a

company. These dynamics consists of alternations of slow accumulation

(that may be not monotonous, but continuous) and fast waste with the

characteristic of negative jumps.

All mathematical studies on the given subject continue to be

relevant nowadays thanks to the absence of a compact analytical

description of such a process. The stochastic analysis of risks which is

the subject of interest has special aspects. For a long time, the most

interesting problem within the framework of the considered model was

ruin, which is understood as the capital of a company reaching a

certain low level. Such problems are usually more difficult than those

of the value of process at fixed times.

Stochastic Risk Analysis and Management, First Edition. Boris Harlamov.
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2 Stochastic Risk Analysis and Management

1.1.2. About the ruin model

Let us consider the dynamics of the capital of an insurance

company. It is supposed that the company serves several clients, which

bring in insurance premiums, i.e. regular payments, filling up the cash

desk of the insurance company. Insurance premiums are intended to

compensate company losses resulting from single payments of great

sums on claims of clients at unexpected incident times (the so-called

insured events). They also compensate expenditures on maintenance,

which are required for the normal operation of a company. The

insurance company’s activity is characterized by a random process

which, as a rule, is not stationary. The company begins business with

some initial capital. The majority of such undertakings come to ruin

and only a few of them prosper. Usually they are the richest from the

very beginning. Such statistical regularities can already be found in

elementary mathematical models of dynamics of insurance capital.

The elementary mathematical model of dynamics of capital, the

Cramér-Lundberg model, is constructed as follows. It uses a random

process Rt (t ≥ 0)

Rt = u+ p t−
Nt∑
n=1

Un, [1.1]

where u ≥ 0 is the initial capital of the company, p > 0 is the growth

rate of an insurance premium and p t is the insurance premium at time

t. (Un)
∞
n=1 is a sequence of suit sizes which the insurance company

must pay immediately. It is a sequence of independent and identically

distributed (i.i.d.) positive random variables. We will denote a

cumulative distribution function of U1 (i.e. of all remaining) as

B(x) ≡ P (U1 ≤ x) (x ≥ 0). The function (Nt) (t ≥ 0) is a

homogeneous Poisson process, independent of the sequence of suit

sizes, having time moments of discontinuity at points (σn)
∞
n=1. Here,

0 ≡ σ0 < σ1 < σ2 < . . . ; values Tn = σn − σn−1 (n ≥ 1) are i.i.d.

random variables with a common exponential distribution with a

certain parameter β > 0.



Mathematical Bases 3

Figure 1.1 shows the characteristics of the trajectories of the process.
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Figure 1.1. Dynamics of capital

This is a homogeneous process with independent increments

(hence, it is a homogeneous Markov process). Furthermore, we will

assume that process trajectories are continuous from the right at any

point of discontinuity.

Let τ0 be a moment of ruin of the company. This means that at this

moment, the company reaches into the negative half-plane for the first

time (see Figure 1.1). If this event does not occur, this moment is set as

equal to infinity.

The first non-trivial mathematical results in risk theory were

connected with the function:

ψ(u) = Pu(τ0 < ∞) (u ≥ 0),

i.e. a probability of ruin on an infinite interval for a process with the

initial value u. Interest is also represented by the function ψ(u, t) =
Pu(τ0 ≤ t). It is called the ruin function on “finite horizon”.

Nowadays many interesting outcomes have been reported for the

Cramér-Lundberg model and its generalizations. In this volume, the

basic results of such models are presented. In addition, we consider its
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generalizations, such as insurance premium inflow and distribution of

suit sizes.

This is concentrated on the mathematical aspects of a problem. Full

proofs (within reason) of all formulas, and volume theorems of the

basic course are presented. They are based on the results of probability

theory which are assumed to be known. Some of the information on

probability theory is shortly presented at the start. In the last chapter

some management problems in insurance business are considered.

1.2. Basic methods

1.2.1. Some concepts of probability theory

1.2.1.1. Random variables

The basis of construction of probability models is an abstract

probability space (Ω,F , P ), where Ω is a set of elementary events; F
is a sigma-algebra of subsets of the set Ω, representing the set of those

random events, for which it makes sense to define the probability

within the given problem; P is a probability measure on set Ω, i.e.

non-negative denumerably additive function on F . For any event

A ∈ F , the probability, P (A), satisfies the condition 0 ≤ P (A) ≤ 1.

For any sequence of non-overlapping sets (An)
∞
1 (An ∈ F) the

following equality holds:

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An),

and P (Ω) = 1. Random events A1 and A2 are called independent if

P (A1, A2) ≡ P (A1 ∩ A2) = P (A1)P (A2). This definition is

generalized on any final number of events. Events of infinite system of

random events are called mutually independent if any of its final

subsystem consists of independent events.

A random variable is a measurable function ξ(ω) (ω ∈ Ω) with real

values. It means that for any real x, the set {ω : ξ(ω) ≤ x} is a random
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event and hence, probability of it exists, designated as Fξ(x). Thus, the

cumulative distribution function, Fξ, is defined as follows :

Fξ(x) = P (ξ ≤ x) (−∞ < x < ∞).

It is obvious that this function does not decrease when x increases.

In this volume, we will deal with absolutely continuous distributions

and discreet distributions (sometimes with their mixtures).

For an absolutely continuous distribution, there exists its distribution

density fξ(x) = dFξ(x)/dx for all x ∈ (−∞,∞) such that∫ ∞

−∞
fξ(x) dx = 1.

For discreet distributions, there exists a sequence of points (atoms)

(xn)
∞
1 for which non-negative probabilities p(xn) = P (ξ = xn) are

defined as:

∞∑
n=1

p(xn) = 1.

The random variable is called integer if it has a discreet distribution

with atoms in the integer points of a numerical axis, denoted by Z.

If R is the set of all real numbers, ϕ is a measurable function on

R, and ξ is a random variable, then superposition ψ(ω) ≡ ϕ(ξ(ω))
(ω ∈ Ω) is a random variable too. Various compositions of random

variables are possible, which are also random variables. Two random

variables ξ1 and ξ2 are called independent, if for any x1 and x2 events

{ξ1 ≤ x1} and {ξ2 ≤ x2} are independent.

Expectation (average) Eξ of a random variable ξ is the integral of

this function on Ω with respect to the probability measure P , i.e.:

Eξ =

∫
Ω
ξ(ω)P (dω) ≡

∫
ξ dP
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(an integral of Lebesgue). By a cumulative distribution function, this

integral can be noted as an integral of Stieltjes:

Eξ =

∫ ∞

−∞
x dFξ(x),

and for a random variable ξ with absolute continuous distribution, it can

be represented as integral of Riemann:

Eξ =

∫ ∞

−∞
xfξ(x) dx.

For a random variable ξ with a discreet distribution, it is possible to

write an integral in the form of the sum:

Eξ =
∞∑
n=1

xnp(xn).

When evaluating an expectation, it is necessary to be careful in case

the integral from the module of this random variable is equal to infinity.

Sometimes it useful to distinguish three cases: an integral equal to plus

infinity, an integral equal to minus infinity and an integral does not exist.

Let us note that it is possible to consider separately a cumulative

distribution function out of connection with random variables

generating them and probability spaces. However, for any

non-decreasing, continuous from the right, function F such that

F (x) → 0 as x → −∞ and F (x) → 1 as x → ∞ (the cumulative

distribution function of any random variable possesses these

properties), it is possible to construct a probability space and with

random variable on this space, which has F as its cumulative

distribution function on this probability space. Therefore, speaking

about a cumulative distribution function, we will always mean some

random variable within this distribution. It allows us to use equivalent

expressions such as “distribution moment”, “moment of a random

variable”, “generating function of a distribution” and “generating

function of a random variable”.
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The following definitions are frequently used in probability theory.

The moment of nth order of a random variable ξ is an integral Eξn (if

it exists). The central moment of nth order of a random variable ξ is

an integral E(ξ − Eξ)n (if it exists). The variance (dispersion) Dξ of a

random variable ξ is its central moment of second order.

The generating function of a random variable is the integral

E exp(αξ), considered as a function of α. Interest represents those

generating functions which are finite for all α in the neighborhood of

zero. In this case, there is one-to-one correspondence between the set

of distributions and the set of generating functions. This function has

received the name because of its property “to make” the moments

under the formula:

Eξn =
dnE exp(αξ)

dαn

∣∣∣∣
α=0

.

A random n-dimensional vector is the ordered set of n random

variables ξ = (ξ1, . . . , ξn). Distribution of this random vector (joint

distribution of its random coordinates) is a probability measure on

space R
n, defined by n-dimensional cumulative distribution function:

Fξ(x1, . . . , xn) = P (ξ1 ≤ x1, . . . , ξn ≤ xn) (xi ∈ R, i = 1, . . . , n).

As the generating function of a random vector is called function of n
variables E exp(α, ξ), where α = (α1, . . . , αn) (αi ∈ R) and (α, ξ) =∑n

i=1 αiξi. The mixed moment of order m ≥ 2 of a random vector ξ is

called E(ξm1
1 · · · · · ξmn

n ), where mi ≥ 0,
∑n

i=1mi = m. Covariance of

random variables ξ1 and ξ2 is called central joint moment of the second

order:

cov(ξ1, ξ2) = E(ξ1 − Eξ1)(ξ2 − Eξ2).

1.2.1.2. Random processes

In classical probability theory, random process on an interval T ⊂ R

is called a set of random variables ξ = (ξt)t∈T , i.e. function of two


