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xix

In the course of acquiring knowledge about UV‐B research in plant systems from the 
past up to the present day, we have found a considerable gap between the availability of 
books and emerging areas of research. This book has been written to bridge the gap 
between researches being conducted from the past up to today, and the direction these 
researches might take in the future with respect to UV‐B.

The title itself indicates that this book has mapped UV‐B research from past up to 
recent times. It is a book of theoretical knowledge, and the compilation has been done 
on the basis of practical work done by the researchers and scientists. We have briefed 
out the historical backgrounds of UV‐B namely, how it reaches the earth’s surface, its 
action spectra and its interaction with living systems, using the research work con-
ducted by researchers in the past, to recent studies that show how research in UV‐B has 
taken a U‐turn with the discovery of UVR8.

A good book is one that includes knowledge for all readers, including students, and of 
course we are indebted to the many authors who have contributed to it. This book 
includes chapters which cover several aspects of UV‐B, starting from the basics of UV‐B 
research and going on to the present date, and a brief outline has been provided below.

The first chapter gives an overview of the ozone layer and the reasons for its depletion 
and UV‐B reaching the earth’s surface, and it also offers a brief introduction to action 
spectra and biologically effective irradiance. In later sections, the authors also discuss 
the impact of UV‐B on plants by analysing the researches performed in the past.

The second chapter gives a brief historical background for the effect of ambient UV‐B 
on plants, with special reference to accumulation of secondary metabolites, such as 
phenolic compounds, alkaloids and terpenoids. The authors have also discussed recent 
studies regarding phenolics under ecologically relevant UV‐B radiation, and changes in 
the content of secondary metabolites, with reference to species variation, changes in the 
UV‐B : UV‐A : PAR ratio, UV‐B doses and UV‐B spectral quality.

In the next few chapters, authors discuss risk arising due to the interaction of UV‐B 
with the components of plants, and biological effects arising due to absorption of UV 
radiation, whether from UV‐A or UV‐B, by important biomolecules like nucleic acids, 
lipids and proteins. They also examine the impact on the phytochrome system and 
photosynthetic machinery. In addition, the authors also discuss the effects of UV‐B 
radiation in terms of oxidative stress, and the responses generated by plants to combat 
from the stress arising due to UV‐B induced toxicity, which includes accumulation 
of  sun‐screen molecules. These chapters basically focus on the past researches that 
have  been performed with UV‐B. With technology and research advancement, 
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the introduction of photomorphogenic responses came into existence, which compelled 
researchers to gain a deeper insight into this phenomenon, and this curiosity for 
innovation led to the discovery of UVR8.

In later chapters, authors have very well documented the history of photomorpho-
genic responses and how UVR8 was discovered  –  and all the regulators, whether 
positive or negative, involved with this component. In the last chapter, the authors 
discuss the mechanism of regulatory action by UVR8 and its integration with other 
pathways.

In concluding, it is a pleasure to express our thanks to all the authors for contributing 
chapters that have helped us in giving a clear picture of the changing scenario of research 
in UV‐B. We hope that this book will be of special value to environmentalists, researchers 
and students seeking knowledge on UV‐B, which has not yet been assimilated in 
textbooks.

Editors:
Vijay Pratap Singh

Samiksha Singh
Sheo Mohan Prasad

Parul Parihar
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1

1.1  The Historical Background

About 3.8 × 109 years ago, during the early evolutionary phase, the young earth was 
receiving a very high amount of UV radiation and it is estimated that, at that time, the 
sun was behaving like young T‐Tauristars and was emitting 10,000 times greater UV 
than today (Canuto et al., 1982). Then, the radiance of the sun became lower than it is 
in the present day, thereby resulting in temperatures below freezing. On the other hand, 
due to high atmospheric carbon dioxide (CO2) level, which was 100–1000 times greater 
than that of present values, liquid water did occur and absorbed infrared (IR) radiation, 
and this shaped an obvious greenhouse effect (Canuto et al., 1982). Due to the photo-
synthesis of photosynthetic bacteria, cyanobacteria and eukaryotic algae, oxygen (O2) 
was released for the first time into the environment, which led to an increase of atmos-
pheric O2 and a simultaneous decrease of atmospheric CO2.

About 2.7 × 109 years ago, due to the absence of oxygenic photosynthesis, oxygen was 
absent from the atmosphere. About 2.7 × 109 years ago, with the deposition of iron oxide 
(Fe2O3) in Red Beds, aerobic terrestrial weathering occurred and, at that time, O2 was 
approximately about 0.001% of the present level (Rozema et al., 1997). In proportion 
with gradual atmospheric O2 increase, the accumulation of stratospheric ozone might 
have been slow. Alternatively, about 3.5 × 108 years ago, due to a sheer rise in atmos-
pheric oxygen, it might have reached close to the present levels of 21% (Kubitzki, 1987; 
Stafford, 1991). Nevertheless, terrestrial plant life was made possible by the develop-
ment of the stratospheric ozone (O3) layer, which absorbs solar UV‐C completely and a 
part of UV‐B radiation, thereby reducing the damaging solar UV flux on the earth’s 
surface (Caldwell, 1997).

Before focusing on the various aspects of UV‐B radiation, we should firstly understand 
the electromagnetic spectrum. The electromagnetic spectrum consists of ultraviolet 
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(UV) and visible (VIS) radiations (i.e. also PAR). The wavelength ranges of UV and visible 
radiation are listed in Table 1.1. Solar radiations, with a longer wavelength, are called 
infrared (IR) radiations. The spectral range between 200 and 400 nm, which borders on 
the visible range, is called UV radiation, and is divided into three categories: UV‐C 
(100–280 nm), UV‐B (280–315 nm) and UV‐A (315–400 nm). The shorter wavelengths 
of UV get filtered out by stratospheric O3, and less than 7% of the sun’s radiation range 
between 280 and 400 nm (UV‐A and UV‐B) reaches the Earth’s surface.

The level of UV‐B radiation over temperate regions is lower than it is in tropical 
latitudes, due to higher atmospheric UV‐B absorption, primarily caused by changes 
in solar angle and the thickness of the ozone layer. Therefore, the intensity of UV‐B 
radiation is relatively low in the polar regions and high in the tropical areas. Over 
35 years ago, it was warned that man‐made compounds (e.g. CFCs, HCFCs, halons, 
carbon tetrachloride, etc.) cause the breakdown of large amounts of O3 in the 
stratosphere (Velders et al., 2007) thereby increasing the level of UV‐B reaching the 
Earth’s surface. Increase in the UV‐B radiation has been estimated since the 1980s 
(UNEP, 2002), and projections like the Kyoto protocol estimate that, even after the 
implementation of these protocols, returning to pre‐1980 levels will be possible by 
2050–2075 (UNEP, 2002).

1.2  Biologically Effective Irradiance

The term ‘biologically effective irradiance’ means the effectiveness of different wave-
lengths in obtaining a number of photobiological outcomes when biological species are 
irradiated with ultraviolet radiations (UVR). The UV‐B, UV‐A and photosynthetically 
active radiations (PAR; 400–700 nm) have a significant biological impact on organisms 
(Vincent and Roy, 1993; Ivanov et al., 2000). Ultraviolet irradiation results into a 

Table 1.1  Regions of the electromagnetic spectrum together 
with colours, modified from Iqbal (1983) and Eichler et al. (1993).

Wavelength (nm) Frequency (THz) Colour

50 000–106 6–0.3 far IR
3000–50 000 100–6 mid IR
770–3000 390–100 near IR
622–770 482–390 red
597–622 502–482 Orange
577–597 520–502 yellow
492–577 610–520 Green
455–492 660–610 blue
390–455 770–660 violet
315–400 950–750 UV‐A
280–315 1070–950 UV‐B
100–280 3000–1070 UV‐C
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number of biological effects that are initiated by photochemical absorption by biologi-
cally significant molecules. Among these molecules, the most important are nucleic 
acids, which absorb the majority of ultraviolet photons, and also proteins, which do so 
to a much lesser extent (Harm, 1980).

Nucleic acids (a necessary part of DNA) are nucleotide bases that have absorbing 
centres (i.e. chromophores). In DNA, the absorption spectra of purine (adenine and 
guanine) and pyrimidine derivatives (thymine and cytosine), are slightly different, but 
an absorption maximum between 260–265 nm, with a fast reduction in the absorption 
at longer wavelengths, is common (Figure 1.1). In contrast with nucleic acids solutions 
of equal concentration, the absorbance of proteins is lower. Proteins with absorption 
maxima of about 280 nm most strongly absorb in the UV‐B and UV‐C regions 
(Figure 1.1). The other biologically significant molecules that absorb UVR are carate-
noids, porphyrins, quinones and steroids.

1.3  UV‐B‐induced Effects in Plants

In the past few decades, a lot of studies have been made on the role of UV‐B radiation. 
Due to the fact that sunlight necessity for their survival, plants are inevitably exposed to 
solar UV‐B radiation reaching the earth’s surface. From the point of view of ozone 
depletion, this UV‐B radiation should be considered as an environmental stressor for 
photosynthetic organisms (Caldwell et al., 2007). However, according to the evolution-
ary point of view, this assumption is questionable.
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Figure 1.1  Absorption spectra of protein and DNA at equal concentrations (adapted from Harm, 1980).
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Although UV‐B radiation comprises only a small part of the electromagnetic 
spectrum, the UV‐B reaching on earth’s surface is capable of producing several responses 
at molecular, cellular and whole‐organism level in plants (Jenkins, 2009). UV‐B radia-
tion is readily absorbed by nucleic acids, lipids and proteins, thereby leading to their 
photo‐oxidation and resulting in promotional changes on multiple biological processes, 
either by regulating or damaging (Tian and Yu, 2009). In spite of the multiplicity of 
UV‐B targets in plants, it appears that the main action target of UV‐B is photosynthetic 
apparatus, leading to the impairment of the photosynthetic function (Lidon et al., 2012). 
If we talk about the negative impact of UV‐B, it inhibits chlorophyll biosynthesis, 
inactivates light harvesting complex II (LHCII), photosystem II (PSII) reaction centres 
functioning, as well as electron flux (Lidon et al., 2012).

The photosynthetic pathway responding to UV‐B may depend on various factors, 
including UV‐B dosage, growth stage and conditions, and flow rate, and also the inter-
action with other environmental stresses (e.g., cold, high light, drought, temperature, 
heavy metals, etc.) (Jenkins, 2009). The thylakoid membrane and oxygen evolving com-
plex (OEC) are highly sensitive to UV‐B (Lidon et al., 2012). Since the Mn cluster of 
OEC is the most labile element of the electron transport chain, UV‐B absorption by the 
redox components or protein matrix may lead to conformational changes, as well as 
inactivation of the Mn cluster. The D1 and D2 are the main proteins of PSII reaction 
centres and the degradation and synthesis of D1 protein is in equilibrium under normal 
condition in light, however, its degradation rate becomes faster under UV-B exposure 
thereby, equilibrium gets disturbed (Savitch et al., 2001; Lidon et al., 2012). In the OEC 
coupled to PSII, during light‐driven photosynthetic electron transport, tri‐molecular 
oxygen is produced continuously, which can be converted in the sequential reduction 
to  superoxide radical (O2•–), hydrogen peroxide (H2O2) and hydroxyl radical (•OH) 
(Apel and Hirt, 2004). Furthermore, PSI and cytochrome b6/f complex are less affected 
by UV‐B radiation in comparison to PSII (Lidon et al., 2012).

Stomatal movement is an important regulatory process that limits the rate of 
photosynthesis. In Vicia faba, high UV‐B radiation stimulates either stomatal opening or 
closing, depending on the metabolic rate (Jansen and van‐den‐Noort, 2000). However, 
the stimulated reduction of stomatal conductance can be responsible for CO2 limitation, 
as reported in many plants (Zhao et al., 2003; Lidon and Ramalho, 2011), but the reduc-
tion in the stomatal conductance has a lesser extent than that of net photosynthetic rate. 
Additionally, UV‐B radiation strongly affects the activity as well as content of ribu-
lose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in plants (Correia et al., 1998; 
Savitch et al., 2001). Besides this, the intermediate stage of the Calvin cycle (i.e. sedohep-
tulose 1,7‐bisphosphatase), as well as the regeneration of RuBP, was found to be decreased 
upon exposure to UV‐B radiation (Allen et al., 1998).

UV‐B radiation has long been perceived as a stressor. Many studies have shown that it 
impedes photosynthetic activities, damages DNA, proteins and membranes, and impedes 
plant growth. Oxidative stress has been flagged as a pioneer factor in such UV‐B stress 
responses (Lidon et al., 2012). However, DNA damage, membrane degradation products, 
and ROS also play a role in mediating UV‐B protection, and have done so since the origin 
of the first plants. Cyanobacteria first evolved on the earth at a time when UV‐B levels 
were at their highest and no ozone layer existed. Under such high UV‐B radiation during 
the early evolution of photosynthetic organisms, they might have coevolved their genetic 
machinery along with the ambient UV‐B level, which might have also helped the 
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transition to terrestrial life (Rozema et al., 1997). Therefore, it can be assumed that plants’ 
metabolic machinery must have all the compulsory elements for normal coexistence with 
present UV‐B levels, so the solar UV‐B radiation reaching the earth should not be consid-
ered to be an environmental stressor. Actually, the current ambient UV‐B radiation level 
should be considered as a signal factor which is capable of inducing the expression of 
genes related to the normal growth and development of plants (Jenkins, 2009).

A conceptual U‐turn has been taken place, and UV‐B is rarely considered as a damag-
ing factor. There is overpowering evidence that UV‐B is an environmental regulator that 
controls gene expression, cellular and metabolic activities, and also the growth and 
development (Jenkins, 2009). Under low UV‐B fluence rate, the regulatory role of UV‐B 
can be observed, and these effects are mediated by the UV‐B‐specific UV Resistance 
Locus 8 (UVR8) photoreceptor, which has opened the door to elucidate the UV‐B 
signalling pathways in plants (Christie et al., 2012; Wu et al., 2012; Singh et al., 2012; 
Srivastava et al., 2014).

The UVR8 photoreceptor exists as a homodimer that undergoes immediate mono-
merization following UV‐B exposure, and the process is dependent on an intrinsic tryp-
tophan residue (Rizzini et al., 2011). Upon exposure to UV‐B, UVR8 accumulates 
rapidly, and interacts with Constitutively Photomorphogenic 1 (COP1) to initiate the 
molecular signalling pathway that leads to gene expression changes. UVR8 monomer is 
redimerized by the action of RUP1 and RUP2, which interrupts the UVR8‐COP1 inter-
action, thereby inactivating the signalling pathway and regenerating the UVR8 homodi-
mer again, ready for UV‐B perception. This signalling leads to UVR8 dependent 
responses, such as UV‐B‐induced photomorphogenic responses, and also the accumu-
lation of UV‐B‐absorbing flavonols (Tilbrook et al., 2013). Elongated Hypocotyl 5 (HY5) 
acts as a downstream effector, and is regulated by the negative feedback pathway.

Favory et al. (2009) hypothesized that during UVR8 interaction with COP1, COP1 might 
have been taken out from phytochrome (red light receptor) and cryptochrome (blue/
UV‐A light receptor) under UV‐B exposure, and this fact was supported by the phenotype 
of the COP1 overexpressing line of UVR8. Conversely, Oravecz et al. (2006) and Favory et 
al. (2009) have noted that COP1 was excluded by the nucleus upon exposure to visible 
light, while UV‐B exposure results in nuclear accumulation and stabilization of COP1. In 
addition, being a repressor of photomorphogenesis, COP1 is dependent on SPA protein, 
which is not a part of the regulatory action by COP1 (Laubinger et al., 2004; Oravecz et al., 
2006). Interestingly, SPA and Repressor of Photomorphogenesis (RUP) genes show simi-
larity in their phylogeny while interacting with COP1 (Gruber et al., 2010; Fittinghoff et al., 
2006). All these similarities suggest towards the evolution of complex photoreceptor UVR8 
from the other photoreceptors, and the role of UVR8 as a signalling molecule.

1.4  Conclusion and Future Perspectives

Over recent years, significant progress has been made in identifying the molecular play-
ers, their early mechanisms and signalling pathway in UV‐B perception in plants, but 
there is more we have to do. Several questions remain to be uncovered, regarding the 
photochemistry, signal transduction and regulatory mechanisms of UVR8, that need to 
be addressed and, of course, this will open a new horizon in the field of UV‐B percep-
tion and signalling. Questions that remain to be traced out include: the primary 
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responses of UVR8 after UV‐B perception; whether functioning at the chromatin level 
exists; sites of UVR8 functioning in the cell; crosstalk of UVR8 pathway with COP1 and 
visible light photoreceptors along with their signalling; whether UVR8 has evolved from 
other photoreceptors as a need of environmental changes and is now towards the 
degrading or evolutionary phase.

Now the stage is set to tackle these questions. No doubt, the answers will pave a new 
direction and a deep understanding of plant UV‐B responses. Of course, the future of 
UV‐B signalling will be more realistic after the preparation of a detailed molecular map 
of various signalling molecules regarding UV‐B.
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