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CHAPTER 1

Epidemiology and genetics of pancreatitis
David C. Whitcomb
Division of Gastroenterology, Hepatology and Nutrition, Departments of Medicine, Cell Biology & Physiology, and Human Genetics,

University of Pittsburgh/UPMC, Pittsburgh, PA, USA

Definition

Chronic pancreatitis (CP) can be defined as “a continu-

ing inflammatory disease of the pancreas, characterized

by irreversible morphological change, and typically

causing pain and/or permanent loss of function” [1].

This definition is intentionally pragmatic, as developed

by the members of the Pancreatic Society of Great

Britain and Ireland in March 1983 in Cambridge,

England as a pretext to the morphology-based Cam-

bridge classification of CP severity [1]. The definition

is vague but has stood the test of time and has been

followed in consensus statements by nearly all societies

and expert groups for the subsequent two decades.

The pragmatic nature of the Cambridge definition

speaks to the challenges in defining a syndrome with

multiple etiologies, variable features, unpredictable

clinical course, and inadequate treatment [2]. As a

morphology-based definition, it also ignores key his-

tologic, clinical, and functional features that dominate

the definitions from the Marseilles meetings [3, 4]

and ignores the possibility of “minimal change” CP

[5a], functional changes such as pancreatitis-associated

chronic pain syndrome and/or pancreatic insufficiency,

or autoimmune pancreatitis. Furthermore, the defini-

tion is independent of etiology, it cannot differentiate

progressive disease from old scars from a bout of acute

pancreatitis (AP), and it has little prognostic value. A

new, two-part mechanistic definition of CP has been

proposed that focuses on disruption of the normal

injury → inflammation → resolution → regeneration

sequence. The definition includes the essence of CP,

Pancreatitis: Medical and Surgical Management, First Edition.
David B. Adams, Peter B. Cotton, Nicholas J. Zyromski and John Windsor.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

“Chronic pancreatitis is a pathologic fibro-inflammatory

syndrome of the pancreas in individuals with genetic,

environmental and/or other risk factors who develop

persistent pathologic responses to parenchymal injury

or stress,” and the characteristics of CP, “Common

features of established and advanced CP include

pancreatic atrophy, fibrosis, pain syndromes, duct dis-

tortion and strictures, calcifications, pancreatic exocrine

dysfunction, pancreatic endocrine dysfunction, and

dysplasia.” This new definition opens the door to new

diagnostic criteria that distinguishes CP from other

disorders with CP-like features, provides a method

for diagnosing “early CP,” and may improve methods

of mechanism-based therapies – which is the goal of

personalized medicine [5b].

Burden of disease

Epidemiologists struggle to determine the incidence and

prevalence of CP – in part because of the vague defini-

tions and different detection approaches [6, 7]. Admin-

istrative data, such as ICD-9 codes used in the United

States, have limited value because the same code, 577.1,

is used for recurrent acute pancreatitis (RAP) as well as

CP. Indeed, authoritative studies of the burden of diges-

tive diseases in the United States found it impossible to

distinguish AP fromCP using public records and grouped

the two entities into one big problem [8].

Autopsy studies using histologic criteria such as duct

ectasia, periductal fibrosis, ductular proliferation, acinar

ductular metaplasia, and interstitial inflammation or

1
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2 Pancreatitis

fibrosis suggest that the incidence of CP is as high as

12–14% [9, 10], with abnormal fibrosis in up to 39%

[10]. Histologic changes suggestive of CP are even

more prevalent in patients with very common chronic

disorders such as renal disease (up to 56%) [9] and

diabetes mellitus (DM) (∼7% by clinical evaluation

but much higher in diabetes autopsy databases such as

nPOD [11] – noting the problem of reverse causality

[12]). However, it is well recognized that interstitial

inflammation and fibrosis alone are not sufficient to

make a diagnosis of CP [13].

The emergence and widespread use of sensitive

abdominal imaging techniques has helped standardize

epidemiological approaches when morphologic criteria

are used. While morphology is not the only criteria used

in epidemiology studies, it does serve as an equalizing

factor. Thus, the burden of CP in terms of disease

prevalence from more recent surveys is more useful.

In the United States the best estimate comes from

Minnesota, where the age-adjusted prevalence of CP

was estimated at 41.8 cases per 100,000 population [7].

In contrast to earlier studies, the prevalence between

males and females was similar, as reported in the North

American Pancreatitis Study 2 (NAPS2) reports [14, 15].

In Japan the prevalence of CP was similar to the United

States, with 36.9 cases per 100,000 population [16]. In

France the prevalence of CP was 26.4 cases per 100,000

population [17], with a strong male predominance. The

lowest prevalence was in China, which was only 3 cases

of CP per 100,000 population in 1996 but had risen

rapidly to 13.5 per 100,000 population by 2003 [18].

The highest rates were in Southern India, where the

prevalence of CP is 114–200 per 100,000 population

[19]. In addition to difference in prevalence, there are

marked differences in rates of the etiologic diagnoses,

with alcoholic and idiopathic being the most common

causes in all studies. Alcohol etiology is consistently

more common in men than in women.

Clinical features

The clinical features of CP include recurrent and

chronic inflammation, fibrosis, duct distortion, pseudo-

cysts, atrophy, pancreatic exocrine insufficiency, DM,

multiple pain patterns, stones, and risk of pancreatic

cancer. These features vary with etiology and environ-

mental factors, and none of them are present in all

patients – except for when duct distortion is used as the

diagnostic criteria as in the Cambridge definition [1].

Diagnosis

Using the Cambridge definition of CP, a “clinical”

diagnosis of CP can usually be made without ambiguity

when significant morphologic features are documented.

The problem with the Cambridge definition is the

requirement of “irreversible morphological change” in

the pancreas, how it is defined, and when it occurs.

Indeed, patients may have symptoms of CP for 5–10

years before irreversible morphologic changes are

documented, resulting in presumably unnecessary pain,

anxiety, uncertainty, suffering, and numerous diagnos-

tic tests. The result of the process is a “diagnosis,” with

continued symptomatic treatment. Furthermore, the

consequence of classifying CP based on morphologic

criteria is that, while all investigators and clinicians

agree on what end-stage CP looks like, they continue to

sharply disagree on the border between “normal” and

“abnormal” and on the minimal required features.

Many experts also deviate from the Cambridge

definition, recognizing the limitations of morphology

alone and the possibility of minimal change CP with

prominent functional features such as pancreatic juice

with low bicarbonate concentrations or pancreatitis-like

pain syndromes. This view is supported by the clinical

improvement in some patients diagnosed with minimal

change pancreatitis and pain who find relief with total

pancreatectomy and islet autotransplantation (TPIAT)

[20–23]. These differences in perspectives on traditional

views of CP make a consensus definition of early CP

nearly impossible, with a ripple effect of making the

criteria for early diagnosis somewhat arbitrary.

Animal models of early CP

The use of model organisms to understand human

diseases remains a critical component of biomedical

research. A good model should be a simplified version

of something that reflects its primary components and

is useful to study its characteristics under a variety of

conditions. In the case of CP, animal models demon-

strated that multiple injuries and inflammation resulted

in parenchymal pathology, including scaring, but did
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not provide insight into human disease, which appeared

stochastic in onset and highly variable in progression,

clinical features, and outcomes. Thus, animal models

provided insight into downstream pathology but failed

to provide insight into etiologies, susceptibility, and

variable progression.

Genetic risk factors for CP

In 1996 we discovered that hereditary pancreatitis (HP),

a rare, autosomal dominant, highly penetrant, and

early-onset syndrome of RAP and CP, was caused by

a gain-of-function mutation in the cationic trypsinogen

gene (PRSS1) [24–26]. The discovery immediately

implicated prematurely activated trypsin as a key factor

in the pathogenesis of AP and CP in humans, indicated

that RAP can lead to typical CP, and introduced the

possibility that other genetic factors associated with

trypsin regulation may increase the risk of RAP and/or

CP. Further, study of HP families indicated that even

with inheritance of the most virulent of pathogenic

variants, the age of onset, the progression to CP, DM,

pain syndromes, and PDAC were highly variable – even

among identical twins [27]. Finally, the high sensitivity

of HP patients to alcohol and the strong effect of smok-

ing on the risk of PDAC provided new insights into the

role of environmental modifying factors [28].

Since 1996, many additional genetic factors linked

to trypsin regulation proved to be strongly associated

with susceptibility to and severity of RAP and CP. These

include SPINK1 [29, 30], cystic fibrosis transmembrane

conductance regulator (CFTR) [31, 32], and CTRC

[33–36]. In our US population pathogenic mutations

in these four genes are found in 26% of RAP patients

and 21% of CP patients [37], not counting the common

CTRC G60G risk allele, which is in another 18% of CP

patients [36]. Other CP risk genes were also discovered

using other candidate gene approaches, including CPA1

[38], and linkage studies including CEL [39] or other

approaches such as GGT1 [40].

In 2012 we published the first pancreatitis

genome-wide association study (GWAS) [41]. This

study identified two major loci, a common PRSS1–PRSS2

haplotype with reduced PRSS1 expression that is

protective for multiple etiologies and a common CLDN2

haplotype on the X chromosome, associated with risk of

CP, especially in alcoholics. These findings have recently

been replicated in a European cohort [42]. These data

suggest multiple etiologies and susceptibility factors,

with several strong modifying factors that determine the

risk of progression and other clinical features of CP. This

concept is extended with a recent paper demonstrating

that the risk of the common CTRC G60G haplotype is for

CP, but not RAP, and is strongly associated with smoking

[36].

Mendelian genetic syndromes

An understanding of genetic should begin with simple

Mendelian disorders. These disorders are caused by

strong pathogenic variants in a single gene that cause

well-defined syndromes. In the case of CP, the two

most important Mendelian disorders are HP and cystic

fibrosis (CF).

Hereditary pancreatitis
HP is defined either by two or more individuals with

pancreatitis in two or more generations of the family

(i.e., an autosomal dominant pattern of inheritance) or

pancreatitis associated with a known disease-causing

germ line mutation in the cationic trypsinogen gene

PRSS1. The term familial pancreatitis is used when more

than one person in the family has RAP or CP – regardless

of etiology – since the incidence is above the expected

rate in the population by chance alone.

HP has been conclusively linkedwith gain-of-function

mutations in PRSS1 [43–46]. Gain-of-function muta-

tions increase autocatalytic conversion of trypsinogen

to active trypsin causing premature, intrapancreatic

trypsinogen activation. Trypsin, as the master enzyme

regulating activation of the other pancreatic zymogens,

is thought to cause widespread enzyme activation,

autodigestion of the pancreatic parenchyma, and

release of danger-associated molecular pattern (DAMP)

molecules that activate the immune system causing AP.

Trypsin, chymotrypsin, and other digestive enzymes

may also cross-activate the immune system by acti-

vating the thrombin pathway or protease-activated

receptors [47–51].

Many rare genetic variants in PRSS1 have been

reported (see www.pancreasgenetics.org), but the

majorities of families either have the PRSS1 N34S or

R122H gain-of-function mutation or less commonly,

copy number variants (CNV). The other variants may be

http://www.pancreasgenetics.org
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loss-of-function variants that cause pancreatic stress and

injury signaling through an unfolded protein response

[52, 53].

The clinical features of HP have been defined in

several large studies [54, 55]. In the European Registry

of Hereditary Pancreatitis and Pancreatic Cancer [54],

the cumulative risk at 50 years of age for patient with

HP for exocrine failure was 37.2%, for endocrine

failure 47.6%, and pancreatic resection for pain 17.5%.

The cumulative risk of pancreatic cancer was 44.0%

at 70 years. In a French study patients with HP

reported pancreatic pain (83%), AP (69%), pseudo-

cysts (23%), cholestasis (3%), pancreatic calcifications

(61%), exocrine pancreatic insufficiency (34%), DM

(26%), and pancreatic adenocarcinoma (5%). In both

studies the median age of onset of symptoms was about

age 10, with about half the patients developing CP

by age 20 years, followed over the next 10 years by

pancreatic exocrine insufficiency and DM in up to 40%

of patients. The risk of cancer in the fifth to sixth decade

of life replicated the studies by Lowenfels [28, 56]. Of

note, the incidence of pancreatic cancer is cut in half and

delayed by a decade in patients who do not smoke [56].

The diagnosis of HP is made on clinical grounds and

genetic testing (see www.pancreas.org). Genetic testing

is warranted when there is unexplained documented

episode of AP in childhood; recurrent acute attacks

of pancreatitis of unknown cause; CP of unknown

cause, particularly with onset before age 25 years; and

a family history of RAP, CP, or childhood pancreatitis

of unknown cause in first-, second-, or third-degree

relatives or relatives known to have a mutation in a

gene associated with HP [46, 57, 58].

The utility of genetic testing is in making an early

diagnosis of a high-risk condition that may explain early

functional symptoms and signal the likelihood that the

person may develop some or all of the complications of

CP. A positive result, in the context of pancreatitis-like

symptoms, has a very high likelihood of the symptoms

coming from the pancreas. No further diagnostic testing

for the etiology of CP-like symptoms is needed. A

negative genetic testing result for HP suggests that the

etiology is not pathogenic PRSS1 variants, although

many other pathogenic genetic variants in other loci

are also possible (see Chapter 12). Genetic testing, in

the future, may also provide guidance on likelihood of

specific syndromes, such as constant pain or diabetes,

although these ideas currently remain at a research

stage.

Cystic fibrosis
CF refers to an autosomal recessive disorder affecting

secretory epithelial cells of glands, respiratory mucosa,

and the digestive system. The term “cystic fibrosis” refers

to the CP (with pseudocysts and fibrosis) that occurs in

all affected individuals, beginning in utero.

The disease is caused by mutations in the CFTR

gene [59–61]. The CFTR protein forms a regulated

anion channel that facilitates transport of chloride and

bicarbonate across the apical membrane of epithelial

cells during active secretion and/or absorption. CFTR

is the most important molecule for the function of the

pancreatic duct cell – there are no significant alternate

molecules for physiologic anion secretion. Loss of CFTR

results in failed flushing of digestive zymogens out of

the pancreas and into the intestine. Thus, dysfunction

of CFTR results in retention of zymogens in the duct

where they can become active and begin digesting the

surrounding pancreas, leading to AP. Since the pancreas

is so strongly dependent on CFTR function, the severity

of pathogenic CFTR variants can be estimated from the

effects on the pancreas. Furthermore, pancreatic injury

can typically be detected at birth, justifying CF screening

using serum trypsinogen measurements, and end-stage

CP with pancreatic exocrine insufficiency often occurs

during the first year of life. Thus, the disease was

characterized by failure to thrive and salty sweat with

death in infancy until pancreatic enzyme replacement

therapy was developed. Only after surviving pancreatic

exocrine insufficiency will a child begin developing

respiratory failure.

The organs that are most strongly affected by

CFTR mutations include the pancreas, sweat glands,

sinuses, respiratory system, gastrointestinal track,

male reproductive system, and liver. The features of

CFTR-associated diseases depend on the functional

consequences of specific mutations on the two CFTR

alleles [62, 63], as well as mutations in modifier genes

and effects of environmental factors. CF is caused by

two severe mutations (CFTRsev/CFTRsev). Residual CFTR

function can occur with some milder mutations, and

the severity of CF is linked to the least severe mutation.

The milder forms of CF can be referred to as atypical

CF (aCF) and are caused by mild-variable mutations

with two possible genotypes: (CFTRm-v/CFTRsev) or

http://www.pancreas.org
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(CFTRm-v/CFTRm-v). In these cases there is residual

function of the various organs that use CFTR for

fluid secretion, and disease occurs later in life, with

organ specificity determined by modifying genetic and

environmental factors [61, 64].

In 1989 two groups reported that patients with

idiopathic CP had a greater-than-expected prevalence

of pathogenic CFTR variants [31, 32]. In many CP cases

it appeared that heterozygous pathogenic CFTR variants

were found in individuals who also harbored SPINK1

variants as (CFTRsev/CFTRwt; SPINK1N34S/SPINK1wt)

genotypes [65–67], a phenomenon called epistasis.

Thus, these cases of idiopathic CP were clearly examples

of complex trait genetics.

In 2011 we reported that a common CFTR vari-

ant, R75Q, affected bicarbonate conductance while

maintaining chloride conductance and had major

effects on the pancreas but minimal effects on the

lungs, presumably because the pancreas uses CFTR

as a bicarbonate channel [67]. Since the functional

effect of CFTR genotypes is determined by the least

severe mutation, either two bicarbonate defective (BD)

variants (CFTRBD/CFTRBD) or one BD and one severe

variant (CFTRBD/CFTRsev) can result in a monogenic

pancreatitis-predominant disorder. We then made

a screening panel of 81 previously reported CFTR

single-nucleotide polymorphisms (SNPs) and screened

nearly a thousand patients with pancreatitis from the

North American Pancreatitis Study 2 (NAPS2) cohort

[68]. We identified nine CFTR SNPs that were classified

as benign by pulmonologists but were associated with

pancreatitis: R74Q, R75Q, R117H, R170H, L967S,

L997F, D1152H, S1235R, and D1270N. When these

variants were cloned into wild-type CFTR genes and

expressed in experimental cells, they had normal

chloride conductance but failed to transform into

bicarbonate-conducting channels when CFTR was

activated with WNK1/SPAK [68]. Molecular modeling

demonstrated that four different mechanisms were

involved in this transformation and/or regulation of

bicarbonate conductance.

The pancreas is susceptible to variants that impair

CFTR-mediated bicarbonate conductance because of

the way it makes bicarbonate-rich pancreatic juice

[68, 69]. Since other organs also use CFTR to secrete

bicarbonate, we evaluated the risk of rhinosinusitis and

male infertility in patients with CP, with or without

the CFTRBD/CFTRother genotypes. We found that CFTRBD

significantly increased the risk of rhinosinusitis (OR 2.3,

P<0.005) and male infertility (OR 395, P≪ 0.0001).

Thus, a variant subtype of CF has been defined that is

characterized by CP and dysfunction of other organs

that utilize CFTR for bicarbonate secretion, but without

lung disease.

A new paradigm of personalized
medicine

To advance our understanding of CP, we require a

paradigm shift. It is recognized that CP is a complex

disorder. It is useful to understand a complex disorder

in contrast to a simple disorder [70]. A simple disorder

is when a specific microorganism invades a host and

causes a specific clinical syndrome. Modern Western

medicine has been built on the germ theory of dis-

ease, which organizes the study of simple disorders

using Koch’s postulates to test a defined hypothesis.

In simple diseases the pathologic agent is sufficient

to cause the disease syndrome. In contrast, complex

disorders typically include acquired conditions caused

by complex gene–environment, gene–gene, or multiple

gene–environmental interactions where the pathologic

agents are neither necessary nor sufficient to cause the

disorder. Further complexity occurs if a sequence of

pathologic events is needed before enough qualifying

features of the syndrome emerge to meet diagnostic

criteria. In complex disorders the “scientific method”

used in medical research to identify the etiology of

disease by applying Koch’s postulates fail, since none of

the hypothesized pathogenic agents will meet the four

criteria. The challenges of evaluating and managing

a complex disorder include developing a new way

of thinking about the diagnosis and management of

these disorders, integration of complex genetic risk

into the paradigm, and developing new tools to assist

the practitioner. Specifically, personalized medicine

demands going beyond a simple Boolean operator of

the germ theory (is a pathologic agent present, yes

or no?) to more sophisticated disease modeling and

outcome simulation where the influence of multiple

variables of different effects can be assessed under

different conditions.

The terms personalized medicine and precision

medicine are used interchangeably. We will use the

term personalized medicine as a medical model that
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utilizes genetic information and biomarkers of disease

activity to define the specific mechanism of disease

within a subject from among multiple possibilities and

target disease management at the specific mechanism.

In contrast, we use the term precision medicine to define

a medical model that optimizes the treatment of the

patient within a disease mechanism. Thus, in our view,

personalized medicine defines the underlying prob-

lem, whereas precision medicine defines the optimal

treatment for the problem.

Driven by multiple genetic discoveries and environ-

mental risk assessments on the one hand and a failure

to effectively define and treat pancreatic diseases on the

other, the CP disease model shifted from “germ theory”

(a single agent causing a stereotypic disorder) to a “com-

plex genetic disorder” with individual patients harboring

different combinations of pathogenic factors that alone

are neither necessary nor sufficient to cause pancreatic

disease [70]. This approach may have profound implica-

tions for both early detection and disease management.

The new and exciting opportunity is to define the spe-

cific risk complex in individual patients, to monitor dis-

ease activity and to target pathogenic pathways so that

the pathologic endpoints are never reached (see Chapter

12b). This is personalized medicine [70, 71], and this

must be the future direction for the pancreatic diseases

management since the end stages are irreversible.
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CHAPTER 2

PART A: Pathobiology of the acinar cell in acute pancreatitis

Stephen J. Pandol
Basic and Translational Pancreas Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Overview of the acinar cell
morphology and function

The acinar cell of the exocrine pancreas is responsible

for the synthesis, storage, and secretion of digestive

enzymes. Acinar cells are organized into spherical and

tubular clusters called acini with a central lumen. With

neurohumoral stimulation as what occurs during a

meal, the acinar cells secrete their digestive enzyme

stores into the lumenal space which is connected to the

pancreatic ductal system for transport of the digestive

enzymes into the gastrointestinal tract.

The acinar cell’s organization and function are cus-

tomized to perform its major tasks of synthesis, storage,

and secretion of large amounts of protein in the form of

digestive enzymes (Figure 2A.1). The basal aspect of the

acinar cell contains abundant rough endoplasmic retic-

ulum (ER) for the synthesis of proteins, while the api-

cal region of the cell contains electron-dense zymogen

granules, the store of digestive enzymes. The apical sur-

face of the acinar cell also possesses microvilli. Within

the microvilli and in the cytoplasm underlying the api-

cal plasma membrane is a filamentous actin meshwork

that is involved in the exocytosis of the contents of the

zymogen granules [1, 2]. Secretion is into the lumen of

the acinus which is connected to the ductal system. The

importance of the ductal system is that its cells (ductal

cells) secrete large amounts of fluid rich in bicarbonate

ion necessary to carry the digestive enzymes to the gas-

trointestinal lumen (Figure 2A.1). Of note, blockade of

Pancreatitis: Medical and Surgical Management, First Edition.
David B. Adams, Peter B. Cotton, Nicholas J. Zyromski and John Windsor.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

secretion due to total obstruction of the ductal system as

occurs in biliary pancreatitis, defect ductal secretion as

occurs with cystic fibrosis, or destruction of the filamen-

tous actin network all lead to injury of the acinar cell

and pancreatitis [2–5].

Tight junctions between acinar cells and duct cells

form bands around the apical aspects of the cells and

act as a barrier to prevent passage of large molecules

such as the digestive enzymes into the blood [6]. Injury

to the tight junctions between the cells of the acinus as

occurs in pancreatitis leads to “leakage” of the digestive

enzymes into the blood resulting in the increased

concentrations of digestive enzymes in the blood as a

hallmark of pancreatitis.

The acinar cell is endowed with a highly developed

ER to accomplish its function of protein synthesis. In

addition, the ER is also the major store of intracellular

calcium which the acinar cell uses to signal exocyto-

sis and secretion of stored digestive enzymes [7–9].

Abnormalities in calcium signaling are also involved

in causing pancreatitis as will be discussed later [9].

Each protein synthesized in the ER must undergo

specific secondary modifications as well as folding in

order for it to be properly transported to destination

organelles such as Golgi, zymogen granule (storage for

the digestive enzymes), and lysosome or membrane sites

(Figure 2A.2). Furthermore, the acinar cell systems for

protein synthesis and processing must be able to adapt

because of variation in the demand for protein synthesis

as a function of diet and because protein processing in

10
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Figure 2A.1 Ultrastructure of acinar and duct cells of the exocrine pancreas. The pancreatic acinar cell has prominent basally located
rough endoplasmic reticulum for the synthesis of digestive enzymes and apically located zymogen granules for the storage and
secretion of the digestive enzymes. The zymogen granules undergo exocytosis with stimulation of secretion. The secretion is into the
lumen of the acinar formed by the apical surfaces of the acinar cells with their projecting microvilli. Not visualized because of the
relatively low magnification is the subapical actin network, the tight junctions, and the gap junctions. Pancreatic duct cells contain
abundant mitochondria for energy generation needed for its ion transport functions. The ductal cells also project microvilli into
the luminal space. Adapted from Gorelick F, Pandol, SJ, Topazian M. Pancreatic physiology, pathophysiology, acute and chronic
pancreatitis. Gastrointestinal Teaching Project, American Gastroenterological Association. 2003.

the ER could be adversely affected by environmental

factors such as alcohol, smoking, metabolic disorders,

and xenobiotics. As discussed later, inability to adapt

completely to these environmental factors can also lead

to acinar cell injury and pancreatitis [10–14]. Secretion

of the digestive enzymes occurs by exocytosis as a

result of hormone- and neurotransmitter-generated

intracellular signals [15].

Environmental and genetic stressors
and the exocrine pancreatic unfolded
protein response (UPR)

Because its chief function is to synthesize, store, and

secrete large amounts of protein, the acinar cell has

a highly developed ER system for protein translation

and modification as well as a set of organelles such as

the Golgi, lysosomes, and zymogen granules to further

process the proteins using internal bonds for folding

(i.e., disulfide bonds) and secondary modifications (i.e.,

glycosylation) for transport and targeting the proteins

to the correct destination including zymogen secretory

granules for exocytosis. Factors such as mutations in

digestive enzymes, alcohol abuse, smoking, diabetes,

and medications can put stresses on the system by

preventing proper folding and other necessary post-

translational modifications because of a critically located

mutation or an abnormal physiochemical environment

altering catalytic reactions. In order to adapt to the ER

stressors that the genetic and environmental factors

pose, the ER of the pancreatic acinar cell has a highly

responsive sensing and signaling system called the

unfolded protein response (UPR) [13]. The sensors

of the UPR are responsive to unfolded and misfolded

proteins by initiating several processes that are needed

to alleviate the ER stress. These include synthesis of

chaperones and foldases to facilitate increased capacity

as well as upregulation of the systems involved in

the degradation of unfolded and misfolded proteins

called ER-associated protein degradation (ERAD),

which is required to rid the cell from accumulation of

permanently misfolded and unfolded proteins that are

toxic to the cell. If the ER stress exceeds the capacity of

the UPR to correct the problem or if the mechanisms
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Figure 2A.2 Electron micrograph of the pancreatic acinar cell. This electron micrograph shows the key cellular structures involved
in synthesis, processing, and storage of digestive enzymes. On the left is the rough endoplasmic reticulum, in the middle is the
Golgi complex, and on the right are zymogen granules. Adapted from Gorelick F, Pandol, SJ, Topazian M. Pancreatic physiology,
pathophysiology, acute and chronic pancreatitis. Gastrointestinal Teaching Project, American Gastroenterological Association. 2003.

for correction are blocked, the ER initiates a death

response to rid the organ of dysfunctional cells. The

death response can be associated with inflammation

(pancreatitis).

Both ER-initiated adaptive responses to prevent the

effect of toxic insults on cell death and inflammatory

responses have been found in exocrine pancreas with

stress insults [10, 12–14, 16–20]. An important and

provocative observation in these studies is that alcohol

abuse causes upregulation of an adaptive and protective

UPR [12]. This may explain why alcohol abuse only

uncommonly results in pancreatitis. Also, these studies

suggest the possibility that treatments and strategies

that promote the adaptive and protective UPR in the

acinar cell can be used to prevent acute pancreatitis

(AP) and recurrent acute pancreatitis.

Calcium signaling and pancreatitis

Intracellular changes in ionized calcium [Ca2+]i rep-

resent the major signaling system mediating protein

secretory responses [8]. Activation of G-protein coupled

receptors for agonists cholecystokinin and acetyl-

choline receptors leads to a phospholipase C–mediated

hydrolysis of phosphatidylinositol 4,5-bisphosphate

to 1,2-diacylglycerol and inositol 1,4,5-triphosphate

(IP3) [7, 21]. IP3, in turn, releases calcium from ER

stores through IP3 receptors on the ER [22, 23]. The

calcium release into the cytosol causes a rapid rise in

[Ca2+]i, which mediates the secretory response. With

physiologic concentrations of agonists, the increase

in [Ca2+]i initiates in the apical area of acinar cell in

the vicinity of the zymogen granules followed by a

propagated “wave” toward the basolateral area of the

cell [24–27]. Also, the increases in [Ca2+]i are transient

giving an oscillatory pattern. Each spike in [Ca2+]i
leads to a “burst” in zymogen granule exocytosis and

secretion. Calcium release into the cytosol is also medi-

ated by other intracellular mediators and receptors as

well which are involved in propagating and regulating

the “waves” and “oscillations” that are essential for

physiologic [Ca2+]i signaling [7].
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In contrast to the “waves” and “oscillations” that

comprise physiologic [Ca2+]i, pathologic stimuli can

cause sustained increases in [Ca2+]i that result in

pancreatic acinar cell injury and necrosis. This pattern

of [Ca2+]i signaling is due to the influx of Ca
2+ from the

extracellular space through a channel called ORAI-1

that is regulated by the depletion of the amount of Ca2+

that is in the ER [9, 28–37]. Examples of pathologic

stimuli that deplete ER Ca2+ stores resulting in ORAI-1

mediated Ca2+ entry and sustained [Ca2+]i are high

doses of the cholecystokinin, acetylcholine, and physio-

logic concentrations of bile acids [9, 36]. Of considerable

importance are findings that pharmacologic agents spe-

cific for inhibition of ORAI-1 are able to inhibit ER store

activation Ca2+ entry and prevent pancreatic necrosis in

human acinar cells and pancreatitis in different models

of experimental pancreatitis [36]. Inhibition of Ca2+

entry with pancreatitis causing stimuli acts in good part

by preventing mitochondrial failure as discussed in the

next section.

Mitochondrial function in pancreatitis

Mitochondria play a central role in generating energy

for sustaining function in the pancreatic acinar cell.

There is increased energy demand during secretion that

is met by rises in [Ca2+]i with physiologic neurohumoral

stimulation which, in turn, leads to increased produc-

tion of NADH through the effect of Ca2+ on Krebs cycle

enzymes [38–40]. The increase in NADH generates a

proton motive force resulting in ATP production needed

for the energy of secretion. On the other hand, when

the increase in [Ca2+]i is sustained, the ability of the

mitochondria to produce ATP stops because the Ca2+

overload causes dissipation of the proton motive force

preventing ATP production [41–44]. This process leads

to cellular failure and necrosis.

Recent evidence indicates that the effect of excess

mitochondrial Ca2+ on mitochondrial function is due to

the opening of a mitochondrial pore termed the mito-

chondrial permeability transition pore (MPTP) [45, 46].

The opening has been found to require the presence of

a mitochondrial matrix protein cyclophilin D (CypD)

[45, 46]. Both genetic deletion and pharmacologic

inhibition of CypD prevent the pathologic responses in

several models of experimental pancreatitis [45, 46].

Inflammatory signaling
of pancreatitis

Inflammation is the hallmark of AP and the inflamma-

tory response begins in the acinar cell [47–51]. In most

cases the acute inflammatory response is limited to the

pancreas, but in severe cases there can be progression

to a systemic inflammatory response syndrome (SIRS)

causing organ failure which can lead to mortality

[52–54]. SIRS is mediated by pancreas-generated

increased levels of circulating cytokines that affect sev-

eral organs especially the lungs leading to pulmonary

failure [55].

The studies that show that the acinar cell is the initial

site of inflammatory signaling come from experiments

that show that this cell produces a variety of inflam-

matory mediators with stressors that cause pancreatitis

[47, 56, 57]. These mediators are then involved in the

recruitment of neutrophils followed by macrophages,

monocytes, and lymphocytes into the pancreas. Impor-

tantly, infiltrating inflammatory cells (both neutrophils

and macrophages) mediate the pathologic, intra-acinar

activation of trypsinogen which is involved in the

promotion of the acinar cell injury and is a key feature

of pancreatitis [58–61]. Furthermore, the inflammatory

cell infiltrate exacerbates pancreatic necrosis. Although

all the mechanisms for promotion of necrosis are not

elucidated, another feature of inflammation is that it

shifts apoptosis–necrosis balance of acinar cell death

toward necrosis of the parenchymal tissue which is

associated with a greater severity of disease [4, 62–69].

The severity of pancreatitis in experimental models

improves with various strategies that inhibit inflamma-

tory cell recruitment including neutralizing antibodies

[58, 59, 70, 71], genetic deletion of specific integrins

[59, 61], or inhibition of complement [72].

Although the exact mechanisms involved in initiat-

ing inflammatory signaling in the acinar cell are not

completely understood, there are key transcription

factors that are involved which are generally known to

regulate inflammatory mediators. These include nuclear

factor kappa-B (NF-𝜅B), activator protein-1 (AP-1), and

nuclear factor of activated T-cells (NFAT) [56, 73–82].

These transcription factors are, in turn, regulated by

upstream intracellular signaling systems that include

[Ca2+]i, calcineurin, novel isoforms of protein kinase

C, and protein kinase D [48, 50, 51, 82–95]. For both

the transcription factors and the signals that regulate
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Mitochondrial depolarization inhibitors

Summary of therapeutic targets for acute pancreatitis
and acute recurrent pancreatitis

Leukocyte inhibitors

Specific vasoactive agents
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Figure 2A.3 Potential therapeutic targets. (−1) UPR activators to enhance the adaptive response to injurious agents; (1) inhibitors
of Ca2+ influx to prevent the effect of increased [Ca2+]i on mitochondrial function and inflammatory signaling; (2) mitochondrial
depolarization inhibitors to prevent cellular ATP depletion; (3) inflammatory signal inhibitors to attenuate the inflammatory response
and its effect on promoting further cellular injury; (4) leukocyte inhibitors to prevent infiltration and/or activation of leukocytes to
prevent their injurious effects on the acinar cell; (5) specific vasoactive agents to both prevent inflammatory cell infiltration and
promote the microcirculation which is compromised during pancreatitis.

them, the studies cited show that in animal models

and in vitro studies using acinar cells, the inhibition of

the pathways leads to attenuation of the severity of

pancreatitis (and cellular injury) pointing to the central

role played by the acinar cell and its inflammatory

signaling in pancreatitis.

Summary and potential therapeutic
targets

The elucidation of the roles of the acinar cell pathophys-

iology in AP allows for predicting classes of agents that

should be considered for potential therapy. Figure 2A.3

provides a summary of these targets. Moreover, as

indicated earlier, treatments for one class of targets

can have beneficial effects on a broad set of pathologic

responses as discussed with respect to the inflammatory

response. In this context, recent reports show that

supporting organellar function can lead to attenuation

of several pathophysiologic responses. For example,

prevention of mitochondrial failure by blocking the

opening of the mitochondrial permeability pore with

pharmacologic and genetic inhibitors of CypD has

effects on inflammation [45, 46].
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