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Introduction

If you were to describe the C# language  and its associated environment, the .NET 
Framework, as the most significant technology for developers available, you would not be 
exaggerating. .NET is designed to provide an environment within which you can develop almost any 
application to run on Windows, whereas C# is a programming language designed specifically to work 
with the .NET Framework. By using C#, you can, for example, write a dynamic web page, a Windows 
Presentation Foundation application, an XML web service, a component of a distributed application, 
a database access component, a classic Windows desktop application, or even a new smart client 
application that enables online and offline capabilities. This book covers the .NET Framework 4.5.1. 
If you code using any of the prior versions, there may be sections of the book that will not work for 
you. This book notifies you of items that are new and specific to the .NET Framework 4.5 and 4.5.1.

Don’t be fooled by the .NET label in the Framework’s name and think that this is a purely Internet-
focused framework. The .NET bit in the name is there to emphasize Microsoft’s belief that distributed 
applications, in which the processing is distributed between client and server, are the way forward. 
You must also understand that C# is not just a language for writing Internet or  
network-aware applications. It provides a means for you to code almost any type of software or 
component that you need to write for the Windows platform. Between them, C# and .NET have 
revolutionized the way that developers write their programs and have made programming on 
Windows much easier than it has ever been before.

So what’s the big deal about .NET and C#?

The Significance of .NET and C#
To understand the significance of .NET, you must consider the nature of many of the Windows 
technologies that have appeared in the past 20 years. Although they may look quite different on the 
surface, all the Windows operating systems from Windows NT 3.1 (introduced in 1993) through 
Windows 8.1 and Windows Server 2012 R2 have the same familiar Windows API for Windows 
desktop and server applications at their core. Progressing through new versions of Windows, huge 
numbers of new functions have been added to the API, but this has been a process to evolve and 
extend the API rather than replace it.

With Windows 8, the main API of the operating system gets a replacement with Windows Runtime. 
However, this runtime is still partly based on the familiar Windows API.

The same can be said for many of the technologies and frameworks used to develop software for 
Windows. For example, Component Object Model (COM) originated as Object Linking and 
Embedding (OLE). Originally, it was largely a means by which different types of Office documents 
could be linked so that you could place a small Excel spreadsheet in your Word document, for 
example. From that it evolved into COM, Distributed COM (DCOM), and eventually COM+ — a 
sophisticated technology that formed the basis of the way almost all components communicated, as 
well as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned 
with backward compatibility. Over the years, a huge base of third-party software has been written 
for Windows, and Windows would not have enjoyed the success it has had if every time Microsoft 
introduced a new technology it broke the existing code base!
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Although backward compatibility has been a crucial feature of Windows technologies and one of the 
strengths of the Windows platform, it does have a big disadvantage. Every time some technology evolves and 
adds new features, it ends up a bit more complicated than it was before.

It was clear that something had to change. Microsoft could not go on forever extending the same 
development tools and languages, always making them more and more complex to satisfy the conflicting 
demands of keeping up with the newest hardware and maintaining backward compatibility with what was 
around when Windows first became popular in the early 1990s. There comes a point in which you must 
start with a clean slate if you want a simple yet sophisticated set of languages, environments, and developer 
tools, which makes it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET were all about in the first incarnation. Roughly speaking, .NET is a 
framework — an API — for programming on the Windows platform. Along with the .NET Framework, C# 
is a language that has been designed from scratch to work with .NET, as well as to take advantage of all the 
progress in developer environments and in your understanding of object-oriented programming principles 
that have taken place over the past 25 years.

Before continuing, you must understand that backward compatibility has not been lost in the process. 
Existing programs continue to work, and .NET was designed with the capability to work with existing 
software. Presently, communication between software components on Windows takes place almost entirely 
using COM. Taking this into account, the .NET Framework does have the capability to provide wrappers 
around existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# to write code for .NET. Microsoft has extended C++ and made 
substantial changes to Visual Basic to turn it into a more powerful language to enable code written in 
either of these languages to target the .NET environment. These other languages, however, are hampered 
by the legacy of having evolved over the years rather than having been written from the start with today’s 
technology in mind.

This book can equip you to program in C#, while at the same time provides the necessary background in 
how the .NET architecture works. You not only cover the fundamentals of the C# language, but also see 
examples of applications that use a variety of related technologies, including database access, dynamic web 
pages, advanced graphics, and directory access.

While the Windows API evolved and was extended since the early days of Windows NT in 1993, the .NET 
Framework offered a major change on how programs are written since the year 2002; now, starting with 
the year 2012, we have the days of the next big change. Do such changes happen every 10 years? Windows 
8 offers a new API: the Windows Runtime (WinRT) for Windows Store apps. This runtime is a native API 
(like the Windows API) that is not build with the .NET runtime as its core, but offers great new features 
that are based on ideas of .NET. Windows 8 includes the first release of this API available for modern-style 
apps. Although this is not based on .NET, you still can use a subset of .NET with Windows Store apps, and 
write the apps with C#. This new runtime evolves, and with Windows 8.1 version 2 is included. This book 
will give you a start in writing Windows Store apps with C# and WinRT.

Advantages of .NET
So far, you’ve read in general terms about how great .NET is, but it can help to make your life as a developer 
easier. This section briefly identifies some of the features of .NET:

➤➤ Object-oriented programming — Both the .NET Framework and C# are entirely based on object-
oriented principles from the start.

➤➤ Good design — A base class library, which is designed from the ground up in a highly intuitive way.
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➤➤ Language independence — With .NET, all the languages — Visual Basic, C#, and managed 
C++ — compile to a common Intermediate Language. This means that languages are interoperable in 
a way that has not been seen before.

➤➤ Better support for dynamic web pages — Though Classic ASP offered a lot of flexibility, it was also 
inefficient because of its use of interpreted scripting languages, and the lack of object-oriented design 
often resulted in messy ASP code. .NET offers an integrated support for web pages, using ASP 
.NET. With ASP.NET, code in your pages is compiled and may be written in a .NET-aware high-level 
language such as C# or Visual Basic 2013. .NET now takes it even further with outstanding support 
for the latest web technologies such as Ajax and jQuery.

➤➤ Efficient data access — A set of .NET components, collectively known as ADO.NET, provides  
efficient access to relational databases and a variety of data sources. Components are also  
available to enable access to the file system and to directories. In particular, XML support is built  
into .NET, enabling you to manipulate data, which may be imported from or exported to  
non-Windows platforms.

➤➤ Code sharing — .NET has completely revamped the way that code is shared between applications, 
introducing the concept of the assembly, which replaces the traditional DLL. Assemblies have formal 
facilities for versioning, and different versions of assemblies can exist side by side.

➤➤ Improved security — Each assembly can also contain built-in security information that can indicate 
precisely who or what category of user or process is allowed to call which methods on which classes. 
This gives you a fine degree of control over how the assemblies that you deploy can be used.

➤➤ Zero-impact installation — There are two types of assemblies: shared and private. Shared assemblies 
are common libraries available to all software, whereas private assemblies are intended only for use 
with particular software. A private assembly is entirely self-contained, so the process to install it is 
simple. There are no registry entries; the appropriate files are simply placed in the appropriate folder 
in the file system.

➤➤ Support for web services — .NET has fully integrated support for developing web services as easily as 
you would develop any other type of application.

➤➤ Visual Studio 2013 — .NET comes with a developer environment, Visual Studio 2013, which can cope 
equally well with C++, C#, and Visual Basic 2013, as well as with ASP.NET or XML code. Visual 
Studio 2013 integrates all the best features of the respective language-specific environments of all the 
previous versions of this amazing IDE.

➤➤ C# — C# is a powerful and popular object-oriented language intended for use with .NET.

You look more closely at the benefits of the .NET architecture in Chapter 1, “.NET Architecture.”

What’s New in the .NET Framework 4.5 and .NET 4.5.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The .NET 
Framework 2.0 was introduced in 2005 and was considered a major release of the Framework. The major 
new feature of 2.0 was generics support in C# and the runtime (IL code changed for generics), and new 
classes and interfaces. .NET 3.0 was based on the 2.0 runtime and introduced a new way to create UIs 
(WPF with XAML and vector-based graphics instead of pixel-based), and a new communication technology 
(WCF). .NET 3.5 together with C# 3.0 introduced LINQ, one query syntax that can be used for all data 
sources. .NET 4.0 was another major release of the product that also brought a new version of the runtime 
(4.0) and a new version of C# (4.0) to offer dynamic language integration and a huge new library for parallel 
programming. The .NET Framework 4.5 is based on an updated version of the 4.0 runtime with many 
outstanding new features. The .NET Framework 4.5.1 gives some small increments. However, with more 
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and more libraries that are part of the .NET Framework being distributed as NuGet packages, more and 
more features are delivered out of band to the .NET Framework. For example, the Entity Framework, ASP 
.NET Web API, and other .NET libraries got huge improvements. 

With each release of the Framework, Microsoft has always tried to ensure that there were minimal breaking 
changes to code developed. Thus far, Microsoft has been successful at this goal.

The following section details some of the changes that are new to C# 5.0 and the .NET Framework 4.5.1.

Asynchronous Programming
Blocking the UI is unfriendly to the user; the user becomes impatient if the UI does not react. Maybe you’ve 
had this experience with Visual Studio as well. Good news: Visual Studio has become a lot better in reacting 
faster in many scenarios.

The .NET Framework always offered calling methods asynchronously. However, using synchronous 
methods was a lot easier than calling their asynchronous variant. This changed with C# 5.0. Programming 
asynchronously has become as easy as writing synchronous programs. New C# keywords are based on the 
.NET Parallel Library that is available since .NET 4.0. Now the language offers productivity features.

Windows Store Apps and the Windows Runtime
Windows Store apps can be programmed with C# using the Windows Runtime and a subset of the .NET 
Framework. The Windows Runtime is a new native API that offers classes, methods, properties, and events 
that look like .NET; although it is native. For using language projection features, the .NET runtime has 
been enhanced. With .NET 4.5, the .NET 4.0 runtime gets an in-place update.

Enhancements with Data Access
The ADO.NET Entity Framework offered important new features. Its version changed from 4.0 with .NET 
4.0 to 5.0 with .NET 4.5, and to 6.0 with .NET 4.5.1. After the release of .NET 4.0, the Entity Framework 
already received updates with versions 4.1, 4.2, and 4.3. New features such as Code First, spatial types, 
using enums, and table-valued functions are now available.

Enhancements with WPF
For programming Windows desktop applications, WPF has been enhanced. Now you can fill collections 
from a non-UI thread; the ribbon control is now part of the framework; weak references with events have 
been made easier; validation can be done asynchronously with the INotifyDataErrorInfo interface; and 
live shaping allows easy dynamic sorting and grouping with data that changes.

ASP.NET MVC
Visual Studio 2010 included ASP.NET MVC 2.0. With the release of Visual Studio 2013, ASP.NET MVC 
5.0 is available. ASP.NET MVC supplies you with the means to create ASP.NET using the  
model-view-controller model that many developers expect. ASP.NET MVC provides developers with 
testability, flexibility, and maintainability in the applications they build. ASP.NET MVC is not meant to be 
a replacement for ASP.NET Web Forms but is simply a different way to construct your applications.
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Where C# Fits In
In one sense, C# is the same thing to programming languages that .NET is to the Windows environment. 
Just as Microsoft has been adding more and more features to Windows and the Windows API over the 
past 15 years, Visual Basic 2013 and C++ have undergone expansion. Although Visual Basic and C++ have 
resulted in hugely powerful languages, both languages also suffer from problems because of the legacies left 
over from the way they evolved.

For Visual Basic 6 and earlier versions, the main strength of the language was that it was simple to 
understand and made many programming tasks easy, largely hiding the details of the Windows API and 
the COM component infrastructure from the developer. The downside to this was that Visual Basic was 
never truly object-oriented, so large applications quickly became disorganized and hard to maintain. Also, 
because Visual Basic’s syntax was inherited from early versions of BASIC (which, in turn, was designed 
to be intuitively simple for beginning programmers to understand, rather than to write large commercial 
applications), it didn’t lend itself to well-structured or object-oriented programs.

C++, on the other hand, has its roots in the ANSI C++ language definition. It is not completely ANSI-
compliant for the simple reason that Microsoft first wrote its C++ compiler before the ANSI definition had 
become official, but it comes close. Unfortunately, this has led to two problems. First, ANSI C++ has its 
roots in a decade-old state of technology, and this shows up in a lack of support for modern concepts (such 
as Unicode strings and generating XML documentation) and for some archaic syntax structures designed 
for the compilers of yesteryear (such as the separation of declaration from definition of member functions). 
Second, Microsoft has been simultaneously trying to evolve C++ into a language designed for high-
performance tasks on Windows, and to achieve that, it has been forced to add a huge number of Microsoft-
specific keywords as well as various libraries to the language. The result is that on Windows, the language 
has become a complete mess. Just ask C++ developers how many definitions for a string they can think of: 
char*, LPTSTR, string, CString (MFC version), CString (WTL version), wchar_t*, OLECHAR*, and so on.

Now enters .NET — a completely revolutionary environment that has brought forth new extensions to both 
languages. Microsoft has gotten around this by adding yet more Microsoft-specific keywords to C++ and 
by completely revamping Visual Basic to the current Visual Basic 2013, a language that retains some of 
the basic VB syntax but that is so different in design from the original VB that it can be considered, for all 
practical purposes, a new language.

It is in this context that Microsoft has provided developers an alternative — a language designed specifically 
for .NET and designed with a clean slate. C# is the result. Officially, Microsoft describes C# as a “simple, 
modern, object-oriented, and type-safe programming language derived from C and C++.” Most independent 
observers would probably change that to “derived from C, C++, and Java.” Such descriptions are technically 
accurate but do little to convey the beauty or elegance of the language. Syntactically, C# is similar to 
both C++ and Java, to such an extent that many keywords are the same, and C# also shares the same 
block structure with braces ({}) to mark blocks of code and semicolons to separate statements. The first 
impression of a piece of C# code is that it looks quite like C++ or Java code. Beyond that initial similarity, 
however, C# is a lot easier to learn than C++ and of comparable difficulty to Java. Its design is more in 
tune with modern developer tools than both of those other languages, and it has been designed to provide, 
simultaneously, the ease of use of Visual Basic and the high-performance, low-level memory access of C++, 
if required. Some of the features of C# follow:

➤➤ Full support for classes and object-oriented programming, including interface and implementation 
inheritance, virtual functions, and operator overloading.

➤➤ A consistent and well-defined set of basic types.
➤➤ Built-in support for an automatic generation of XML documentation.
➤➤ Automatic cleanup of dynamically allocated memory.

flast.indd   27 30-01-2014   20:59:29



xxviii

introduction

➤➤ The facility to mark classes or methods with user-defined attributes. This can be useful for 
documentation and can have some effects on compilation (for example, marking methods to be 
compiled only in debug builds).

➤➤ Full access to the .NET base class library and easy access to the Windows API (if you need it, which 
will not be often).

➤➤ Pointers and direct memory access are available if required, but the language has been designed in 
such a way that you can work without them in almost all cases.

➤➤ Support for properties and events in the style of Visual Basic.
➤➤ Just by changing the compiler options, you can compile either to an executable or to a library of 

.NET components that can be called up by other code in the same way as ActiveX controls (COM 
components).

➤➤ C# can be used to write ASP.NET dynamic web pages and XML web services.

Most of these statements, it should be pointed out, also apply to Visual Basic 2013 and Managed C++. 
Because C# is designed from the start to work with .NET, however, means that its support for the features 
of .NET is both more complete and offered within the context of a more suitable syntax than those of other 
languages. Although the C# language is similar to Java, there are some improvements; in particular, Java is 
not designed to work with the .NET environment.

Before leaving the subject, you must understand a couple of limitations of C#. The one area the language 
is not designed for is time-critical or extremely high-performance code — the kind where you are worried 
about whether a loop takes 1,000 or 1,050 machine cycles to run through, and you need to clean up your 
resources the millisecond they are no longer needed. C++ is likely to continue to reign supreme among  
low-level languages in this area. C# lacks certain key facilities needed for extremely high-performance apps, 
including the capability to specify inline functions and destructors guaranteed to run at particular points in 
the code. However, the proportions of applications that fall into this category are low.

What You Need to Write and Run C# Code
The .NET Framework 4.5.1 can run on the client operating systems Windows Vista, 7, 8, 8.1, and the server 
operating systems Windows Server 2008, 2008 R2, 2012, and 2012 R2. To write code using .NET, you 
need to install the .NET 4.5.1 SDK.

In addition, unless you intend to write your C# code using a text editor or some other third-party developer 
environment, you almost certainly also want Visual Studio 2013. The full SDK is not needed to run 
managed code, but the .NET runtime is needed. You may find you need to distribute the .NET runtime with 
your code for the benefit of those clients who do not have it already installed.

What This Book Covers
This book starts by reviewing the overall architecture of .NET in Chapter 1 to give you the background you 
need to write managed code. After that, the book is divided into a number of sections that cover both the 
C# language and its application in a variety of areas.

Part I: The C# Language
This section gives a good grounding in the C# language. This section doesn’t presume knowledge of any 
particular language; although, it does assume you are an experienced programmer. You start by looking at 
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