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Preface

Wave phenomena occur everywhere in nature and therefore are studied in many
areas of science for a long time.

The mathematical wave theory emerged as an independent discipline in the mid-
1970s due to numerous applications in natural science and engineering stimulating
the further development of mathematical methods.

The lecture course Waves in Continuous Media is one of the disciplines on
continuum mechanics and mathematical modeling included into the education
program at the Department of Mechanics and Mathematics, Novosibirsk State
University. This course was first given by Professor L. V. Ovsyannikov,1 a distin-
guished scientist who obtained a number of fundamental results in the field of wave
hydrodynamics. Based on Ovsyannikov’s principles of selecting the material, the
authors developed new variants of the course adapted to groups of master’s students
specialized in applied mathematics, mechanics, and geophysics.

The textbook contains a rich collection of exercises and problems which have
been carefully selected and tested at practical works and seminars of courses
given by the authors at Novosibirsk State University (Russia) and Aix-Marseille
University (France) for many years. Most of the problems and exercises are supplied
with answers and hints. Solutions of some typical problems are explained in detail,
and some theoretical background material is included in order to make the book
self-contained and give students the necessary tools for self-education. More than
200 problems formulated in the book allowed us to propose to each master’s student
an individual semester mini-project consisting in solving up to six problems. Most
of them are solved by applying the theoretical approaches from the course, but the
other ones demand a deeper understanding of the methods discussed in the course.
During the semester, the students have also been working in research laboratories,
so a set of problems specific to the research activity of the students was usually
proposed.

1Ovsyannikov, L. V.: Wave Motions of Continuous Media. Novosibirsk State University, Novosi-
birsk (1985) [in Russian].
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vi Preface

The textbook consists of three chapters. Chapters 1 and 2 present the basic
notions and facts of the mathematical theory of waves illustrated by numerous
examples and methods of solving typical problems. The reader learns how to
recognize the hyperbolicity property; find characteristics, Riemann invariants, and
conservation laws for quasilinear systems of equations; construct and analyze solu-
tions with weak or strong discontinuities; and investigate equations with dispersion:
analysis of dispersion relations, the study of large time asymptotic behavior of
solutions, the construction of traveling wave solutions for models reducible to
nonlinear evolution equations, etc. The majority of problems are formulated within
the framework of wave models arising in gas dynamics, magnetohydrodynamics,
elasticity and plasticity, linear and nonlinear acoustics, chemical adsorption, and
other applications.

Chapter 3 deals with surface and internal waves in an incompressible fluid. The
efficiency of mathematical methods is demonstrated on a hierarchy of approximate
submodels generated from the Euler equations of homogeneous and inhomogeneous
fluids. Some problems illustrate the influence of viscosity and vorticity on the wave
processes.

The list of references consists mainly of monographs and textbooks recom-
mended for further reading. Three of them are generic [1–3], while others [4–33]
are more specific for each chapter. These have been selected to allow readers to
understand better mathematical statements whose proofs were skipped, and find
solutions of relatively hard exercises. A separate bibliography for each chapter is
maintained. The reference list for Chap. 3 also contains five research articles on the
theory of water waves [16, 17, 21, 26, 31] we explicitly refer to. The books for
further reading are not cited in the text.

The authors thank their colleagues at the Chair of Hydrodynamics, Novosibirsk
State University, for their help in the preparation of the manuscript.

The authors would like to express their special gratitude to Professor
V. M. Teshukov, who recently passed away, for his numerous useful advices and
discussions.

Marseille, France S.L. Gavrilyuk
Novosibirsk, Russia N.I. Makarenko
Novosibirsk, Russia S.V. Sukhinin
October 2016
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Chapter 1
Hyperbolic Waves

1.1 Hyperbolic Systems

We consider the quasilinear system of first order equations

ut C A.u; x; t/ux C b.u; x; t/ D 0; (1.1)

where the n � n-matrix A and vector b depend on x, t and u D .u1; : : : ; un/T . A
direction dx=dt D c is called characteristic if there exists a linear combination of
equations of the form (1.1) such that each unknown function ui is differentiable
along this direction. The quantity c in the definition of a characteristic direction is
an eigenvalue of the matrix A, i.e.,

det .A � cI/ D 0: (1.2)

For any eigenvalue c and the corresponding left eigenvector l D .l1; : : : ; ln/ of the
matrix A (i.e., lA D cl) the system (1.1) implies the following condition on the
characteristic (the curve corresponding to a characteristic direction):

l � .dtu C b/ D 0; (1.3)

where dt D @t C c@x is the operator of differentiation along the characteristic.
The system (1.1) is hyperbolic if all eigenvalues ci of the matrix A are real (in this

case, they can be ordered: c1 6 c2 6 : : : 6 cn) and there exist n linearly independent
real left eigenvectors of the matrix A.

Figure 1.1 shows the location of characteristics emanating from a given point
M in the .x; t/-plane. A hyperbolic system of equations is equivalent to a system
of n relations on characteristics. A system is hyperbolic if and only if the normal
Jordan form of the matrix A is diagonal. We indicate the sufficient hyperbolicity

© Springer International Publishing AG 2017
S.L. Gavrilyuk et al., Waves in Continuous Media, Lecture Notes in Geosystems
Mathematics and Computing, DOI 10.1007/978-3-319-49277-3_1

1



2 1 Hyperbolic Waves

Fig. 1.1 Location of
characteristics emanating
from a given point M in the
.x; t/-plane

conditions:

(a) the matrix A is symmetric,
(b) all roots of Eq. (1.2) are real and distinct.

In case (b), where the matrix A has no multiple eigenvalues, the system (1.1) is
called strictly hyperbolic.

Example 1.1 The process of chemical adsorption used for separating substances in
a liquid or gas mixture by the chromatography method is described by the equations

@t .u C f.u//C v@xu D 0; (1.4)

where u D .u1; : : : ; un/T are the concentrations of the separated substances passing
through the adsorption column, f.u/ D . f1.u/; : : : ; fn.u//T are the concentrations
of the substances adsorbed by the adsorbent, and v D const > 0 is the mixture
velocity. Let the vector-valued function f.u/, called the adsorption isotherm, be such
that all eigenvalues of the Jacobi matrix

f0.u/ D @. f1; : : : ; fn/

@.u1; : : : ; un/

are real, positive, and distinct:

0 < �1 < : : : < �n:

Then Eqs. (1.4) can be transformed to the form (1.1) with the matrix A.u/ D v.I C
f0.u//�1 and vector b D 0. Since

A � cI D ..v � c/I � cf0.u//.I C f0.u//�1;
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the eigenvalues of the matrix A are connected with the eigenvalues of the matrix
f0.u/ by the identity

cj D v

1C �j
. j D 1; 2; : : : ; n/:

Consequently, the system (1.4) is strictly hyperbolic; moreover, all its characteristic
velocities are positive and do not exceed the mixture velocity. The noncoincidence
of the velocities ci ¤ cj (i ¤ j) is the basis of the chromatography method.

If there exist scalar functions r.u/ and �.u; x; t/ such that

@r

@ui
D �li .i D 1; : : : ; n/;

then the relation (1.3) is equivalent to the equation

dtr.u/ D ��l � b;

where r.u/ is called a Riemann invariant. The motivation of this definition becomes
clear in the case l � b D 0, where the Riemann invariant r is constant along
characteristics. Riemann invariants always exist for the system (1.1) consisting of
one or two equations and for the system (1.1) with constant matrix A of arbitrary
order n (in the second case, r D l � u). In the general case n > 3, Riemann invariants
do not necessarily exist. In the case n D 3, the identity l � curl l D 0 is necessary and
sufficient for the existence of a Riemann invariant for the characteristic dx=dt D c
corresponding to a simple eigenvalue c of the matrix A with eigenvector l.u/ D
.l1; l2; l3/.

Problem 1.1 Find characteristics and Riemann invariants for the system describing
shallow water flows over the flat bottom

ht C .uh/x D 0;

ut C uux C ghx D 0;
(1.5)

where h.x; t/ is the layer depth, u.x; t/ is the horizontal fluid velocity, and g is the
acceleration of gravity.

Solution We compose the matrix of coefficients of the original system of equations

A � cI D
�
u � c h
g u � c

�
:

Then we find the characteristic velocities c˙ D u ˙ p
gh. The system is hyperbolic

in the domain h > 0. For the characteristic dx=dt D cC the left eigenvector, defined
up to an arbitrary scalar factor, has the form l D .

p
g;

p
h/. Consequently, to find
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the Riemann invariant r.h; u/, we should find a solution to the system of equations

@r

@h
D �

p
g;

@r

@u
D �

p
h;

where �.h; u/ is an unknown integrating factor. Excluding this factor, we obtain the
linear first order partial differential equation for r

@r

@u
�
s

h

g

@r

@h
D 0:

From the equation of characteristics du D �pg=hdh we find the first integral r D
u C 2

p
gh. Since there is a certain functional arbitrariness in the definition of a

Riemann invariant, the obtained first integral can be taken for the sought invariant.
The characteristic dx=dt D c� is studied in a similar way. �

Answer:

dx

dt
D u Cp

gh W u C 2
p
gh D const ;

dx

dt
D u �p

gh W u � 2pgh D const :

1.2 Propagation of Weak Discontinuities

The Cauchy problem for the system (1.1) is to find a solution for t > t0 provided
that ui.x; t0/ D ui0.x/ is given at t D t0.

Theorem 1.1 (uniqueness) Assume that the system (1.1) is hyperbolic and the
coefficient matrix A and vector b are continuously differentiable. Let a continuously
differentiable solution u.x; t/ be defined in the characteristic triangle X1MXn

(cf. Fig. 1.2). If u is another continuously differentiable solution to the system (1.1)
in X1MXn and u D u on the segment XnX1, then u D u in the entire characteristic
triangle X1MXn.

This theorem implies the existence of wave fronts defined by the characteristics
X1M and XnM and defining the domain of determinacy of the solution to the Cauchy
problem by the initial data solely at the domain of dependence XnX1 of the point M.

Let a domain D be divided by a smooth curve � W x D �.t/ into two subdomains
D� and DC (cf. Fig. 1.3).
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Fig. 1.2 The solution to the
Cauchy problem for the
system (1.1) is uniquely
determined by the initial data
on the interval XnX1 inside
the curvilinear characteristic
triangle X1MXn

Fig. 1.3 The weak
discontinuities always
propagate along the
characteristic curves

We assume that the solution to the hyperbolic system is continuous in the closed
domain D and continuously differentiable in the closures D� and DC. Moreover,
the derivative @xu D v of the solution on � can have a discontinuity of the first
kind with jump Œv� D vC � v�. By the continuity of the solution u, the jump of its
tangent derivative dtu D @tuC�0.t/@xu on � vanishes, which implies the following
expressions for the jumps of derivatives:

Œ@xu� D Œv�;

Œ@tu� D ��0Œv�:

Consequently, from the system (1.1) we have

.A � �0I/Œv� D 0:

Thus, the derivative of the solution can be discontinuous only on the characteristic;
moreover, the jump is a right eigenvector of the matrix A. In the case of a simple
eigenvalue of the matrix A, the amplitude of the weak discontinuity is characterized
by a scalar � such that Œv� D �r, where r D .r1; : : : ; rn/T is the corresponding
right eigenvector. The quantity � satisfies the ordinary differential equation along
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the characteristic

.l � r/d�
dt

C P� C Q�2 D 0; (1.6)

where l is the corresponding left eigenvector, whereas P and Q are known functions.
In particular,

Q D
nX

i;j;kD1
li
�@aij
@uk

�
rkrj;

where aij are components of the matrix A. Without loss of generality we can assume
that .l � r/ D 1. The relation (1.6) is the Riccati equation. It is called the transport
equation for the amplitude of the weak discontinuity.

Problem 1.2 Consider the system of equations describing the isentropic motion of
a polytropic gas, written in terms of the Riemann invariants r and l,

(
rt C .u C c/rx D 0;

lt C .u � c/lx D 0;
r D u C 2

� � 1c; l D u � 2

� � 1
c;

with the initial conditions

u.x; 0/ D
(
0; x > a;

c0.x � a/=.l0 C a � x/; x < a;
c.x; 0/ D c0;

where a D const, c0 D const, and l0 D const (c0 > 0, l0 > 0). Compute the jump
Œux� of the derivative on the characteristic x D c0t C a at time t.

Solution By the uniqueness theorem for the Cauchy problem, u.x; t/ � 0 and
c.x; t/ � c0 for x > c0t C a. Further, for the Riemann invariant l along the
characteristic dx=dt D u C c we have

Œlt�C .u � c/Œlx� D 0;

Œlt�C .u C c/Œlx� D 0;

where first relation immediately follows from the equation of motion, whereas the
second one is obtained from the continuity of the tangent derivative of l on the weak
discontinuity line. Therefore, along the characteristic under consideration, we have
Œlt� D 0, Œlx� D 0, and, as a consequence, Œux� D Œrx�=2. Differentiating the first
equation of the original system with respect to x, considering the jump, and taking
into account the above properties lx.x � 0; t/ D lx.x C 0; t/ D 0 for x D c0t C a, we


