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Università degli Studi di Parma
Parco area delle Scienze, 53/A
43124 Parma, Italia



Free Discontinuity
Problems

edited by
Nicola Fusco and Aldo Pratelli



c© 2016 Scuola Normale Superiore Pisa

ISBN 978-88-7642-592-9                  ISBN 978-88-7642-593-6 (eBook)

DOI 10.1007/978-88-7642-593-6



Contents

Introduction vii

Matteo Focardi
Fine regularity results for Mumford-Shah minimizers:
porosity, higher integrability and the Mumford-Shah
conjecture 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Existence theory and first regularity results . . . . . . . . 4

2.1 Functional setting of the problem . . . . . . . . 4
2.2 Tonelli’s Direct Method and Weak formulation . 6
2.3 Back to the strong formulation: the density lower

bound . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Bucur and Luckhaus’ almost monotonicity formula 17
2.5 The Mumford-Shah Conjecture . . . . . . . . . 24
2.6 Blow up analysis and the Mumford and Shah

conjecture . . . . . . . . . . . . . . . . . . . . . 25
3 Regularity of the jump set . . . . . . . . . . . . . . . . . 27

3.1 ε-regularity theorems . . . . . . . . . . . . . . . 27
3.2 Higher integrability of the gradient and the

Mumford and Shah conjecture . . . . . . . . . . 31
3.3 An energetic characterization of the Mumford

and Shah Conjecture 2.21 . . . . . . . . . . . . 34
4 Hausdorff dimension of the set of triple-junctions . . . . 37
5 Higher integrability of the gradient in dimension 2 . . . . 47
6 Higher integrability of the gradient in any dimension:

Porosity of the Jump set . . . . . . . . . . . . . . . . . . 51
7 Higher integrability of the gradient in any dimension:

the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



vi

Giovanni Leoni
Variational models for epitaxial growth 69
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 69
2 Korn’s inequality . . . . . . . . . . . . . . . . . . . . . 72
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Introduction

The present volume collects the lectures notes of the courses given in July
2014 in the ERC “School on Free Discontinuity problems” that we orga-
nized at the Centro De Giorgi of the Scuola Normale Superiore at Pisa.
The aim of the school was to present the main analytical and geometric
ideas developed in the study of the so called free discontinuity problems
by discussing three important examples: the Mumford-Shah model for
image segmentation, a variational model for the epitaxial growth of thin
films, and the sharp interface limit of an energy functional proposed by
Ohta-Kawasaki to model pattern formation in dyblock copolymers. The
common feature of these variational problems is the competition between
volume and surface energies. The latter are concentrated on (N − 1)-
dimensional sets which are not given a priori and that indeed are the main
unknown of the problem. They can be either rectifiable sets, as in the case
of Mumford-Shah problem, or boundaries, as in the two other models.
The lectures were given by Matteo Focardi, Giovanni Leoni and Mas-

similiano Morini. They kindly agreed to write down in an extended form
the content of their courses with the aim of both reviewing the main re-
sults of the theory and presenting the latest developments.
The volume starts with the contribution of Matteo Focardi “Fine reg-

ularity results for Mumford-Shah minimizers: porosity, higher integra-
bility and the Mumford-Shah conjecture”. He begins by presenting the
weak formulation of the Mumford-Shah problem and the existence result
of De Giorgi, Carriero and Leaci, which is showed by proving the equiv-
alence between the weak and the strong formulation. In turn, this is an
almost immediate consequence of a density lower bound for the jump set
of the minimizer. Here, two different proofs of this density estimate are
given, one due to De Lellis and Focardi and another one which follows
from an almost monotonicity formula of Bucur and Luckhaus. Then, af-
ter recalling the partial regularity results proved in the ’90s, the rest of
the lecture focuses on the Mumford-Shah conjecture. The starting point
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is a result by Ambrosio, Fusco and Hutchinson which provides a quanti-
tative link between the higher integrability of the gradient of a minimizer
and the dimension of the singular set of the jump set. This result has
been recently refined by De Lellis and Focardi who actually proved the
equivalence between a weaker version of the Mumford-Shah conjecture
and a precise degree of integrability of the gradient of the minimizers. A
detailed proof of this equivalence is provided here. The last part of the
lecture contains two higher integrability results. The first one, in two di-
mensions, is due to De Lellis and Focardi and it is based on Caccioppoli
partitions. The second one, which applies to any dimension, was proved
by De Philippis and Figalli using the porosity property of the jump set.
The lecture by Giovanni Leoni “Variational models for epitaxial

growth” deals with a model for the epitaxial growth of thin films proposed
by Spencer and Tersoff. They assume a planar symmetry of the three-di-
mensional configuration of the film. This leads to a two-dimensional
model where the free surface of the film is represented as the graph of
a periodic function over a reference interval and the substrate occupies
an infinite strip. The total energy is given by the sum of two terms. The
first one measures the length of the film weighed with a positive coeffi-
cient with a step discontinuity at the interface between the film and the
substrate. The other one takes care of the elastic energy needed to de-
form the material. In the model the elastic properties of the film and the
substrate are described by the same elasticity tensor. However, the in-
teresting feature is the presence of a mismatch strain at the interface of
the two materials. This mismatch is responsible of the so called islands
formation, i.e., non flat minimal configurations. The lecture starts with
a detailed presentation of Korn’s inequality in C1 and Lipschitz domains
which has its own interest besides the applications to thin films. Also of
independent interest is the subsequent section which presents the classi-
cal results of Grisvard on the regularity of solutions of Lamé systems in
polygonal domains. The second part of the lecture is devoted to the ex-
istence and regularity of minimizers. Here Leoni presents in an unified
and comprehensive way various results scattered in the literature of the
last fifteen years. This presentation can be very useful for young mathe-
maticians interested in entering in a subject where mathematical research
is still very active.
Massimiliano Morini presents a contribution on “Local and global

minimality results for an isoperimetric problem with long-range inter-
action”. The energy functional is given by the sum of the perimeter of
a set E inside a fixed container � and the Dirichlet integral of the so-
lution, under Neumann or periodic boundary conditions, of the Poisson
equation with a right hand side depending on the characteristic function
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of E . When minimizing this energy under a volume constraint, one ob-
serves a wide class of configurations ranging from one or several almost
spherical droplets to the union of cylinders or lamellae or even the more
complicate patterns known as gyroids. The interesting feature of all these
minimizers is that they are very close to periodic sets of constant mean
curvature. Indeed various explicit constructions of stable critical config-
urations of the above type have been given in the last years. The lecture
of Morini presents a second variation criterion for local minimality that
he recently obtained in collaboration with Acerbi and Fusco. First, he
derives the first and second variation formulae for the total energy es-
tablished by Choksi and Sternberg. Then he proves that a strictly stable
critical point, i.e., a critical point with positive second variation, is a local
minimizer under a volume constraint. To this aim he shows a quantitative
estimate of the energy gap between the minimizer E and a competitor F
in terms of the L1 distance between the two sets. The second part of the
lecture explains how this result can be applied to prove that certain lamel-
lar and almost spherical configurations are indeed local and even global
minimizers. Here one can find a unified approach to the recent results
proved by Cicalese and Spadaro and by Morini and Sternberg.
We would like to conclude by thanking Matteo Focardi, Giovanni Leo-

ni and Massimiliano Morini for preparing these very interesting lectures
notes. We believe that they will be as successful as the beautiful courses
that they gave two years ago at the school in Pisa.

Nicola Fusco
Aldo Pratelli



Fine regularity results for Mumford-Shah
minimizers: porosity, higher integrability
and the Mumford-Shah conjecture

Matteo Focardi

Abstract. We review some classical results and more recent insights about the
regularity theory for local minimizers of the Mumford and Shah energy and their
connections with the Mumford and Shah conjecture. We discuss in details the
links among the latter, the porosity of the jump set and the higher integrability of
the approximate gradient. In particular, higher integrability turns out to be related
with an explicit estimate on the Hausdorff dimension of the singular set and an
energetic characterization of the conjecture itself.

1 Introduction

The Mumford and Shah model is a prominent example of variational
problem in image segmentation (see [69]). It is an algorithm able to
detect the contours of the objects in a black and white digitized image.
Representing the latter by a greyscale function g ∈ L∞(�, [0, 1]), a
smoothed version of the original image is then obtained by minimizing
the functional

(v, K ) → F(v, K , �)+ γ

∫
�\K

|v − g|2dx, (1.1)

with

F(v, K , �) :=
∫

�\K
|∇v|2 dx + β H1(K ), (1.2)

where � ⊆ R2 is an open set, K is a relatively closed subset of � with
finite H1 measure, v ∈ C1(� \ K ), β and γ are nonnegative parameters
to be tuned suitably according to the applications. In our discussion we
can set β = 1 without loss of generality.
The role of the squared L2 distance in (1.1) is that of a fidelity term

in order that the output of the process is close in an average sense to the
original input image g. The set K represents the set of contours of the
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objects in the image, the length of which is kept controlled by the penal-
ization of itsH1 measure to avoid over segmentation, while the Dirichlet
energy of v favors sharp contours rather than zones where a thin layer of
gray is used to pass smoothly from white to black or vice versa.
We stress the attention upon the fact that the set K is not assigned

a priori and it is not a boundary in general. Therefore, this problem is
not a free boundary problem, and new ideas and techniques had to be
developed to solve it. Since its appearance in the late 80’s to today the
research on the Mumford and Shah problem, and on related fields, has
been very active and different approaches have been developed. In this
notes we shall focus mainly on that proposed by De Giorgi and Ambrosio.
This is only due to a matter of taste of the Author and it is also dictated
by understandable reasons of space. Even more, it is not possible to be
exhaustive in our (short) presentation, therefore we refer to the books by
Ambrosio, Fusco and Pallara [7] and David [26] for the proofs of many
results we shall only quote, for a more detailed account of the several
contributions in literature, for the many connections with other fields and
for complete lists of references (see also the recent survey [53] that covers
several parts of the regularity theory that are not presented here).
Going back to the Mumford and Shah minimization problem and try-

ing to follow the path of the Direct Method of the Calculus of Variations,
it is clear that a weak formulation calls for a function space allowing for
discontinuities of co-dimension 1 in which an existence theory can be
established. Therefore, by taking into account the structure of the en-
ergy, De Giorgi and Ambrosio were led to consider the space SBV of
Special functions of Bounded Variation, i.e. the subspace of BV func-
tions with singular part of the distributional derivative concentrated on
a 1-dimensional set called in what follows the jump set (throughout the
paper we will use standard notations and results concerning the spaces
BV and SBV , following the book [7]).
The purpose of the present set of notes is basically to resume and col-

lect several of the regularity properties known at present for Mumford
and Shah minimizers. More precisely, Section 2 is devoted to recalling
basic facts about the functional setting of the problem and its weak for-
mulation. The celebrated De Giorgi, Carriero and Leaci [33] regularity
result implying the equivalence between the strong and weak formula-
tions, is discussed in details. In Subsection 2.3 we provide a recent proof
by De Lellis and Focardi valid in the 2d case that gives an explicit con-
stant in the density lower bound, and in Subsection 2.4 we discuss the
almost monotonicity formula by Bucur and Luckhaus. Next, we state the
Mumford and Shah conjecture. The understanding of such a claim is the
goal at which researchers involved in this problem are striving for. In this
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perspective well-established and more recent fine regularity results on the
jump set of minimizers are discussed in Section 3. Furthermore, we high-
light two different paths that might lead to the solution in positive of the
Mumford and Shah conjecture: the complete characterization of blow ups
in Subsection 2.6 and a sharp higher integrability of the (approximate)
gradient in Theorem 3.11 together with the uniqueness of blow up lim-
its. In particular, we discuss in details the latter by following the ideas
introduced by Ambrosio, Fusco and Hutchinson [4] linking higher inte-
grability of the gradient of a minimizer with the size of the singular set
of the minimizer itself, i.e. the subset of points of the jump set having no
neighborhood in which the jump set itself is a regular curve. An explicit
estimate shows that the bigger the integrability exponent of the gradient
is, the lower the Hausdorff dimension of the singular set is (cf. Theo-
rem 3.10). Pushing forward this approach, an energetic characterization
of a slightly weaker form of the Mumford and Shah conjecture can be
found beyond the scale of L p spaces (cf. Theorem 3.11). In particular,
the quoted estimate on the Hausdorff dimension of the full singular set
reduces to the higher integrability property of the gradient and a corre-
sponding estimate on a special subset of singular points: those for which
the scaled Dirichlet energy is infinitesimal. The latter topic is dealt with
in full details in Section 4 in the setting of Caccioppoli partitions as done
by De Lellis and Focardi in [35]. The analysis of Section 4 allowed the
same Authors to prove the higher integrability property in 2-dimensions
as explained in Section 5. A different path leading to higher integrability
in any dimension is to exploit the porosity of the jump set. This approach,
due to De Philippis and Figalli [37], is the object of Section 7. Some pre-
liminaries on porous sets are discussed in Section 6.
To conclude this introduction it is worth mentioning that the Mumford

and Shah energy and the theory developed in order to study it, have been
employed in many other fields. The applications to Fracture Mechanics,
both in a static setting and for quasi-static irreversible crack-growth for
brittle materials according to Griffith are important instances of that (see
in particular [12], [7, Section 4.6.6] and [15,21,60]). It is also valuable to
recall that several contributions in literature are devoted to the asymptotic
analysis or the variational approximation of free discontinuity energies
by means of De Giorgi’s �-convergence theory. We refer to the books by
Braides [13–15] for the analysis of several interesting problems arising
frommodels in different fields (for a quick introduction to �-convergence
see [40], for a more detailed account consult the treatise [20]).
The occasion to write this set of notes stems from the course “Fine reg-

ularity results for Mumford-Shah minimizers: higher integrability of the
gradient and estimates on the Hausdorff dimension of the singular set”
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taught by the Author in July 2014 at Centro De Giorgi in Pisa within the
activities of the “School on Free Discontinuity problems”, ERC Research
Period on Calculus of Variations and Analysis in Metric Spaces. The ma-
terial collected here covers entirely the six lectures of the course, addi-
tional topics and some more recent insights are also included for the sake
of completeness and clarity. It is a pleasure to acknowledge the hospital-
ity of Centro De Giorgi and to gratefully thank N. Fusco and A. Pratelli,
the organizers of the school, for their kind invitation. Let me also thank
all the people in the audience for their attention, patience, comments and
questions. In particular, the kind help of R. Cristoferi and E. Radici who
read a preliminary version of these notes is acknowledged. Nevertheless,
the Author is the solely responsible for all the inaccuracies contained in
them.

2 Existence theory and first regularity results

In this section we shall overview the first basic issues of the problem.
More generally we discuss the n-dimensional case, though we shall often
make specific comments related to the 2-dimensional setting of the orig-
inal problem (and sometimes to the 3d case as well). We shall freely use
the notation for BV functions and Caccioppoli sets adopted in the book
by Ambrosio, Fusco and Pallara [7]. We shall always refer to it also for
the many results that we shall apply or even only quote without giving a
precise citation.

2.1 Functional setting of the problem

A function v ∈ L1(�) belongs to BV (�) if and only if Dv is a (vector-
valued) Radon measure on the non empty open subset � of Rn . The
distributional derivative of v can be decomposed according to

Dv = ∇vLn �+ (v+ − v−)νv Hn−1 Sv + Dcv,

where

(i) ∇v is the density of the absolutely continuous part of Dv with re-
spect to Ln � (and the approximate gradient of v in the sense of
Geometric Measure Theory as well);

(ii) Sv is the set of approximate discontinuities of v, anHn−1-rectifiable
set (so that Ln(Sv) = 0) endowed with approximate normal νv for
Hn−1 a.e. on Sv;

(iii) v± are the approximate one-sided traces left by v Hn−1 a.e. on Sv;
(iv) Dcv is the rest in the Radon-Nikodym decomposition of the singu-

lar part of Dv after the absolutely continuous part with respect to
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Hn−1 Sv has been identified. Thus, it is a singular measure both
with respect to Ln � and to Hn−1 Sv (for more details see [7,
Proposition 3.92]).

By taking into account the structure of the energy in (1.1), only volume
and surface contributions are penalized, so that it is natural to introduce
the following subspace of BV .

Definition 2.1 ([32], Section 4.1 [7]). v ∈ BV (�) is a Special function
of Bounded Variation, in short v ∈ SBV (�), if Dcv = 0, i.e. Dv =
∇vLn �+ (v+ − v−)νv Hn−1 Sv.

No Cantor staircase type behavior is allowed for these functions. Sim-
ple examples are collected in the ensuing list:

(i) if n = 1 and � = (α, β), SBV
(
(α, β)

)
is easily described in view

of the well known decomposition of BV functions of one variable.
Indeed, any function in SBV

(
(α, β)

)
is the sum of a W 1,1

(
(α, β)

)
function with one of pure jump, i.e.

∑
i∈N

aiχ(αi ,αi+1), with α = α0,
αi < αi+1 < β, (ai)i∈I ∈ 	∞;

(ii) W 1,1(�) ⊂ SBV (�). Clearly, Dv = ∇vLn �. In this case ∇v

coincides with the usual distributional gradient;
(iii) let (Ei)i∈I , I ⊆ N , be a Caccioppoli partition of �, i.e. Ln

(
� \

∪i Ei
) = 0 and Ln(Ei ∩E j ) = 0 if i �= j , with the Ei ’s sets of finite

perimeter such that ∑
i∈I
Per(Ei) < ∞.

Then, v = ∑
i∈I ai χEi ∈ SBV (�) if (ai)i∈I ∈ 	∞. In this case,

if JE := ∪i∂∗Ei denotes the set of interfaces of E, with ∂∗Ei the
essential boundary of Ei , thenHn−1(Sv \ JE) = 0 and

Dv = (v+ − v−)νv Hn−1 JE.

Functions of this type have zero approximate gradient, they are
called piecewise constant and form a subspace denoted by SBV0(�)

(cf. [7, Theorem 4.23]);
(iv) the function v(ρ, θ) := √

ρ · sin(θ/2) for θ ∈ (−π, π) and ρ > 0 is
in SBV (Br ) for all r > 0. In particular, v ∈ SBV (Br )\

(
W 1,1(Br )⊕

SBV0(Br )
)
.

A general receipt to construct interesting examples of SBV functions can
be obtained as follows (see [7, Proposition 4.4]).

Proposition 2.2. If K ⊂ � is a closed set such that Hn−1(K ) < +∞
and v ∈ W 1,1 ∩ L∞(� \ K ), then v ∈ SBV (�) and

Hn−1(Sv \ K ) = 0. (2.1)
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Clearly, property (2.1) above is not valid for a generic member of
SBV , but it does for a significant class of functions: local minimizers
of the energy under consideration (see below for the definition), actually
satisfying even a stronger property (cf. Proposition 2.9).

2.2 Tonelli’s Direct Method and Weak formulation

The difficulty in applying the Direct Method is related to the surface term
for which it is hard to find a topology ensuring at the same time lower
semicontinuity and pre-compactness for minimizing sequences. Using
the Hausdorff local topology requires a very delicate study of the latter
ones to rule out typical counterexamples as shown by Maddalena and
Solimini in [56]. Here, we shall follow instead the original approach by
De Giorgi and Ambrosio [32].
Keeping in mind the example in Proposition 2.2, the weak formula-

tion of the problem under study is obtained naively by taking K = Sv.
Loosely speaking in this approach the set of contours K is identified by
the (Borel) set Sv of (approximate) discontinuities of the function v that is
not fixed a priori. This is the reason for the terminology free discontinuity
problem coined by De Giorgi. The (weak counterpart of the) Mumford
and Shah energyF in (1.2) of a function v in SBV (�) on an open subset
A ⊆ � then reads as

F(v, A) = MS(v, A)+ γ

∫
A
|v − g|2dx, (2.2)

where

MS(v, A) :=
∫
A
|∇v|2dx +Hn−1(Sv ∩ A). (2.3)

For the sake of simplicity in case A = � we drop the dependence on the
set of integration.
In passing, we note that, the class {v ∈ BV (�) : Dv = Dcv} of

Cantor type functions is dense in BV w.r.to the L1 topology, thus it is
easy to infer that

inf
BV (�)

F = 0,
so that the restriction to SBV is needed in order not to trivialize the prob-
lem.
Ambrosio’s SBV closure and compactness theorem (see [7, Theorems

4.7 and 4.8]) ensures the existence of a minimizer ofF on SBV .

Theorem 2.3 (Ambrosio [2]). Let (v j ) j ⊂ SBV (�) be such that

sup
j

(
MS(v j )+ ‖v j‖L∞(�)

)
< ∞,
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then there exists a subsequence (v jk )k and a function v ∈ SBV (�) such
that v jk → v L p(�), for all p ∈ [1,∞).
Moreover, we have the separated lower semicontinuity estimates∫

�

|∇v|2dx ≤ lim inf
k

∫
�

|∇v jk |2dx (2.4)

and
Hn−1(Sv) ≤ lim inf

k
Hn−1(Sv jk

). (2.5)

Ambrosio’s theorem is the natural counterpart of Rellich-Kondrakov the-
orem in Sobolev spaces. Indeed, for Sobolev functions, it reduces essen-
tially to that statement provided that an L p rather than an L∞ bound is
assumed. More generally, Ambrosio’s theorem holds true in the bigger
space GSBV . In particular, (2.4) and (2.5) display a separate lower semi-
continuity property for the two terms of the energy in a way that the two
terms cannot combine to create neither a contribution for the other nor a
Cantor type one.
By means of the chain rule formula for BV functions one can prove

that the functional under consideration is decreasing under truncation,
i.e. for all k ∈ N

F(τk(v)) ≤ F(v) ∀v ∈ SBV (�),

if τk(v) := (v ∧ k) ∨ (−k).
Therefore, being g ∈ L∞(�), we can always restrict ourselves to min-

imize it over the ball in L∞(�) of radius ‖g‖L∞(�). In conclusion, The-
orem 2.3 always provides the existence of a (global) minimizer for the
weak formulation of the problem.
Once the existence has been checked, necessary conditions satisfied

by minimizers are deduced. Supposing g ∈ C1(�), by means of internal
variations, i.e. constructing competitors to test the minimality of u by
composition with diffeomorphisms of � arbitrarily close to the identity
of the type Id+ ε φ, the Euler-Lagrange equation takes the form∫

�\Su

((|∇u|2+γ (u−g)2)divφ−2〈∇u,∇u ·∇φ〉−2γ (u−g)〈∇g,φ〉
)
dx

+
∫
Su

divSuφ dHn−1 = 0
(2.6)

for all φ ∈ C1c (�, Rn), divSuφ denoting the tangential divergence of the
field φ on Su (cf. [7, Theorem 7.35]).
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Instead, by using outer variations, i.e. range perturbations of the type
u + ε(v − u) for v ∈ SBV (�) such that spt(u − v) � � and Sv ⊆ Su ,
we find ∫

�

(〈∇u,∇(v − u)〉 + γ (u − g) (v − u)
)
dx = 0. (2.7)

2.3 Back to the strong formulation: the density lower bound

Existence of minimizers for the strong formulation of the problem is ob-
tained via a regularity property enjoyed by (the jump set of) the minimiz-
ers of the weak counterpart. The results obtained in this framework will
be instrumental also to establish way much finer regularity properties in
the ensuing sections.
We start off analyzing the scaling of the energy in order to understand

the local behavior of minimizers. This operation has to be done with
some care since the volume and length terms in MS scale differently un-
der affine change of variables of the domain. Let v ∈ SBV (Bρ(x)), set

vx,ρ(y) := ρ−1/2v(x + ρ y), (2.8)

then vx,ρ ∈ SBV (B1), with

MS(vx,ρ, B1) = ρ1−nMS(v, Bρ(x))

and ∫
B1

|vx,ρ − gx,ρ|2dz = ρ−1−n
∫
Bρ(x)

|v − g|2dy.

Thus,

ρ1−n
(
MS(v, Bρ(x))+

∫
Bρ(x)

|v − g|2dz
)

= MS(vx,ρ, B1)+ ρ2
∫
B1

|vx,ρ − gx,ρ|2dy.

By taking into account that g ∈ L∞ and that along the minimization
process we are actually interested only in functions satisfying the bound
‖v‖L∞(�) ≤ ‖g‖L∞(�), we get

ρ2
∫
B1

|vx,ρ − gx,ρ|2dy ≤ 2ρ ‖g‖2L∞(�) = O(ρ) ρ ↓ 0.

This calculation shows that, at the first order, the leading term in the en-
ergyF computed on Bρ(x) is that related to the MS functional, the other
being a contribution of higher order that can be neglected in a preliminary
analysis.



9 Fine regularity results for Mumford-Shah minimizers

Motivated by this, we introduce a notion of minimality involving only
the leading part of the energy. This corresponds to setting γ = 0 in the
definition ofF (cf. (2.2)).

Definition 2.4. A function u ∈ SBV (�) with MS(u) < ∞1 is a local
minimizer of MS if

MS(u) ≤ MS(v) whenever {v �= u} � �.

In what follows, u will always denote a local minimizer of MS unless
otherwise stated, and the class of all local minimizers shall be denoted
by M(�). Actually, we shall often refer to local minimizers simply as
minimizers if no confusion can arise. In particular, regularity properties
for minimizers of the whole energy can be obtained by perturbing the
theory developed for local minimizers (see for instance Corollary 2.13
and Theorem 2.16 below).
Harmonic functions with small oscillation are minimizers as a simple

consequence of (2.7).

Proposition 2.5 (Chambolle, see Proposition 6.8 [7]). If u is harmonic
in �′, then u ∈M(�), for all � � �′, provided(

sup
�

u − inf
�
u
)‖∇u‖L∞(�) ≤ 1. (2.9)

Proof. Let A � �. By Theorem 2.3 it is easy to show the existence
of a minimizerw ∈ SBV (�) of the Dirichlet problem min

{
MS(v) : v ∈

SBV (�), v = u on � \ A}. Moreover, by truncation inf� u ≤ w ≤
sup� u Ln a.e. on �.
By the arbitrariness of A, the local minimality of u follows provided

we show that MS(u, �) ≤ MS(w, �). To this aim, we use the Euler-
Lagrange condition (2.7) with γ = 0, namely∫

�

〈∇w,∇(u −w)〉 dx = 0⇐⇒
∫

�

|∇w|2 dx =
∫

�

〈∇w,∇u〉 dx,

to get

MS(u, �) ≤ MS(w, �) ⇐⇒
∫

�

〈∇u,∇(u −w)〉 dx ≤ Hn−1(Sw)

⇐⇒
∫

�

∇u· dD(u−w)−
∫
Sw

〈∇u, νw〉(w+−w−)dHn−1 ≤ Hn−1(Sw).

1 The finite energy condition is actually not needed due to the local character of the notion intro-
duced, it is assumed only for the sake of simplicity.
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An integration by parts, the harmonicity of u and the equality w = u on
� \ A give ∫

�

∇u · dD(u −w) =−
∫

�

(u −w)�u dx = 0,

and therefore

MS(u, �)≤MS(w,�)⇐⇒−
∫
Sw

〈∇u,νw〉(w+−w−)dHn−1≤Hn−1(Sw).

The conclusion follows from condition (2.9) as inf� u ≤ w ≤ sup� u Ln

a.e. on �.

By means of the slicing theory in SBV , i.e. the characterization of SBV
via restrictions to lines, one can also prove that pure jumps, i.e. functions
as

aχ{〈x−xo,ν〉>0} + bχ{〈x−xo,ν〉<0} (2.10)

for a and b ∈ R and ν ∈ Sn−1, are local minimizers as well (cf. [7,
Proposition 6.8]]). Further examples shall be discussed in what follows
(cf. Subsection 2.5).
As established in [33] in all dimensions (and proved alternatively in

[23] and [25] in dimension two), if u ∈M(�) then the pair (u, �∩Su) is
a minimizer ofF for γ = 0. The main point is the identityHn−1(�∩(Su\
Su)
) = 0, which holds for every u ∈ M(�). The groundbreaking paper

[33] proves this identity via the following density lower bound estimate
(see [7, Theorem 7.21]).

Theorem 2.6 (De Giorgi, Carriero andLeaci [33]). There exist dimen-
sional constants θ, � > 0 such that for every u ∈M(�)

MS(u, Br (z)) ≥ θ rn−1 (2.11)

for all z ∈ � ∩ Su , and all r ∈ (0, � ∧ dist(z, ∂�)).

Building upon the same ideas, in [17] it is proved a slightly more precise
result (see again [7, Theorem 7.21]).

Theorem 2.7 (Carriero and Leaci [17]). There exist dimensional con-
stants θ0, �0 > 0 such that for every u ∈M(�)

Hn−1(Su ∩ Br (z)) ≥ θ0 r
n−1 (2.12)

for all z ∈ � ∩ Su , and all r ∈ (0, �0 ∧ dist(z, ∂�)).
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In particular, from the latter we infer the so called elimination prop-
erty for � ∩ Su , i.e. if Hn−1(Su ∩ Br (z)) < θ0

2n−1 r
n−1 then actually

Su ∩ Br/2(z) = ∅.
Given Theorem 2.6 or 2.7 for granted we can easily prove the equiva-

lence of the strong and weak formulation of the problem by means of the
ensuing density estimates.

Lemma 2.8. Let μ be a Radon measure on Rn , B be a Borel set and
s ∈ [0, n] be such that

lim sup
r↓0

μ(Br (x))

ωsr s
≥ t for all x ∈ B.

Then, μ(B) ≥ t Hs(B).

Proposition 2.9. Let u ∈ M(�), then Hn−1(� ∩ (Su \ Su)
) = 0. In

particular
(
u, � ∩ Su) is a local minimizer for F (with γ = 0).

Proof of Proposition 2.9. In view of Theorem 2.7 we may apply the den-
sity estimates of Lemma 2.8 to μ = Hn−1 Su and to the Borel set
� ∩ (Su \ Su) with t = θ0. Therefore, we deduce that

θ0Hn−1(� ∩ (Su \ Su)
) ≤ μ

(
� ∩ (Su \ Su)

) = 0.
Clearly, MS(u) = F(u, �∩ Su), and the conclusion follows at once.
The argument for (2.11) used by De Giorgi, Carriero and Leaci in [33],
and similarly in [17] for (2.12), is indirect: it relies on Ambrosio’s SBV
compactness theorem and Poincaré-Wirtinger type inequality in SBV es-
tablished in [33] (see also [7, Theorem 4.14] and [8, Proposition 2] for
a version in which boundary values are preserved) to analyze blow up
limits of minimizers (see Subsection 2.6 for the definition of blow ups)
with vanishing jump energy and prove that they are harmonic functions
(cf. [7, Theorem 7.21]). A contradiction argument shows that on small
balls the energy of local minimizers inherits the decay properties as that
of harmonic functions. Actually, the proof holds true for much more gen-
eral energies (see [43], [7, Chapter 7]).
In the paper [34] an elementary proof valid only in 2-dimensions and

tailored on the MS energy is given. No Poincaré-Wirtinger inequality,
nor any compactness argument are required. Moreover, it has the merit
to exhibit an explicit constant. Indeed, the proof in [34] is based on an
observation of geometric nature and on a direct variational comparison
argument. It also differs from those exploited in [23] and [25] to derive
(2.12) in the 2-dimensional case.
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Theorem 2.10 (De Lellis and Focardi [34]). Let u ∈M(�). Then

MS(u, Br (z))≥r (2.13)

for all z ∈ � ∩ Su and all r ∈ (0, dist(z, ∂�)). More precisely, the set
�u := {z ∈ � : (2.13) fails} is open and �u = � \ Su2.
To the aim of establishing Theorem 2.10 we prove a consequence of

(2.6), a monotonicity formula discovered independently by David and
Léger in [27, Proposition 3.5] and by Maddalena and Solimini in [57].
The proof we present here is that given in [34, Lemma 2.1] (an analogous
result holds true in any dimension with essentially the same proof).

Lemma 2.11. Let u ∈M(�), � ⊂ R2, then for every z ∈ � and for L1
a.e. r ∈ (0, dist(z, ∂�))

r
∫

∂Br (z)

((
∂u

∂ν

)2
−
(

∂u

∂τ

)2)
dH1 +H1(Su ∩ Bz(r))

=
∫
Su∩∂Br (z)

|〈ν⊥u (x), x〉|dH0(x),

(2.14)

∂u
∂ν
and ∂u

∂τ
being the projections of ∇u in the normal and tangential di-

rections to ∂Br (z), respectively.3

Proof of Lemma 2.11. With fixed a point z ∈ �, r > 0 with Br (z) ⊆ �,
we consider special radial vector fields ηr,s ∈ Lip ∩ Cc(Br (z), R2), s ∈
(0, r), in the first variation formula (2.6) (with γ = 0). Moreover, for
the sake of simplicity we assume z = 0, and drop the subscript z in what
follows. Let

ηr,s(x) := x χ[0,s](|x |)+ |x | − r

s − r
x χ(s,r](|x |),

then a routine calculation leads to

∇ηr,s(x) := Idχ[0,s](|x |)+
( |x | − r

s − r
Id+ 1

s − r

x

|x | ⊗ x

)
χ(s,r](|x |)

L2 a.e. in �. In turn, from the latter formula we infer for L2 a.e. in �

divηr,s(x) = 2χ[0,s](|x |)+
(
2
|x | − r

s − r
+ |x |
s − r

)
χ(s,r](|x |),

2 Actually, the very same proof shows also that�u = � \ Ju , where Ju is the subset of points of Su
for which one sided traces exist. Recall thatHn−1(Sv \ Jv) = 0 for all v ∈ BV (�).

3 For ξ ∈ R
2, ξ⊥ is the vector obtained by an anticlockwise rotation.
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and, if νu(x) is a unit vector normal field in x ∈ Su , forH1 a.e. x ∈ Su

divSuηr,s(x)=χ[0,s](|x |)+
(|x |−r
s − r

+ 1

|x |(s−r) |〈x, ν⊥u 〉|2
)

χ(s,r](|x |).

Consider the set I := {ρ ∈ (0, dist(0, ∂�)) : H1(Su ∩ ∂Bρ) = 0}, then
(0, dist(0, ∂�)) \ I is at most countable being H1(Su) < +∞. If ρ and
s ∈ I , by inserting ηs in (2.6) we find

1

s−r
∫
Br\Bs

|x ||∇u|2dx − 2

s−r
∫
Br\Bs

|x |
〈
∇u,

(
Id− x

|x | ⊗
x

|x |
)
∇u
〉
dx

=H1(Su ∩ Bs)+
∫
Su∩(Br\Bs)

|x | − r

s − r
dH1

+ 1

s − r

∫
Su∩(Br\Bs)

|x |
∣∣∣∣〈 x|x | , ν⊥u

〉∣∣∣∣2 dH1.

Next we employ Co-Area formula and rewrite equality above as

1

s − r

∫ r

s
ρ dρ

∫
∂Bρ

|∇u|2dH1 − 2

s − r

∫ r

s
ρ dρ

∫
∂Bρ

∣∣∣∣∂u∂τ

∣∣∣∣2 dH1

= H1(Su ∩ Bs)+
∫
Su∩(Br\Bs)

|x | − r

s − r
dH1

+ 1

s − r

∫ r

s
dρ
∫
Su∩∂Bρ

|〈x, ν⊥u 〉|dH0

where ν := x/|x | denotes the radial unit vector and τ := ν⊥ the tangen-
tial one. Lebesgue differentiation theorem then provides a subset I ′ of
full measure in I such that if r ∈ I ′ and we let s ↑ t− it follows

− r
∫

∂Br

|∇u|2dH1 + 2r
∫

∂Br

∣∣∣∣∂u∂τ

∣∣∣∣2 dH1

= H1(Su ∩ Br )−
∫
Su∩∂Br

|〈x, ν⊥u 〉|dH0.

Formula (2.14) then follows straightforwardly.

We are now ready to prove Theorem 2.10.

Proof of Theorem 2.10. Given u∈M(�), z∈� and r ∈ (0, dist(z, ∂�))

let

ez(r) :=
∫
Br (z)

|∇u|2dx, 	z(r) := H1(Su ∩ Br (z)),



14 Matteo Focardi

and

mz(r) := MS(u, Br (z)), hz(r) := ez(r)+ 1

2
	z(r).

Clearly, mz(r) = ez(r) + 	z(r) ≤ 2hz(r), with equality if and only if
ez(r) = 0.
Introduce the set S�

u of points x ∈ Su for which

lim
r↓0

H1(Su ∩ Br (x))

2r
= 1 . (2.15)

Since Su is rectifiable,H1(Su \ S�
u) = 0. Next let z ∈ � be such that

mz(R) < R for some R ∈ (0, dist(z, ∂�)). (2.16)

We claim that z �∈ S�
u .

W.l.o.g. we take z = 0 and drop the subscript z in e, 	,m and h.
In addition we can assume e(R) > 0. Otherwise, by the Co-Area

formula and the trace theory of BV functions, we would find a radius
r < R such that u|∂Br is a constant (cf. the argument below). In turn,
u would necessarily be constant in Br because the energy decreases un-
der truncations, thus implying z �∈ S�

u . We can also assume 	(R) > 0,
since otherwise u would be harmonic in BR and thus we would conclude
z �∈ S�

u .
We start next to compare the energy of u with that of an harmonic

competitor on a suitable disk. The inequality 	(R) ≤ m(R) < R is
crucial to select good radii.

Step 1: For any fixed r ∈ (0, R − 	(R)), there exists a set Ir of positive
length in (r, R) such that

h(ρ)

ρ
≤ 1

2
· e(R)− e(r)

R − r − (	(R)− 	(r))
for all ρ ∈ Ir . (2.17)

Define Jr := {t ∈ (r, R) : H0(Su ∩ ∂Bt) = 0}. We claim the existence
of J ′r ⊆ Jr with L1(J ′r ) > 0 and such that∫

∂Bρ

|∇u|2dH1 ≤ e(R)− e(r)

R − r − (	(R)− 	(r))
for all ρ ∈ J ′r . (2.18)

Indeed, we use the Co-Area formula for rectifiable sets (see [7, Theorem
2.93]) to find

L1((r, R) \ Jr ) ≤
∫

(r,R)\Jr
H0(Su ∩ ∂Bt)dt

=
∫
Su∩(BR\Br )

∣∣∣∣〈ν⊥u (x),
x

|x |
〉∣∣∣∣ dH1(x) ≤ 	(R)− 	(r).


