Springer Water

Anja du Plessis

Freshwater Challenges of South Africa and its Upper Vaal River

Current State and Outlook

Springer Water

The book series Springer Water comprises a broad portfolio of multi- and interdisciplinary scientific books, aiming at researchers, students, and everyone interested in water-related science. The series includes peer-reviewed monographs, edited volumes, textbooks, and conference proceedings. Its volumes combine all kinds of water-related research areas, such as: the movement, distribution and quality of freshwater; water resources; the quality and pollution of water and its influence on health; the water industry including drinking water, wastewater, and desalination services and technologies; water history; as well as water management and the governmental, political, developmental, and ethical aspects of water.

More information about this series at http://www.springer.com/series/13419

Anja du Plessis

Freshwater Challenges of South Africa and its Upper Vaal River

Current State and Outlook

Anja du Plessis Department of Geography University of South Africa Florida Science Campus Johannesburg, South Africa

ISSN 2364-6934 ISSN 2364-8198 (electronic) Springer Water ISBN 978-3-319-49501-9 ISBN 978-3-319-49502-6 (eBook) DOI 10.1007/978-3-319-49502-6

Library of Congress Control Number: 2016962704

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Acknowledgements

The author would like to acknowledge and thank the University of Johannesburg where the PhD thesis was completed as some sections of the thesis has been used in the completion of this book. The author would also like to thank Rand Water and the Department of Water and Sanitation for water quality data upon which the conclusions of this book are based upon.

Contents

Part I Global Context of Freshwater Resources

1	Glob	al Wate	er Availability, Distribution and Use	3
	1.1	Introd	uction	3
	1.2	Water	Availability and Distribution	4
	1.3	Water	Use	6
		1.3.1	Agriculture	7
		1.3.2	Industries, Mining and Energy	8
		1.3.3	Domestic, Recreational and Environmental	9
	Refe	rences.		11
2	Glob	al Wate	er Quality Challenges	13
	2.1		uction	13
	2.2	Main	Types of Water Pollution	15
		2.2.1	Point Sources	17
		2.2.2	Non-point Sources	18
	2.3	Main	Contaminants and Problems	21
		2.3.1	Nutrients	22
		2.3.2	Erosion and Sedimentation	23
		2.3.3	Water Temperature	24
		2.3.4	Acidification	27
		2.3.5	Salinity	29
		2.3.6	Pathogenic Organisms	30
		2.3.7	Trace Metals, Human-Produced Chemicals and Other	
			Toxins	32
		2.3.8	Introduced Species and Biological Disruptions	35
		2.3.9	Emerging Contaminants	36
	2.4	Overa	ll Influence on the Environment and Human Health	36
		2.4.1	Environment	37
		2.4.2	Human Health	38
	Refe	rences.		40

3	Glo	bal Water Scarcity and Possible Conflicts	45
	3.1	Introduction	45
	3.2	Water Scarcity	46
	3.3	Access to Clean Drinking Water and Water Related	
		Diseases	47
	3.4	Influences of Climate Change	49
		3.4.1 Observed Changes and/or Impacts	49
		3.4.2 Future Changes in Water Availability	50
		3.4.3 Future Changes in Water Demand and Water Stress	52
	3.5	Possible Water Conflicts	53
		3.5.1 California: Consequences of Severe Drought	53
		3.5.2 Sao Paulo: Water Shortages in a Metropolis	56
		3.5.3 Nigeria: Growing Economy and the Cost of Crumbling	
		Infrastructure	58
	Ref	erences	60
_			
Par	t II	South Africa's and the Upper Vaal WMA's Freshwater	
		Resources	
4	Sou	th Africa's Water Availability and Use	65
	4.1	Introduction	65
	4.2	Water Availability	66
	4.3	Water Use and Losses Within the Country	68
		4.3.1 Agricultural Water Use and Losses	69
		4.3.2 Industrial Water Use and Losses	71
		4.3.3 Municipal/Domestic Water Use and Losses	73
	Ref	erences	75
5	The	e Upper Vaal WMA	77
	5.1	Introduction	77
	5.2	Upper Vaal Catchment Areas	78
	5.3	Geology and Soils	84
	5.4	Topography	86
	5.5	Hydrology	87
	5.6	Climate	88
	5.7	Ecology	89
	5.8	Land Cover and Land Use	92
	Ref	erences	96
6	Pri	mary Water Quality Challenges for South Africa and the	
		per Vaal WMA	99
	6.1		99
	6.2	Sewage or Microbial Pollution	101
	6.3	Eutrophication	102
	6.4	Agro-chemical Contamination	105
	6.5	Industrial Effluent Pollution	107

	6.6 6.7 6.8 6.9 6.10 Refere	Salinisation	109 110 111 113 114 116	
7	Water Scarcity and Other Significant Challenges for			
		Africa	119	
	7.1	Introduction	119	
	7.2	Water Scarcity	120	
	7.3	Possible Influence of Climate Change	122	
	7.4	Future Water Demand and Possible Water Conflicts	124	
	Refere	ences	125	
Part	t III	Future Possibilities and Strategic Actions		
8		ure Outlook: Improved Water Efficiency and Possible		
8		egic Actions for South Africa and the Upper Vaal WMA	129	
8	Strate 8.1	egic Actions for South Africa and the Upper Vaal WMA Introduction	129	
8	Strate	egic Actions for South Africa and the Upper Vaal WMA Introduction Improved Water Efficiency Measures	129 130	
8	Strate 8.1	egic Actions for South Africa and the Upper Vaal WMA Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector	129 130 132	
8	Strate 8.1	egic Actions for South Africa and the Upper Vaal WMAIntroductionImproved Water Efficiency Measures8.2.1Agricultural Sector8.2.2Industry, Mining and Energy Sector	129 130 132 136	
8	Strate 8.1 8.2	egic Actions for South Africa and the Upper Vaal WMAIntroductionImproved Water Efficiency Measures8.2.1Agricultural Sector8.2.2Industry, Mining and Energy Sector8.2.3Domestic/Municipal Sector	129 130 132 136 141	
8	Strate 8.1 8.2 8.3	egic Actions for South Africa and the Upper Vaal WMAIntroductionImproved Water Efficiency Measures8.2.1Agricultural Sector8.2.2Industry, Mining and Energy Sector8.2.3Domestic/Municipal SectorStrategic Actions	129 130 132 136 141 148	
8	Strate 8.1 8.2 8.3	egic Actions for South Africa and the Upper Vaal WMAIntroductionImproved Water Efficiency Measures8.2.1Agricultural Sector8.2.2Industry, Mining and Energy Sector8.2.3Domestic/Municipal Sector	129 130 132 136 141	
8 Part	Strate 8.1 8.2 8.3 Refere	egic Actions for South Africa and the Upper Vaal WMAIntroductionImproved Water Efficiency Measures8.2.1Agricultural Sector8.2.2Industry, Mining and Energy Sector8.2.3Domestic/Municipal SectorStrategic Actions	129 130 132 136 141 148	
-	Strate 8.1 8.2 8.3 Reference t IV	egic Actions for South Africa and the Upper Vaal WMA Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector 8.2.2 Industry, Mining and Energy Sector 8.2.3 Domestic/Municipal Sector Strategic Actions Strategic Actions	129 130 132 136 141 148	
Part	Strate 8.1 8.2 8.3 Reference t IV	egic Actions for South Africa and the Upper Vaal WMA Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector 8.2.2 Industry, Mining and Energy Sector 8.2.3 Domestic/Municipal Sector Strategic Actions Strategic Actions ences Strategic Actions	129 130 132 136 141 148 150	
Part	Strate 8.1 8.2 8.3 Reference t IV (Challe	egic Actions for South Africa and the Upper Vaal WMA Introduction Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector 8.2.2 Industry, Mining and Energy Sector 8.2.3 Domestic/Municipal Sector Strategic Actions Ences Challenges, Recommendations and Conclusions enges and Policy Recommendations	129 130 132 136 141 148 150	
Part	Strate 8.1 8.2 8.3 Reference t IV (Challe 9.1	egic Actions for South Africa and the Upper Vaal WMA Introduction Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector 8.2.2 Industry, Mining and Energy Sector 8.2.3 Domestic/Municipal Sector Strategic Actions Strategic Actions ences Challenges, Recommendations and Conclusions enges and Policy Recommendations Introduction	129 130 132 136 141 148 150 155	
Part	Strate 8.1 8.2 8.3 Reference t IV (Challe 9.1 9.2 9.3	egic Actions for South Africa and the Upper Vaal WMA Introduction Improved Water Efficiency Measures 8.2.1 Agricultural Sector 8.2.2 Industry, Mining and Energy Sector 8.2.3 Domestic/Municipal Sector Strategic Actions Strategic Actions ences Challenges, Recommendations and Conclusions enges and Policy Recommendations Introduction Overview of Challenges and Possible Constraints Onstraints	129 130 132 136 141 148 150 155 155 156	

List of Figures

Fig. 1.1	Distribution of the Earth's water	5
Fig. 1.2	Water available on Earth for human consumption	5
Fig. 1.3	Agricultural water usage across the world	8
Fig. 1.4	Industrial water usage across the world	9
Fig. 2.1	Main point and non-point source pollutants	17
Fig. 2.2	The main sources of pollutants and the pollutant pathways	•
	(adapted from Chae and Hamidi 1997)	20
Fig. 2.3 Fig. 2.4	Eutrophication of Lake Udaisagar, located in Udaipur, India (a) Sewage pollution being pumped directly into the river	23
8	by a factory and (b) Yangtze River turned red due to industrial pollution	25
Fig. 2.5	Thermal pollution from a point nuclear power plant in India	26
Fig. 2.6	Acid mine drainage from the mining of the Iron Mountain in the	
C	United States of America	28
Fig. 2.7	Untreated sewage from the Shilong Dump in India	31
Fig. 3.1	Water availability versus population across the continents of the earth	47
Fig. 4.1	The highest and lowest projections, with existing and new	
	technologies, for water demand in the country as against	
	available surface water, ground water and recycled water	
	(redrawn from Ashton 1999)	70
Fig. 5.1	Water management areas and the provincial boundaries of South Africa	78
Fig. 5.2	The Orange/Vaal River Basin, which extends across South Africa, Lesotho, Botswana and Namibia (modified from DWS 1997; Kneidinger 2007)	79
Fig. 5.3	Secondary and tertiary catchments of the Upper Vaal WMA	80
0		

Fig. 5.4	Vaal Dam secondary catchment with major dams, rivers and other landmarks	81
Fig. 5.5	Vaal River Barrage secondary catchment with major dams, rivers and urban landmarks	82
Fig. 5.6	Mooi River catchment with major dams, rivers and urban landmark	83
Fig. 5.7	Distribution of coalfields in the Witwatersrand Basin and the Karoo Supergroup	85
Fig. 5.8	Topography of the Upper Vaal WMA	87
Fig. 5.9 Fig. 5.10	Sectoral contribution to the GGP of the Upper Vaal WMA The current mining areas, as well as prospective mining areas, in the upper catchments of the Vaal, Olifants, Komati	95
	and Mfolozi-Pongola Rivers in Mpumalanga Province	96
Fig. 7.1 Fig. 7.2	River ecosystem status for South Africa South Africa's rating according to the Water Risk Index	121 123

List of Tables

Table 2.1	Reasons for concern regarding the world's water resources	39
Table 4.1	Water requirements as measured in 1996 and the projected water requirements for 2030 by the main water usage sectors in South Africa	69
Table 5.1	Secondary and tertiary catchments according to the DWS drainage region categories	81
Table 5.2	Selected fish species found in the Upper Vaal WMA	90
Table 5.3	Vegetational types of the Upper Vaal WMA (modified from Bredenkamp et al. 1996)	92
Table 8.1	Levels of water losses in South Africa	145
Table 8.2	Low cost interventions for improved water efficiency	
	for domestic, commercial and institutional properties	145
Table 8.3	Medium cost interventions for improved water efficiency	
	for domestic, commercial and institutional properties	146

Part I Global Context of Freshwater Resources

Chapter 1 Global Water Availability, Distribution and Use

Water is one of the most widely distributed substances across the world's surface and is crucial for a variety of aspects of human health, development and well-being as well as for the functioning of natural ecosystems. It has been recognised as a fundamental human right internationally and consequently needs to be managed both effectively and efficiently to ensure that global water needs are met. The distribution of water across the globe is uneven and the availability thereof becoming an increasingly major concern. The main water use sectors, grouped in terms of agriculture, industrial (includes industrial activities, mining and energy) as well as municipal/domestic, recreational and environmental water use, have an influence on water availability through physical water abstraction as well as through water degradation. Global challenges in terms of water availability and water use are highlighted. Focus is placed on the availability, distribution and use of freshwater resources on a global scale.

1.1 Introduction

Water is one of the most widely distributed substances to be found in the natural environment and constitutes the earth's oceans, seas, lakes, rivers and underground water sources. This substance is crucial for various aspects of human health, development and well-being. The United Nations has recognised the importance of this resource by incorporating it into the Millennium Development Goals (MDGs) and by proclaiming the years 2005–2015 as the International Decade for Action 'Water for Life' (UN Water 2011). The importance of water has continued to be recognised with the incorporation thereof into the new Sustainable Development Goals (SDGs) which are Global Goals primarily set to transform the world and part of the 2030 Agenda for sustainable development. Water has thus been

continually recognised as a fundamental human right internationally and it is vital that it be managed effectively and efficiently on a global and national scale. This -Chapter will focus upon the availability, distribution and use of freshwater resources on a global scale.

1.2 Water Availability and Distribution

Approximately 75% of the Earth's surface is covered by water. However, this is just an estimate as the dynamic nature and permanent motion of water makes it difficult to reliably assess the total water stock/store of the earth. Current estimates are that the earth's hydrosphere contains approximately 1386 million km³ of water. However, not all of these resources are potentially available to humans since freshwater is required by the agricultural sector, industries, and domestic and recreational users (Kibona et al. 2009; Cassardo and Jones 2011; Lui et al. 2011).

Figure 1.1 shows that 97% of the Earth's water occurs in oceans and is saline. Approximately three percent (3%) of the water on Earth is fresh water and its physical state varies from being a liquid, to becoming a gas or a solid. Approximately 69% of the Earth's fresh water is locked up in glaciers, ice caps and permanent snow cover in the polar regions. Groundwater accounts for 30% of the freshwater on Earth, while only 0.3% of all freshwater is contained in river systems, lakes and reservoirs (Kibona et al. 2009; Cassardo and Jones 2011; Lui et al. 2011).

As indicated in Fig. 1.2, approximately 99% of water is described as unfit or unavailable for human consumption. The remaining one percent (1%) consists mainly of groundwater, which can be difficult and costly to obtain. Only 0.0067% of the total water on Earth is fresh surface water that can be used. This leaves a total of around 2120 km³ of freshwater that is available for human use and consumption (Cassardo and Jones 2011).

Numerous desalinisation plants, in fact more than 14,000, have been developed over the globe as a result of limited freshwater supplies. These plants produce over 60.5 billion litres of water daily and most of the Persian Gulf countries rely on such plants. Thus, without the implementation of these desalinisation plants or reverse osmosis technologies, the world's potable water supply would be very limited (Kibona et al. 2009; Curry 2010).

The most fundamental function of water is firstly as a prerequisite for life on Earth and secondly, as a commodity or economic resource. These two roles are constantly in conflict with each other in many areas of water usage. This has led to the exploitation of water through human activities which has in turn placed huge risks on aquatic ecosystems and the life that they support (Pimentel et al. 2010).

The distribution of water across the world's surface also plays a role. It is important to note that both the human population and water resources are unevenly distributed across the Earth's surface. Areas that are densely populated by human populations do not necessarily coincide with regions that are rich in water supplies. The minimum basic water requirement for human health is 50 L per capita per day and the minimum amount of water required per capita for food is approximately

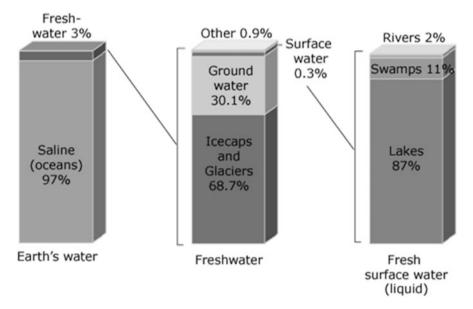


Fig. 1.1 Distribution of the Earth's water (Lui et al. 2011)

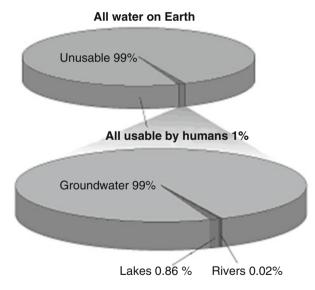


Fig. 1.2 Water available on Earth for human consumption (Lui et al. 2011)

400,000 L per year, as estimated by the World Business Council for Sustainable Development. However, regions such as the United States of America (USA) consume more than eight times that amount for human consumption and four times that amount per year for food production. This confirms the fact that water

resources are unevenly distributed across the world (Kibona et al. 2009; Pimentel et al. 2010; Cassardo and Jones 2011). According to these minimum requirements, the total amount of water available on Earth is sufficient to provide for the whole population. However, most of the total freshwater is concentrated in specific regions, such as North America, while other regions such as the Middle East and North Africa face a water deficit (Cassardo and Jones 2011).

The changes that are currently being experienced in the further development of regions across the world have resulted in a pandemic array of changes in the terrestrial component of the water cycle. These changes relate in part to universal transformations in the global water system and are not isolated. Amongst others, they include the universal changes in freshwater systems in terms of the following.

Physical characteristics: These include long-term changes in surface and subsurface moisture storage and runoff, and persistent changes in precipitation and hydrological patterns. It is said that researchers generally have a limited understanding of the global scale manifestation of local hydrological mechanisms, as well as the intensity of such changes in the different regions. The altercation of physical characteristics of freshwater systems through developments such as mining operations can change characteristics such as the system's soils, wetland hydrology and geomorphology within one region and have unintended altering effects or cumulative impacts such as increased sedimentation or the altercation of a different freshwater system in another connected region or area (Alcamo et al. 2008).

Chemistry and biology: These include long-term alterations in the flow of nutrients and sediments toward the oceans, as well as the key levels of water quality and habitat parameters. The over utilization of freshwater systems through various human activities can be accompanied with an influx of nutrients within aquatic habitats and consequently greatly reduce aquatic organisms and hold severe consequences for aquatic ecosystems. An example of this could include the continued increase of waste water in the degradation of water quality on aquatic ecosystems and freshwater fisheries which remain an important protein for the poor population (Alcamo et al. 2008).

Anthropogenic water use and withdrawal: These include rapidly changing patterns of water consumption across different economic sectors and regions. Industrialised countries now tend to be associated with reduced withdrawals of water while the volumes of water withdrawn in the developing regions are increasing. These trends have caused changes in water stress patterns with uncertain global implications (Alcamo et al. 2008).

1.3 Water Use

Fresh surface water is mainly used across the globe as it can be easily extracted. It has recently been estimated that the approximately 69% of worldwide usage of water is for agriculture, mainly in the form of irrigation; 22% for industrial purposes, eight percent (8%) for domestic purposes, and one percent (1%) for recreational use (Kibona et al. 2009; Rosegrant et al. 2009; Cassardo and Jones 2011).