

ffirs.indd 3 30-01-2014 20:54:07

Professional

C# 5.0 and .NET 4.5.1

Current Author Team
Christian Nagel
Jay Glynn
Morgan Skinner

Authors On Previous Editions
Bill Evjen
Karli Watson

ffirs.indd 1 30-01-2014 20:54:07

Professional C# 5.0 and .NET 4.5.1

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

978-1-118-83303-2
978-1-118-83294-3 (ebk)
978-1-118-83298-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958290

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd 2 30-01-2014 20:54:07

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To my family – Angela, Stephanie, and Matthias –

I love you all!

—Christian Nagel

This work is dedicated to my wife and son.

They are my world.

—Jay Glynn

Love is as strong as death;
Many waters cannot quench love,

Neither can the floods drown it.

—Morgan Skinner

ffirs.indd 3 30-01-2014 20:54:07

Acquisitions Editor
Mary James

Project Editor
Charlotte Kughen

Technical Editors
Don Reamey
George Evjen

Production Editor
Christine Mugnolo

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive Group
Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Sarah Kaikini, Word One, New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
© Henrik5000/istockphoto.com

Credits

ffirs.indd 4 30-01-2014 20:54:07

http://Henrik5000/istockphoto.com

About the Authors

Christian Nagel  is a Microsoft Regional Director and Microsoft MVP, an associate of thinktecture, and
founder of CN innovation. A software architect and developer, he offers training and consulting on how to
develop solutions using the Microsoft platform. He draws on more than 25 years of software development
experience. Christian started his computing career with PDP 11 and VAX/VMS systems, covering a variety
of languages and platforms. Since 2000, when .NET was just a technology preview, he has been working
with various .NET technologies to build .NET solutions. Currently, he mainly coaches the development
of Windows Store apps accessing Windows Azure services. With his profound knowledge of Microsoft
technologies, he has written numerous books, and is certified as a Microsoft Certified Trainer (MCT) and
Solutions Developer (MCSD). Christian speaks at international conferences such as TechEd, Basta!,
and TechDays, and he founded INETA Europe to support .NET user groups. You can contact Christian via
his website www.cninnovation.com, read his blog at blogs.thinktecture.com/cnagel, and follow his
tweets at @christiannagel.

Jay Glynn  started writing software more than 20 years ago, writing applications for the PICK operating
system using PICK basic. Since then, he has created software using Paradox PAL and Object PAL, Delphi,
VBA, Visual Basic, C, Java, and of course C#. He currently works for VGT as a software engineer writing
server-based software.

Morgan Skinner  began his computing career at a young age on the Sinclair ZX80 at school, where he
was underwhelmed by some code a teacher had written and so began programming in assembly language.
Since then he has used a wide variety of languages and platforms, including VAX Macro Assembler, Pascal,
Modula2, Smalltalk, X86 assembly language, PowerBuilder, C/C++, VB, and currently C#. He’s been
programming in .NET since the PDC release in 2000, and liked it so much he joined Microsoft in 2001.
He’s now an independent consultant.

Business Manager
Amy Knies

Vice President and Executive Group
Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Sarah Kaikini, Word One, New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
© Henrik5000/istockphoto.com

Credits

ffirs.indd 5 30-01-2014 20:54:07

http://www.cninnovation.com
http://blogs.thinktecture.com/cnagel
https://twitter.com/@christiannagel

About the TECHNICAL Editors

Don Reamey  is an architect/principal engineer for TIBCO Software working on TIBCO Spotfire business
intelligence analytics software. Prior to TIBCO Don spent 12 years with Microsoft as a software develop-
ment engineer working on SharePoint, SharePoint Online and InfoPath Forms Service. Don has also spent
10 years writing software in the financial service industry for capital markets.

George Evjen  is the director of development for ArchitectNow, a St. Louis-based consulting company
specializing in custom client application architecture, design, and development, with clients ranging from
small technology start-ups to global enterprises. Prior to his involvement in the software industry, George
spent more than a dozen years coaching men’s basketball at all levels of the collegiate ranks. As a moti-
vational leader with an infectious positive outlook in nearly all situations, he is the ideal person to take
the lead directly for many of ArchitectNow’s largest projects and clients. Not only does he work as a lead
developer, but he also manages most of the coordination between ArchitectNow and the company’s external
contractors and resources.

George has extensive experience and expertise in all of Microsoft’s web-based and XAML-based
technologies, as well as the newest web frameworks available. His specialties include enterprise-level WPF,
Silverlight, and Windows 8 projects, as well as ASP.NET MVC business application development. He speaks
to groups and at conferences around the region on topics of motivational leadership, project management,
and organization. You can find additional information on George and ArchitectNow’s capabilities at
http://www.architectnow.net.

ffirs.indd 6 30-01-2014 20:54:07

http://www.architectnow.net

Acknowledgments

I would like to thank  Charlotte Kughen for making this text more readable; Mary James; and Jim
Minatel; and everyone else at Wiley who helped to get another edition of this great book published. I would
also like to thank my wife and children for supporting my writing. You’re my inspiration.

 — Christian Nagel

I want to thank  my wife and son for putting up with the time and frustrations of working on a project
like this. I also want to thank all the dedicated people at Wiley for getting this book out the door.

 — Jay Glynn

ffirs.indd 7 30-01-2014 20:54:07

ffirs.indd 8 30-01-2014 20:54:07

Contents

Introduction	 xxiii

Part I: The C# Language

Chapter 1: .NET Architecture	 3

The Relationship of C# to .NET	 3
The Common Language Runtime	 4
A Closer Look at Intermediate Language	 7
Assemblies	 14
.NET Framework Classes	 16
Namespaces	 17
Creating .NET Applications Using C#	 18
The Role of C# in the .NET Enterprise Architecture	 21
Summary	 22

Chapter 2: Core C#	 23

Fundamental C# 	 24
Your First C# Program	 24
Variables	 27
Predefined Data Types	 31
Flow Control	 37
Enumerations	 43
Namespaces	 45
The Main() Method	 47
More on Compiling C# Files	 49
Console I/O	 50
Using Comments	 52
The C# Preprocessor Directives	 54
C# Programming Guidelines	 57
Summary	 63

Chapter 3: Objects and Types	 65

Creating and Using Classes	 65
Classes and Structs	 66
Classes	 66
Anonymous Types	 79

ftoc.indd 9 30-01-2014 20:59:59

x

CONTENTS

Structs	 80
Weak References	 82
Partial Classes	 83
Static Classes	 85
The Object Class	 85
Extension Methods	 87
Summary	 88

Chapter 4: Inheritance	 89

Inheritance	 89
Types of Inheritance	 89
Implementation Inheritance	 90
Modifiers	 99
Interfaces	 100
Summary	 105

Chapter 5: Generics	 107

Generics Overview	 107
Creating Generic Classes	 110
Generics Features	 114
Generic Interfaces	 118
Generic Structs	 122
Generic Methods	 124
Summary	 128

Chapter 6: Arrays and Tuples	 129

Multiple Objects of the Same and Different Types	 129
Simple Arrays	 130
Multidimensional Arrays	 132
Jagged Arrays	 133
Array Class	 134
Arrays as Parameters	 139
Enumerations	 140
Tuples	 146
Structural Comparison	 147
Summary	 149

Chapter 7: Operators and Casts	 151

Operators and Casts	 151
Operators	 151

ftoc.indd 10 30-01-2014 20:59:59

xi

CONTENTS

Type Safety	 157
Comparing Objects for Equality	 162
Operator Overloading	 163
User-Defined Casts	 172
Summary	 181

Chapter 8: Delegates, Lambdas, and Events	 183

Referencing Methods	 183
Delegates	 184
Lambda Expressions	 198
Events	 201
Summary	 208

Chapter 9: Strings and Regular Expressions	 209

Examining System.String	 210
Regular Expressions	 221
Summary	 228

Chapter 10: Collections	 229

Overview	 230
Collection Interfaces and Types	 230
Lists	 231
Queues	 241
Stacks	 245
Linked Lists	 246
Sorted List	 251
Dictionaries	 252
Sets	 259
Observable Collections	 260
Bit Arrays	 262
Immutable Collections	 266
Concurrent Collections	 268
Performance	 275
Summary	 277

Chapter 11: Language Integrated Query	 279

LINQ Overview	 279
Standard Query Operators	 287
Parallel LINQ	 305
Expression Trees	 307

ftoc.indd 11 30-01-2014 20:59:59

xii

CONTENTS

LINQ Providers	 310
Summary	 310

Chapter 12: Dynamic Language Extensions	 313

Dynamic Language Runtime	 313
The Dynamic Type	 314
Hosting the DLR ScriptRuntime	 318
DynamicObject and ExpandoObject	 321
Summary	 324

Chapter 13: Asynchronous Programming	 325

Why Asynchronous Programming Is Important	 325
Asynchronous Patterns	 326
Foundation of Asynchronous Programming	 338
Error Handling	 341
Cancellation	 344
Summary	 346

Chapter 14: Memory Management and Pointers	 347

Memory Management	 347
Memory Management Under the Hood	 348
Freeing Unmanaged Resources	 353
Unsafe Code	 358
Summary	 372

Chapter 15: Reflection	 373

Manipulating and Inspecting Code at Runtime	 373
Custom Attributes	 374
Using Reflection	 380
Summary	 389

Chapter 16: Errors and Exceptions	 391

Introduction	 391
Exception Classes	 392
Catching Exceptions	 393
User-Defined Exception Classes	 402
Caller Information	 409
Summary	 411

ftoc.indd 12 30-01-2014 20:59:59

xiii

CONTENTS

Part ii: Visual Studio

Chapter 17: Visual Studio 2013	 415

Working with Visual Studio 2013	 415
Creating a Project	 420
Exploring and Coding a Project	 425
Building a Project	 437
Debugging Your Code	 441
Refactoring Tools	 447
Architecture Tools	 448
Analyzing Applications	 451
Unit Tests	 457
Windows Store Apps, WCF, WF, and More	 463
Summary	 467

Chapter 18: Deployment	 469

Deployment as Part of the Application Life Cycle	 469
Planning for Deployment	 470
Traditional Deployment	 471
ClickOnce	 473
Web Deployment	 479
Windows Store Apps	 481
Summary	 486

Part iiI: Foundation

Chapter 19: Assemblies	 489

What are Assemblies?	 489
Application Domains	 499
Shared Assemblies	 503
Configuring .NET Applications	 510
Versioning	 513
Sharing Assemblies Between Different Technologies	 517
Summary	 520

Chapter 20: Diagnostics	 521

Diagnostics Overview	 521
Code Contracts	 522
Tracing	 528

ftoc.indd 13 30-01-2014 21:00:00

xiv

CONTENTS

Event Logging	 540
Performance Monitoring	 548
Summary	 554

Chapter 21: Tasks, Threads, and Synchronization	 555

Overview	 556
Parallel Class	 557
Tasks	 561
Cancellation Framework	 566
Thread Pools	 569
The Thread Class	 570
Threading Issues	 574
Synchronization	 579
Timers	 597
Data Flow	 598
Summary	 602

Chapter 22: Security	 605

Introduction	 605
Authentication and Authorization	 606
Encryption	 614
Access Control to Resources	 621
Code Access Security	 623
Distributing Code Using Certificates	 629
Summary	 630

Chapter 23: Interop	 631

.NET and COM	 631
Using a COM Component from a .NET Client	 638
Using a .NET Component from a COM Client	 649
Platform Invoke	 659
Summary	 663

Chapter 24: Manipulating Files and the Registry	 665

File and the Registry	 665
Managing the File System	 666
Moving, Copying, and Deleting Files	 674
Reading and Writing to Files	 677
Mapped Memory Files	 692
Reading Drive Information	 693

ftoc.indd 14 30-01-2014 21:00:00

xv

CONTENTS

File Security	 695
Reading and Writing to the Registry	 699
Reading and Writing to Isolated Storage	 704
Summary	 707

Chapter 25: Transactions	 709

Introduction	 709
Overview	 710
Database and Entity Classes	 712
Traditional Transactions	 713
System.Transactions	 716
Dependent Transactions	 721
Isolation Level	 729
Custom Resource Managers	 731
File System Transactions	 737
Summary	 740

Chapter 26: Networking	 741

Networking	 741
The HttpClient Class	 742
Displaying Output as an HTML Page	 746
Utility Classes	 756
Lower-Level Protocols	 759
Summary	 771

Chapter 27: Windows Services	 773

What Is a Windows Service?	 773
Windows Services Architecture	 775
Creating a Windows Service Program	 777
Monitoring and Controlling Windows Services	 793
Troubleshooting and Event Logging	 802
Summary	 803

Chapter 28: Localization	 805

Global Markets	 805
Namespace System.Globalization	 806
Resources	 817
Windows Forms Localization Using Visual Studio	 823
Localization with ASP.NET Web Forms	 830
Localization with WPF	 832

ftoc.indd 15 30-01-2014 21:00:00

xvi

CONTENTS

A Custom Resource Reader	 837
Creating Custom Cultures	 840
Localization with Windows Store Apps	 842
Summary	 845

Chapter 29: Core XAML	 847

Uses of XAML	 847
XAML Foundation	 848
Dependency Properties	 853
Bubbling and Tunneling Events	 856
Attached Properties	 859
Markup Extensions	 861
Reading and Writing XAML	 863
Summary	 864

Chapter 30: Managed Extensibility Framework	 865

Introduction	 865
MEF Architecture	 866
Defining Contracts	 873
Exporting Parts	 875
Importing Parts	 884
Containers and Export Providers	 889
Catalogs	 892
Summary	 893

Chapter 31: Windows Runtime	 895

Overview	 895
Windows Runtime Components	 902
Windows Store Apps	 905
The Life Cycle of Applications	 907
Application Settings	 913
Summary	 916

Part iv: Data

Chapter 32: Core ADO.NET	 919

ADO.NET Overview	 919
Using Database Connections	 922
Commands	 927

ftoc.indd 16 30-01-2014 21:00:00

xvii

CONTENTS

Fast Data Access: The Data Reader	 934
Asynchronous Data Access: Using Task and Await	 936
Managing Data and Relationships: The DataSet Class	 938
XML Schemas: Generating Code with XSD	 948
Populating a DataSet	 953
Persisting DataSet Changes	 955
Working with ADO.NET	 958
Summary	 963

Chapter 33: ADO.NET Entity Framework	 965

Programming with the Entity Framework	 965
Entity Framework Mapping	 967
Entities	 972
Data Context	 973
Relationships	 975
Querying Data	 980
Writing Data to the Database	 982
Using the Code First Programming Model	 987
Summary	 995

Chapter 34: Manipulating XML	 997

XML	 997
XML Standards Support in .NET	 998
Introducing the System.Xml Namespace	 998
Using System.Xml Classes	 999
Reading and Writing Streamed XML	 1000
Using the DOM in .NET	 1007
Using XPathNavigators	 1011
XML and ADO.NET	 1020
Serializing Objects in XML	 1027
LINQ to XML and .NET	 1036
Working with Different XML Objects	 1036
Using LINQ to Query XML Documents	 1042
More Query Techniques for XML Documents	 1045
Summary	 1048

Part v: Presentation

Chapter 35: Core WPF	 1051

Understanding WPF	 1052

ftoc.indd 17 30-01-2014 21:00:00

xviii

CONTENTS

Shapes	 1055
Geometry	 1056
Transformation	 1058
Brushes	 1060
Controls	 1063
Layout	 1068
Styles and Resources	 1071
Triggers	 1077
Templates	 1080
Animations	 1089
Visual State Manager	 1095
3-D	 1098
Summary	 1102

Chapter 36: Business Applications with WPF	 1103

Introduction	 1103
Menu and Ribbon Controls	 1104
Commanding	 1107
Data Binding	 1109
TreeView	 1139
DataGrid	 1143
Summary	 1154

Chapter 37: Creating Documents with WPF	 1155

Introduction	 1155
Text Elements	 1156
Flow Documents	 1164
Fixed Documents	 1168
XPS Documents	 1171
Printing	 1173
Summary	 1175

Chapter 38: Windows Store Apps: User Interface	 1177

Overview	 1177
Microsoft Modern Design	 1178
Sample Application Core Functionality	 1180
App Bars	 1187
Launching and Navigation	 1188
Layout Changes	 1190
Storage	 1195

ftoc.indd 18 30-01-2014 21:00:00

xix

CONTENTS

Pickers	 1201
Live Tiles	 1202
Summary	 1204

Chapter 39: �Windows Store Apps: Contracts and
Devices 	 1205

Overview	 1205
Searching	 1206
Sharing Contract	 1208
Camera	 1212
Geolocation	 1213
Sensors	 1216
Summary	 1221

Chapter 40: Core ASP.NET	 1223

.NET Frameworks for Web Applications	 1223
Web Technologies	 1225
Hosting and Configuration	 1226
Handlers and Modules	 1229
Global Application Class	 1233
Request and Response	 1234
State Management	 1236
ASP.NET Identity System	 1247
Summary	 1251

Chapter 41: ASP.NET Web Forms	 1253

Overview	 1253
ASPX Page Model	 1254
Master Pages	 1263
Navigation	 1267
Validating User Input	 1268
Accessing Data	 1271
Security	 1280
Ajax	 1283
Summary 	 1296

Chapter 42: ASP.NET MVC	 1297

ASP.NET MVC Overview	 1297
Defining Routes	 1299

ftoc.indd 19 30-01-2014 21:00:00

xx

CONTENTS

Creating Controllers	 1300
Creating Views	 1304
Submitting Data from the Client	 1314
HTML Helpers	 1318
Creating a Data-Driven Application	 1323
Action Filters	 1331
Authentication and Authorization	 1332
Summary	 1336

Part vI: Communication

Chapter 43: Windows Communication Foundation	 1339

WCF Overview	 1339
Creating a Simple Service and Client	 1342
Contracts	 1354
Service Behaviors	 1358
Binding	 1362
Hosting	 1368
Clients	 1370
Duplex Communication	 1372
Routing	 1374
Summary	 1379

Chapter 44: ASP.NET Web API	 1381

Overview	 1381
Creating Services	 1382
Creating a .NET Client	 1385
Web API Routing and Actions	 1388
Using OData	 1391
Security with the Web API	 1400
Self-Hosting	 1405
Summary	 1406

Chapter 45: Windows Workflow Foundation	 1407

A Workflow Overview	 1407
Hello World	 1408
Activities	 1409
Custom Activities	 1413
Workflows	 1419
Summary	 1432

ftoc.indd 20 30-01-2014 21:00:00

xxi

CONTENTS

Chapter 46: Peer-to-Peer Networking	 1433

Peer-to-Peer Networking Overview	 1433
Peer Name Resolution Protocol (PNRP)	 1437
Building P2P Applications	 1439
Summary	 1445

Chapter 47: Message Queuing	 1447

Overview	 1448
Message Queuing Products	 1450
Message Queuing Architecture	 1451
Message Queuing Administrative Tools	 1452
Programming Message Queuing	 1453
Course Order Application	 1460
Receiving Results	 1470
Transactional Queues	 1471
Message Queuing with WCF	 1472
Message Queue Installation	 1478
Summary	 1478

Index	 1479

ftoc.indd 21 30-01-2014 21:00:00

flast.indd 22 30-01-2014 20:59:28

Introduction

If you were to describe the C# language  and its associated environment, the .NET
Framework, as the most significant technology for developers available, you would not be
exaggerating. .NET is designed to provide an environment within which you can develop almost any
application to run on Windows, whereas C# is a programming language designed specifically to work
with the .NET Framework. By using C#, you can, for example, write a dynamic web page, a Windows
Presentation Foundation application, an XML web service, a component of a distributed application,
a database access component, a classic Windows desktop application, or even a new smart client
application that enables online and offline capabilities. This book covers the .NET Framework 4.5.1.
If you code using any of the prior versions, there may be sections of the book that will not work for
you. This book notifies you of items that are new and specific to the .NET Framework 4.5 and 4.5.1.

Don’t be fooled by the .NET label in the Framework’s name and think that this is a purely Internet-
focused framework. The .NET bit in the name is there to emphasize Microsoft’s belief that distributed
applications, in which the processing is distributed between client and server, are the way forward.
You must also understand that C# is not just a language for writing Internet or
network-aware applications. It provides a means for you to code almost any type of software or
component that you need to write for the Windows platform. Between them, C# and .NET have
revolutionized the way that developers write their programs and have made programming on
Windows much easier than it has ever been before.

So what’s the big deal about .NET and C#?

The Significance of .NET and C#
To understand the significance of .NET, you must consider the nature of many of the Windows
technologies that have appeared in the past 20 years. Although they may look quite different on the
surface, all the Windows operating systems from Windows NT 3.1 (introduced in 1993) through
Windows 8.1 and Windows Server 2012 R2 have the same familiar Windows API for Windows
desktop and server applications at their core. Progressing through new versions of Windows, huge
numbers of new functions have been added to the API, but this has been a process to evolve and
extend the API rather than replace it.

With Windows 8, the main API of the operating system gets a replacement with Windows Runtime.
However, this runtime is still partly based on the familiar Windows API.

The same can be said for many of the technologies and frameworks used to develop software for
Windows. For example, Component Object Model (COM) originated as Object Linking and
Embedding (OLE). Originally, it was largely a means by which different types of Office documents
could be linked so that you could place a small Excel spreadsheet in your Word document, for
example. From that it evolved into COM, Distributed COM (DCOM), and eventually COM+ — a
sophisticated technology that formed the basis of the way almost all components communicated, as
well as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned
with backward compatibility. Over the years, a huge base of third-party software has been written
for Windows, and Windows would not have enjoyed the success it has had if every time Microsoft
introduced a new technology it broke the existing code base!

flast.indd 23 30-01-2014 20:59:29

xxiv

introduction

Although backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology evolves and
adds new features, it ends up a bit more complicated than it was before.

It was clear that something had to change. Microsoft could not go on forever extending the same
development tools and languages, always making them more and more complex to satisfy the conflicting
demands of keeping up with the newest hardware and maintaining backward compatibility with what was
around when Windows first became popular in the early 1990s. There comes a point in which you must
start with a clean slate if you want a simple yet sophisticated set of languages, environments, and developer
tools, which makes it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET were all about in the first incarnation. Roughly speaking, .NET is a
framework — an API — for programming on the Windows platform. Along with the .NET Framework, C#
is a language that has been designed from scratch to work with .NET, as well as to take advantage of all the
progress in developer environments and in your understanding of object-oriented programming principles
that have taken place over the past 25 years.

Before continuing, you must understand that backward compatibility has not been lost in the process.
Existing programs continue to work, and .NET was designed with the capability to work with existing
software. Presently, communication between software components on Windows takes place almost entirely
using COM. Taking this into account, the .NET Framework does have the capability to provide wrappers
around existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# to write code for .NET. Microsoft has extended C++ and made
substantial changes to Visual Basic to turn it into a more powerful language to enable code written in
either of these languages to target the .NET environment. These other languages, however, are hampered
by the legacy of having evolved over the years rather than having been written from the start with today’s
technology in mind.

This book can equip you to program in C#, while at the same time provides the necessary background in
how the .NET architecture works. You not only cover the fundamentals of the C# language, but also see
examples of applications that use a variety of related technologies, including database access, dynamic web
pages, advanced graphics, and directory access.

While the Windows API evolved and was extended since the early days of Windows NT in 1993, the .NET
Framework offered a major change on how programs are written since the year 2002; now, starting with
the year 2012, we have the days of the next big change. Do such changes happen every 10 years? Windows
8 offers a new API: the Windows Runtime (WinRT) for Windows Store apps. This runtime is a native API
(like the Windows API) that is not build with the .NET runtime as its core, but offers great new features
that are based on ideas of .NET. Windows 8 includes the first release of this API available for modern-style
apps. Although this is not based on .NET, you still can use a subset of .NET with Windows Store apps, and
write the apps with C#. This new runtime evolves, and with Windows 8.1 version 2 is included. This book
will give you a start in writing Windows Store apps with C# and WinRT.

Advantages of .NET
So far, you’ve read in general terms about how great .NET is, but it can help to make your life as a developer
easier. This section briefly identifies some of the features of .NET:

➤➤ Object-oriented programming — Both the .NET Framework and C# are entirely based on object-
oriented principles from the start.

➤➤ Good design — A base class library, which is designed from the ground up in a highly intuitive way.

flast.indd 24 30-01-2014 20:59:29

xxv

introduction

➤➤ Language independence — With .NET, all the languages — Visual Basic, C#, and managed
C++ — compile to a common Intermediate Language. This means that languages are interoperable in
a way that has not been seen before.

➤➤ Better support for dynamic web pages — Though Classic ASP offered a lot of flexibility, it was also
inefficient because of its use of interpreted scripting languages, and the lack of object-oriented design
often resulted in messy ASP code. .NET offers an integrated support for web pages, using ASP
.NET. With ASP.NET, code in your pages is compiled and may be written in a .NET-aware high-level
language such as C# or Visual Basic 2013. .NET now takes it even further with outstanding support
for the latest web technologies such as Ajax and jQuery.

➤➤ Efficient data access — A set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also
available to enable access to the file system and to directories. In particular, XML support is built
into .NET, enabling you to manipulate data, which may be imported from or exported to
non-Windows platforms.

➤➤ Code sharing — .NET has completely revamped the way that code is shared between applications,
introducing the concept of the assembly, which replaces the traditional DLL. Assemblies have formal
facilities for versioning, and different versions of assemblies can exist side by side.

➤➤ Improved security — Each assembly can also contain built-in security information that can indicate
precisely who or what category of user or process is allowed to call which methods on which classes.
This gives you a fine degree of control over how the assemblies that you deploy can be used.

➤➤ Zero-impact installation — There are two types of assemblies: shared and private. Shared assemblies
are common libraries available to all software, whereas private assemblies are intended only for use
with particular software. A private assembly is entirely self-contained, so the process to install it is
simple. There are no registry entries; the appropriate files are simply placed in the appropriate folder
in the file system.

➤➤ Support for web services — .NET has fully integrated support for developing web services as easily as
you would develop any other type of application.

➤➤ Visual Studio 2013 — .NET comes with a developer environment, Visual Studio 2013, which can cope
equally well with C++, C#, and Visual Basic 2013, as well as with ASP.NET or XML code. Visual
Studio 2013 integrates all the best features of the respective language-specific environments of all the
previous versions of this amazing IDE.

➤➤ C# — C# is a powerful and popular object-oriented language intended for use with .NET.

You look more closely at the benefits of the .NET architecture in Chapter 1, “.NET Architecture.”

What’s New in the .NET Framework 4.5 and .NET 4.5.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The .NET
Framework 2.0 was introduced in 2005 and was considered a major release of the Framework. The major
new feature of 2.0 was generics support in C# and the runtime (IL code changed for generics), and new
classes and interfaces. .NET 3.0 was based on the 2.0 runtime and introduced a new way to create UIs
(WPF with XAML and vector-based graphics instead of pixel-based), and a new communication technology
(WCF). .NET 3.5 together with C# 3.0 introduced LINQ, one query syntax that can be used for all data
sources. .NET 4.0 was another major release of the product that also brought a new version of the runtime
(4.0) and a new version of C# (4.0) to offer dynamic language integration and a huge new library for parallel
programming. The .NET Framework 4.5 is based on an updated version of the 4.0 runtime with many
outstanding new features. The .NET Framework 4.5.1 gives some small increments. However, with more

flast.indd 25 30-01-2014 20:59:29

xxvi

introduction

and more libraries that are part of the .NET Framework being distributed as NuGet packages, more and
more features are delivered out of band to the .NET Framework. For example, the Entity Framework, ASP
.NET Web API, and other .NET libraries got huge improvements.

With each release of the Framework, Microsoft has always tried to ensure that there were minimal breaking
changes to code developed. Thus far, Microsoft has been successful at this goal.

The following section details some of the changes that are new to C# 5.0 and the .NET Framework 4.5.1.

Asynchronous Programming
Blocking the UI is unfriendly to the user; the user becomes impatient if the UI does not react. Maybe you’ve
had this experience with Visual Studio as well. Good news: Visual Studio has become a lot better in reacting
faster in many scenarios.

The .NET Framework always offered calling methods asynchronously. However, using synchronous
methods was a lot easier than calling their asynchronous variant. This changed with C# 5.0. Programming
asynchronously has become as easy as writing synchronous programs. New C# keywords are based on the
.NET Parallel Library that is available since .NET 4.0. Now the language offers productivity features.

Windows Store Apps and the Windows Runtime
Windows Store apps can be programmed with C# using the Windows Runtime and a subset of the .NET
Framework. The Windows Runtime is a new native API that offers classes, methods, properties, and events
that look like .NET; although it is native. For using language projection features, the .NET runtime has
been enhanced. With .NET 4.5, the .NET 4.0 runtime gets an in-place update.

Enhancements with Data Access
The ADO.NET Entity Framework offered important new features. Its version changed from 4.0 with .NET
4.0 to 5.0 with .NET 4.5, and to 6.0 with .NET 4.5.1. After the release of .NET 4.0, the Entity Framework
already received updates with versions 4.1, 4.2, and 4.3. New features such as Code First, spatial types,
using enums, and table-valued functions are now available.

Enhancements with WPF
For programming Windows desktop applications, WPF has been enhanced. Now you can fill collections
from a non-UI thread; the ribbon control is now part of the framework; weak references with events have
been made easier; validation can be done asynchronously with the INotifyDataErrorInfo interface; and
live shaping allows easy dynamic sorting and grouping with data that changes.

ASP.NET MVC
Visual Studio 2010 included ASP.NET MVC 2.0. With the release of Visual Studio 2013, ASP.NET MVC
5.0 is available. ASP.NET MVC supplies you with the means to create ASP.NET using the
model-view-controller model that many developers expect. ASP.NET MVC provides developers with
testability, flexibility, and maintainability in the applications they build. ASP.NET MVC is not meant to be
a replacement for ASP.NET Web Forms but is simply a different way to construct your applications.

flast.indd 26 30-01-2014 20:59:29

news:Visual

xxvii

introduction

Where C# Fits In
In one sense, C# is the same thing to programming languages that .NET is to the Windows environment.
Just as Microsoft has been adding more and more features to Windows and the Windows API over the
past 15 years, Visual Basic 2013 and C++ have undergone expansion. Although Visual Basic and C++ have
resulted in hugely powerful languages, both languages also suffer from problems because of the legacies left
over from the way they evolved.

For Visual Basic 6 and earlier versions, the main strength of the language was that it was simple to
understand and made many programming tasks easy, largely hiding the details of the Windows API and
the COM component infrastructure from the developer. The downside to this was that Visual Basic was
never truly object-oriented, so large applications quickly became disorganized and hard to maintain. Also,
because Visual Basic’s syntax was inherited from early versions of BASIC (which, in turn, was designed
to be intuitively simple for beginning programmers to understand, rather than to write large commercial
applications), it didn’t lend itself to well-structured or object-oriented programs.

C++, on the other hand, has its roots in the ANSI C++ language definition. It is not completely ANSI-
compliant for the simple reason that Microsoft first wrote its C++ compiler before the ANSI definition had
become official, but it comes close. Unfortunately, this has led to two problems. First, ANSI C++ has its
roots in a decade-old state of technology, and this shows up in a lack of support for modern concepts (such
as Unicode strings and generating XML documentation) and for some archaic syntax structures designed
for the compilers of yesteryear (such as the separation of declaration from definition of member functions).
Second, Microsoft has been simultaneously trying to evolve C++ into a language designed for high-
performance tasks on Windows, and to achieve that, it has been forced to add a huge number of Microsoft-
specific keywords as well as various libraries to the language. The result is that on Windows, the language
has become a complete mess. Just ask C++ developers how many definitions for a string they can think of:
char*, LPTSTR, string, CString (MFC version), CString (WTL version), wchar_t*, OLECHAR*, and so on.

Now enters .NET — a completely revolutionary environment that has brought forth new extensions to both
languages. Microsoft has gotten around this by adding yet more Microsoft-specific keywords to C++ and
by completely revamping Visual Basic to the current Visual Basic 2013, a language that retains some of
the basic VB syntax but that is so different in design from the original VB that it can be considered, for all
practical purposes, a new language.

It is in this context that Microsoft has provided developers an alternative — a language designed specifically
for .NET and designed with a clean slate. C# is the result. Officially, Microsoft describes C# as a “simple,
modern, object-oriented, and type-safe programming language derived from C and C++.” Most independent
observers would probably change that to “derived from C, C++, and Java.” Such descriptions are technically
accurate but do little to convey the beauty or elegance of the language. Syntactically, C# is similar to
both C++ and Java, to such an extent that many keywords are the same, and C# also shares the same
block structure with braces ({}) to mark blocks of code and semicolons to separate statements. The first
impression of a piece of C# code is that it looks quite like C++ or Java code. Beyond that initial similarity,
however, C# is a lot easier to learn than C++ and of comparable difficulty to Java. Its design is more in
tune with modern developer tools than both of those other languages, and it has been designed to provide,
simultaneously, the ease of use of Visual Basic and the high-performance, low-level memory access of C++,
if required. Some of the features of C# follow:

➤➤ Full support for classes and object-oriented programming, including interface and implementation
inheritance, virtual functions, and operator overloading.

➤➤ A consistent and well-defined set of basic types.
➤➤ Built-in support for an automatic generation of XML documentation.
➤➤ Automatic cleanup of dynamically allocated memory.

flast.indd 27 30-01-2014 20:59:29

xxviii

introduction

➤➤ The facility to mark classes or methods with user-defined attributes. This can be useful for
documentation and can have some effects on compilation (for example, marking methods to be
compiled only in debug builds).

➤➤ Full access to the .NET base class library and easy access to the Windows API (if you need it, which
will not be often).

➤➤ Pointers and direct memory access are available if required, but the language has been designed in
such a way that you can work without them in almost all cases.

➤➤ Support for properties and events in the style of Visual Basic.
➤➤ Just by changing the compiler options, you can compile either to an executable or to a library of

.NET components that can be called up by other code in the same way as ActiveX controls (COM
components).

➤➤ C# can be used to write ASP.NET dynamic web pages and XML web services.

Most of these statements, it should be pointed out, also apply to Visual Basic 2013 and Managed C++.
Because C# is designed from the start to work with .NET, however, means that its support for the features
of .NET is both more complete and offered within the context of a more suitable syntax than those of other
languages. Although the C# language is similar to Java, there are some improvements; in particular, Java is
not designed to work with the .NET environment.

Before leaving the subject, you must understand a couple of limitations of C#. The one area the language
is not designed for is time-critical or extremely high-performance code — the kind where you are worried
about whether a loop takes 1,000 or 1,050 machine cycles to run through, and you need to clean up your
resources the millisecond they are no longer needed. C++ is likely to continue to reign supreme among
low-level languages in this area. C# lacks certain key facilities needed for extremely high-performance apps,
including the capability to specify inline functions and destructors guaranteed to run at particular points in
the code. However, the proportions of applications that fall into this category are low.

What You Need to Write and Run C# Code
The .NET Framework 4.5.1 can run on the client operating systems Windows Vista, 7, 8, 8.1, and the server
operating systems Windows Server 2008, 2008 R2, 2012, and 2012 R2. To write code using .NET, you
need to install the .NET 4.5.1 SDK.

In addition, unless you intend to write your C# code using a text editor or some other third-party developer
environment, you almost certainly also want Visual Studio 2013. The full SDK is not needed to run
managed code, but the .NET runtime is needed. You may find you need to distribute the .NET runtime with
your code for the benefit of those clients who do not have it already installed.

What This Book Covers
This book starts by reviewing the overall architecture of .NET in Chapter 1 to give you the background you
need to write managed code. After that, the book is divided into a number of sections that cover both the
C# language and its application in a variety of areas.

Part I: The C# Language
This section gives a good grounding in the C# language. This section doesn’t presume knowledge of any
particular language; although, it does assume you are an experienced programmer. You start by looking at

flast.indd 28 30-01-2014 20:59:29

