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To our teachers



Preface

At all times, humans have been striving to understand the world that surrounds
them and that they live in. We want to understand, why things are happening the
way they do. We try to comprehend, we try to understand, we are yearning for
insight. From insight we hope to gain foresight, and from understanding we hope to
be able to affect and manage our future.

We want to manage for the better, so we need to measure the status before and
after we have taken action. We want to make sure by measurement that we have
done the right thing. But what is the right measure?

Obviously, the fact that we gain insight is an advantage for us. And the event,
when we gain insight, is pleasurable and satisfying for us: “Eureka!” When, after
having worked hard and long to solve a difficult problem, after doubt and despair,
after struggling to comprehend, when we finally understand: This moment is a most
beautiful sensation.

Dimensional analysis is a method that helps to gain insight and that helps to
understand physical problems. It is universally valid; it can always be applied; it is
always correct. Dimensional analysis shows us the right measure, the correct
scaling of a problem, which is always inherent to the problem itself.

This book aims to introduce the reader to the fascinating topic of dimensional
analysis through a large number of examples and just as many fundamentals, which
are needed to understand the working principles and foundations of the method.
The book is organized in four chapters. The first chapter concerns the fundamentals
of the method, terms and definitions and the core of the method: the Buckingham-
or Pi-Theorem. The second chapter on model theory underlines its importance
through brevity. The third chapter collects examples ranging from mechanics, fluid
mechanics, thermodynamics, electrodynamics to a variety of physical settings to
show the broad range of applications. In the fourth chapter, finally, the application
of dimensional analysis to partial differential equations of physical problems is
demonstrated, and the power of the method is best shown by concentrating on
selected examples, the so-called similarity solutions. The appendix collects some
exercises and corresponding solutions for tutorials and self-study.
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We, the authors, independently enjoyed our first encounter with dimensional
analysis as a universal method that helps understanding common phenomena,
physical problems, and through understanding helps to solve engineering tasks at
hand. And we certainly appreciated the skills of the teachers, who first showed and
taught us the beauty of dimensional analysis. Two of us (Volker Simon and
Bernhard Weigand) have greatly benefitted from our teacher Prof. Joseph H. Spurk,
to whom we are grateful and express our thankfulness. His lectures and book on
dimensional analysis have certainly strongly influenced our work and the way to
look at problems and find their solutions.

We hope that our book has the same effect on its readers: It gives them insight
into dimensional analysis, supports their understanding of the physical world, and
as a consequence the method will be a pleasurable benefit to them.

Many people helped us in all phases of the preparation of this book. We thank
very much Roman Frank who helped us with the figures. Many thanks also go to
our students for discussions concerning the examples. Finally, we would like to
express our thanks to Springer Press for the very good cooperation during the
preparation of this manuscript.

Offenburg, Germany Volker Simon
Stuttgart, Germany Bernhard Weigand
Berlin, Germany Hassan Gomaa
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Chapter 1
Some Fundamentals of Dimensional
Analysis

1.1 Some Preliminary Remarks

Why can’t a mouse in the size of an elephant stand without breaking its legs? And
why can an ant carry multiples of its own weight while humans are barely able to
carry more than their own weight? Is this reasoning somehow connected to the fact
that the legs of a mouse are “relatively thin” or the weight of the elephant is
“relatively large”? One would need to ask: “Relative to what?” Obviously, it
appears rather meaningless to claim a length to be “relatively short” or a weight to
be “relatively heavy” without defining a suitable scale. But what constitutes an
appropriate scale and how may it be found?

In natural and engineering sciences, the common way to measure is by com-
parison to some agreed standard. For instance, lengths are compared in terms of the
unit “meter” and one would say: “This length measures 5 m.” This means that the
regarded length is five times as long as 1 m. Just as well one might compare the
same length with the “millimeter” scale and state: “This length measures
5000 mm.” By specifying a numerical value and the applied unit, the considered
physical quantity is uniquely described. In practice, units are usually chosen, such
that the numerical values can be conveniently used in calculations. However,
depending on the applied unit, different values are obtained, to describe exactly the
same physical property, in our example the length. Now, on the one hand, physical
events are obviously entirely independent of the unit of measure that we arbitrarily
have chosen. On the other hand, in order to quantify a physical quantity we are
forced to pick some comparative measure.

The way out of this dilemma is to simply compare the regarded length to another
length scale that is relevant to the problem of interest. Defining a length through its
ratio to some problem related length scale not only provides a unique numerical
value, but it also becomes independent of whether one chooses to apply “mil-
limeters” rather than “meters”. These considerations are of course also true for all
other physical quantities and their respective units. Thus, only the comparison of
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