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Preface

The remaining useful life (RUL) of a system is defined as the length from the
current time to the end of the useful life. The concept of the RUL has been widely
used in operational research, reliability, and statistics literature with important
applications in other fields such as materials science, biostatistics, and economet-
rics. However, there are many definitions as what is regarded as the useful life. In
‘Businessdictionary.com,’ it defines the useful life “the period during which an
asset or property is expected to be usable for the purpose it was acquired’. However,
in accounting, it is defined as ‘the expected period of time during which a depre-
ciating asset will be productive.” The keyword here is ‘usable’ or ‘productive’
which is again upon individual explanations. Clearly the definition of the useful life
depends on the context and operational characteristics. In this book we will assume
that the definition of the useful life is known to the owner of the asset and the main
interest is to investigate the modeling methods for RUL estimation given condition
and health monitoring information.

In conventional data-based approaches, estimating the RUL is achieved by
evaluating the conditional lifetime distribution given that a system has survived up
to a specific time. The obtained RUL distributions from these approaches are
generally based on the life characteristics of a population of identical systems and
lifetime data are required. However, such data are scarce in reality or even
nonexistent at all for systems which are costly or time-consuming to collect the life
data. With the advances in CM technologies, degradation data can be obtained from
routine CM as feasible and low-cost alternatives to estimate the RUL. These data
are usually correlated with the underlying physical degradation process. If they are
properly modeled, degradation data can be used to predict unexpected failures and
accurately estimate the lifetime of gradually degraded systems. In many situations,
such as the drift degradation of an inertial navigation system used in the aerospace
industry, it is natural to view the failure event of interest as the result of a stochastic
degradation process crossing a threshold level, i.e., to model the hitting time of the
degradation as a time-dependent stochastic process. On the other hand, dynamic
environments induce changes in the physics of failure.
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RUL prognosis is one of the key factors in condition-based maintenance (CBM),
and prognostics and health management. It is critically important to assess the RUL
of an asset while in use since it has impacts on the planning of maintenance
activities, spare parts provision, operational performance, and profitability of the
owner of an asset. RUL estimation has also an important role in the management of
product reuse and recycle which has strategic impacts on energy consumption, raw
material use, pollution, and landfill. The reused products must have sufficient long
lives left among others to be able to be reused. This puts the importance of the
estimation of RUL beyond CBM and prognostics and health management because
of the green issues associated. As a consequence, developing RUL prognosis
methods is much desired for health management of degrading systems to prevent
sudden failure and reduce the safety risk. In the past four decades, valuable con-
tributions to prognostics in reliability field have been made. This book is intended
to summarize the research results studied mainly by the authors in the past decade.

This book introduces the main ideas of data-driven remaining useful life prog-
nosis techniques, with an emphasis on stochastic models, methods, and applica-
tions. It gives a thorough survey of new methods that have been developed in the
recent years and demonstrates them with examples. To the knowledge of the
authors, all major aspects of RUL prognosis are treated for the first time in a single
book from a common viewpoint. With the presentation of RUL prognosis methods
for degrading systems, the book provides novel materials that have not yet been
described in monographs or textbooks.

This monograph consists of four parts:

• Part I: Introduction, Degradation Data Acquisition and Evaluation.
Advances in data-driven RUL prognosis techniques are reviewed. As funda-
mental issues for data-driven RUL prognosis, methods of how to acquiring the
degradation data and how to evaluate the usability of the acquired data are
presented.

• Part II: Prognostic Techniques for Linear Degrading Systems. Methods for
adaptive RUL prognosis, exact RUL prognosis solution, RUL prognosis with
multiple kinds of variability for linear degrading systems are presented and the
methods are demonstrated by case studies.

• Part III: Prognostic Techniques for Nonlinear Degrading Systems. Methods
for nonlinear degradation modeling, adaptive RUL prognosis, nonlinear RUL
prognosis under multiple sources of variability, residual storage life prognosis
with switching systems for nonlinear degrading systems are presented and the
methods are demonstrated by case studies.

• Part IV: Applications of Prognostic Information. This part discusses the
applications of prognostic information such as mission reliability estimation,
condition-based replacement, spare parts forecasting, and joint optimization of
spare part ordering and replacement.

As each of the models used requires its own mathematical background and the
methods based on these models follow different lines of thinking, the book cannot
present the methods for all details. The aim is to give the readers a broad view of the
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field and provide them with bibliographical notes for further reading. A further
reason for the different depth with which the chapters tackle the RUL prognosis
problems is given by the status of research. In the introductory parts of all chapters,
the problems to be solved are posed in a framework that is familiar to practicing
engineers. They describe the new ideas and concepts of RUL prognosis in an
intuitive way, before these ideas are brought into a strict mathematical form.
Examples illustrate the applicability of the methods. Bibliographical notes at the
end of each chapter point to the origins of the presented ideas and the current
research lines. The evaluation of the methods and the application studies should
help the readers to assess the available methods and the limits of the present
knowledge about RUL prognosis with respect to their particular field of application.

Together with four parts, the book is composed of 16 chapters. Chapter 1 is
devoted to an introduction to advances in data-driven RUL prognosis techniques.
Chapter 2 considers the problem of planning repeated degradation test for
degrading products with three-source variability. In Chap. 3, the attention is paid to
specifying measurement errors for required lifetime estimation performance so as to
evaluate the data usability. A linear degradation model with a recursive filter
algorithm and Bayesian updating is presented to estimate the PDF of the RUL in
Chap. 4. Chapter 5 derives the exact and closed-form solution of RUL prognosis for
linear degrading systems. Chapter 6 presents a Wiener-process-based degradation
modeling framework for RUL estimation with three-source variability. In Chap. 7,
a diffusion process-based model was presented to characterize the dynamics and
nonlinearity of degradation processes, and the corresponding RUL distribution is
formulated. The results in Chap. 7 are further extended to an age- and
state-dependent case in Chap. 8. In Chap. 9, an adaptive and nonlinear prognostic
model is presented to estimate the RUL using the history of the observed data to
date. Chapter 10 develops a real-time RUL estimation method based on a state
space model considering that the degradation process is hidden and nonlinear.
Chapter 11 presents a general nonlinear diffusion process-based model to estimate
the RUL with the temporal variability, unit-to-unit variability, and measurement
variability. In Chap. 12, the problem of predicting RSL for a class of systems with
operation state switches is concerned. Chapter 13 applies the prognostic informa-
tion to reliability estimation of phased-mission systems. In Chap. 14, a real-time
variable cost-based maintenance model is presented based on nonlinear prognostic
information. Chapter 15 presents an adaptive spare parts demand forecasting
method based on degradation modeling of the CM data. In Chap. 16, a new
sequential maintenance and inventory model is developed to consider the effects of
both expectation of the maintenance cost and its variability under prognostic
information.

In preparing the book, efforts have been made to maintain a balance between the
required theoretical and mathematical rigor in the exposition of the methods and the
clarity in the illustration of the numerical examples and practical applications. For
this reason, this book can serve well as a reference to both reliability and risk analysis
researchers and engineers. Furthermore, sufficient references leading to further
studies are cited at the end of each chapter. This book will serve as a textbook and

Preface vii



reference book for graduate students and researchers in reliability and maintenance.
Although the book is self-explanatory, a standard background in probability theory,
mathematical statistics, and stochastic processes is recommended.

Finally, we wish to thank Profs. Wenbin Wang, Donghua Zhou, and Michael
Pecht for their cooperation and valuable discussions. In addition, it is with sincere
appreciation that we thank the support by National Nature Science Foundation of
China under Grant 61174030, 61374126, 61473094, 61573076, 61573366, and the
NSF of Shaanxi Province of China under grant 2015JQ6235.

Xi’an, China Xiao-Sheng Si
July 2016 Zheng-Xin Zhang

Chang-Hua Hu
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Chapter 1
Advances in Data-Driven RUL Prognosis
Techniques

1.1 Introduction

Prognosis and health management (PHM) has drawn increasing attention and gained
deepening recognition and widening applications during the past decades [1–4].
Actually, the initial health and usage inspection system was fist equipped in the
early helicopters of US military and the synthetically health management philosophy
was presented for spacecraft in the 1970s. Recently, the comprehensive solution
for system performance prognosis and maintenance has been achieved in the Joint
Strike Fighter F-35 project [5]. Further, the ability of PHM has already been listed
by the Department of Defense (DOD) of United states as one of the essential norms
for weapon system purchasing. This shows the significant implication of PHM in
military fields. On the other side, industrial practice indicates that PHM technology
can effectively reduce the maintenance cost, improve the reliability and guarantee
the completion of tasks of the system [6, 7]. Research institutes including NASA
[8], University of Maryland [6] and George’s University [9], as well as commercial
companies such as Boeing have launched a great deal of theoretical and applied
research works about PHM technology. The PHM conference has been successfully
organized and held by IEEE Reliability Society in Shenzhen, Macau, Beijing, Rome,
and Zhangjiajie respectively, Beijing in six consecutive years since 2010.

Remaining useful life (RUL) estimation, offering guidance for sequential man-
agement involving inspection schedule, maintenance, replacement and spare parts
ordering, has been considered as the kernel technology of PHM, and the focus of
current research in the field of reliability also. According to Petch’s classical mono-
graph about PHM technology [6], methods for RUL estimation can be classified
into three kinds: namely physical model-based methods, data-driven methods and
their combinations. However, with the development of industry and the continuing
extension of human exploring activities, the complexity of a system, together with
the diversity and uncertainty of its operating environments, continues to increase,
which results in extreme difficulties in constructing physical models capturing the
system and its operating circumvents. Meanwhile, data-driven methods, including

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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artificial intelligence-based methods and statistical data-based methods have become
an effective avenue to evaluate reliability and estimate RUL, especially for vital sys-
tems with high reliability and long lifetime. Artificial intelligence based methods
can hardly provide a probability density function (PDF) estimate capturing stochas-
tic and uncertain characteristics of the RUL, while this desire is a natural result for
stochastic data-driven methods [10]. To address the uncertainty of prognosis, we
mean statistic data-driven methods as data-driven methods throughout this chapter.
According to the observability of underlying degradation process, Si et al. provided
an review on data-driven methods for both direct and indirect observed degrada-
tion data, introducing many common methods including Gamma processes, Wiener
processes, Hidden (semi-) Markov models, stochastic regression models, stochastic
filtering-based models and covariate hazard-based models, from the perspectives of
applying procedure, merits and drawbacks [11]. While being satisfactory for RUL
estimation under each specific applying condition, these methods exhibit some limits
in cases with heterogeneity from the inner states or the external operating conditions
of systems.

Heterogeneity is widespread in the inner states of the system and the related work-
ing environments. Examples involve that a weapon system may experience various
operating conditions, saying storage, inspection, transport, and maintenance during
its life cycle due to different tasks; that a manufacture system produces different
products under different workloads; and that even systems from the same category
may exhibit various degrading paths in the same environment. The performance
degradation of a system is a result of interactions of both inner deterioration and
working environment of the system, indicating a need for incorporating the hetero-
geneity into degradation modeling, to achieve a more accurate RUL estimation. For
particular heterogeneity, such as the unit-to-unit variability, changing working con-
ditions and periodic tasks, many recent advances in RUL estimation have appeared.
However, to the best of the authors’ knowledge, there is still no review regarding
degradation modeling and RUL estimation for systems with heterogeneity. There-
fore, this chapter tries the best to fill this gap.

Toward the end of this chapter, three kinds of heterogeneity are considered consec-
utively: the unit-to-unit variability for systems from the same category, the variability
in time-varying operating conditions, and the diversity of tasks and workloads of sys-
tem during their life cycles. The first kind of variability describes the differences in
degradation processes of units from the same category, while the second represents
noninform working conditions related to the degradation, such as the time-varying,
multi-state and stochastic working environments or random shocks. The third kind of
heterogeneity captures the influence of changes in tasks and management activities
involving inspection, maintenance, etc. Accordingly, this chapter classifies methods
addressing degradation modeling and RUL estimation with heterogeneity into three
kinds, each of which considers one kind of heterogeneity introduced above and con-
sists of some subclassifications. The taxonomy of RUL estimation approaches for
systems with heterogeneity is illustrated in Fig. 1.1.

The remainder of the chapter is structured as follows: Section 1.2 summarizes
methods considering unit-to-unit variability, saying degradation models with random
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..

Fig. 1.1 Taxonomy of RUL estimation approaches for system under heterogeneity

effect In Sect. 1.3 methods considering the impact of the working conditions are
provided. Methods for incorporating the influence of diversity in tasks and workloads
are reviewed in Sect. 1.4. Section 1.5 concludes the chapter and provides several
possible directions for future studies.

1.2 Methods Considering Unit-to-Unit Variability

A large number of experiments and engineering phenomena show that systems of the
same category, even from one batch degrade differently from one another in perfor-
mance. This kind of difference in degradation is usually defined as the unit-to-unit
variability, due to the variability in inner structures of the considered systems, as
well as the diversity in their working environment. Commonly, models with random
effects are employed to capture the unit-to-unit variability, when we model the degra-
dation process and estimate the RUL. The most typical way to do so is to specify
some parameters of the model as random variables governed by distributions with
computing convenience, presenting the individuality in degradation processes from
different units and leave the rest of parameters as constants describing the univer-
sality in degradation of systems from the same category or batch. In the following,
random coefficients regression models and stochastic process models with random
coefficients of this kind are discussed, respectively.
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1.2.1 Random Coefficients Regression Models

Random effects first appeared in random coefficients regression models. In the most
frequently cited paper about degradation modeling and RUL estimate [12], Lu and
Meeker described the random coefficients regression model in a general form as

X (ti j ) = g(ti j ;φ, θ) + ε,

where X (ti j ) is the amount of the degradation of the i th device in the j th inspecting
time ti j , the fixed coefficients φ and the random coefficients θ are, respectively, used
to characterize the universality and individuality in degradation of different systems,
and is the random noise.

Random coefficients regression models have been extended, developed and
applied widely in many areas, in which a series of extended works presented by
Gebraeel et al. are included [13–15] Son et al. compared various kinds of RUL
estimation method based on random coefficients regression models [16]. Suk and
Paul proposed a nonlinear random coefficients regression method for degradation
data [17], and applied the model to the degradation of the vacuum fluorescent tube
display. To improve the accuracy of parameter estimation, Weaver and Meeker also
studied the optimal design of repeated measures degradation studies, and the method
to design accelerated repeated degradation studies [18, 19]. A procedure deciding the
minimum sample size and the minimum times of systematic sampling for each item
to achieve an anticipant accuracy of estimation (large sample approximate variance)
has been provided in their works.

However, according to Wang’s analysis in [20], the assumptions of random coef-
ficient regression models result in several limitations, involving the need for more
historical degradation data from different systems of the same category, the difficulty
in capturing the time-varying dynamics of systems and the independency between
random noise with time.

1.2.2 Stochastic Process Models with Random Coefficients

Incorporating random coefficients into stochastic degradation process-based mod-
els enables both considerations of time-varying dynamics of an individual sys-
tem, and description of unit-to-unit variability, and thus has been favored by many
researchers. Suppose that the degradation of a system is modeled by a stochastic
process {X (t); t ≤ 0, θ ,ϑ}, with constant parameters θ and random parameters ϑ .
Under the concept of first passage time (FPT), the RUL of the system conditional on
the observation X (tk) at time tk is defined as

Lk := inf {lk : X (tk + lk) ≥ ω|X (tk) < ω},

where is a preset constant failure threshold.
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Lawless proposed a Gamma process-based model containing the covariates and
random effects, and applied it to degradation modeling and RUL estimation [21].
When fitting the semi-parametric Gamma process to degradation data, Ye et al.
also took the random effects into consideration. Further, the unit-to-unit variability
was captured using random parameters following some particular distributions in
recent degradation models based on Inverse Gaussian process [22, 23]. The same
specifications addressing differences in the degradation process of systems from the
same category were used in the application of Inverse Gaussian process for systems
with monotonous degradation by Wang [24] and Ye et al. [25]. For nonmonotonic
degradation processes with fluctuations, Wang proposed a Wiener degradation model
with random effects [26]. Si et al. presented a degradation path-based RUL estimation
method with exact closed form solution of the estimated PDF of the RUL in linear
and exponential cases, which also incorporated the random effects. Peng and Zeng
analyzed the misspecification of linear degradation model in the framework of Wiener
process with random drift coefficient [26]. Similarly, Si et al. [27] and Wang et al. [28]
set some parameters in their methods as normally distributed random variables, when
modeling nonlinear diffusion degradation process and additive hybrid degradation
process, respectively. From results in the existing literature, stochastic process models
with random effects can effectively improve the estimation accuracy and extend the
applications of the initial degradation models, in both cases of monotonous and
nonmonotonous degradation processes no matter linear or nonlinear.

In the industrial applications, the main flaw of degradation models with random
effects is the complexity in computation. Therefore, the primary concern choosing the
random parameters and their distribution models is the convenience of calculation.
Normally distributed random variables are with high frequency in the related litera-
ture. For example, in Tseng and Yu [29], Lu and Meeker [12], Gebraeel [13], Si [30],
all selected models with random variables following Normal distribution to charac-
terize unit-to-unit variability. As for some particular degradation models, parameters
subjected to special forms of distributions are preferred. Wang utilized Gamma dis-
tributions to mode the drift and diffusion coefficients in the Wiener degradation
model [26], and Ye el al. also used gamma distributed parameters when construct-
ing semi-parametric Gamma degradation process. These choices are made due to
the purposes of computing convenience. The misspecifications of such distributions
are considered by some researchers and some nonparametric distributions based on
observations are recommended [31–34]. However, explicit results of the estimated
RUL can hardly be derived when nonparametric distributions are used. Besides, the
corresponding computation is always complicated, which makes it inadequate for
real-time RUL estimation. Therefore, it is a challenge to reasonably choose random
parameters and their distributions that cannot only capture the unit-to-unit variability
but also benefit computation, when using degradation models with random effects.
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1.3 Methods Considering Impact of Heterogeneity
in Working Environment

1.3.1 Methods Based on Stochastic Filtering

As early as 1979, Sarma et al. estimated health state of aerospace engine using
Kalman Filter (KF) technology, and achieved a maintenance decision optimization
based on the estimated results [35]. Afterwards, Wang and Christer [], Batzel and
Swanson [], proposed different state evaluation and RUL estimation methods, applied
successfully to electromagnetic induction smelting furnaces, aeronautical batteries
and other industrial systems, based on the construction of state-space models. As
for the nonlinear and nonGaussian state-space models, Extended KF, Benes Filter,
Multiple Model Filter and Particle Filter based methods for health state and RUL esti-
mation, have been successively proposed [36–40]. When the impact of heterogeneity
is incorporated into stochastic filter-based methods, two kinds of sub methods can
be referred to, namely semi-stochastic filter based methods and adaptive parameter
based methods.

Ability to handle unobservable degradation is an advantage of stochastic filter
based methods, while the failure threshold of the unobservable degradation can hardly
be specified. In this connection, the lifetime of a system is directly defined as a state
in the state-space model by Wang and Christ, and the length of time interval between
two consecutive inspections is treated as the decrease of the lifetime. As such, RUL
estimation method based on stochastic filter was proposed in [20] through construct-
ing a stochastic relationship between the condition monitoring data and the lifetime
of the system. This original method has been extended to cases where the operat-
ing environments are considered, by establishing the stochastic relationship between
lifetime with the condition monitoring information and the operating environments
simultaneously [41].

In another class of approaches for degradation modeling, some important para-
meters are expanded as state of a state-space model, which is utilized to describe
dynamics in parameters. These parameters are adaptive to the changing environmen-
tal variables and updated jointly online with the healthy state of the system. As a
result, the updated states and parameters are substituted to obtain a new estimation
of RUL. Wang and Mattgew set the drift coefficient in Wiener process as an adaptive
parameter, which will be updated through KF technology once new observations are
available [42]. Inspired by [42], Si et al. proposed a Wiener degradation model with
nonlinear drift coefficient function, which also makes some parameter adaptive to
the observed data [43, 44]. In this chapter concerning models for RUL estimation
under three sources of variability, the drift coefficient was also treated as an adaptive
parameter and expanded to a state in the state-space model describing the degra-
dation of the system, and was updated with the degradation level on-line [45]. The
successful application of this method in the RUL estimation of an inertial navigation
system has shown much superiority of such method.
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The best advantage of such stochastic filter based RUL estimation methods lies
in that the parameters and the accordingly RUL estimation can be updated with the
newly observed condition monitoring information. Furthermore, the dynamics in the
degradation process and the probable measurement errors are taken into considera-
tion, which makes it suitable for indirectly observable degradation process. However,
these methods have a premise in common that an explicit state-space model must
be constructed, which may be impossible in some cases. Another limitation is that
the RUL estimation is obtained without consideration of the possible future changes
in the degradation. In addition, the assumption in the semi-stochastic filter based
method that there is a deterministic equal relationship between the reduction of life-
time and the inspection interval may not hold in many cases, especially when there
are changes in the operating environments of the workloads of the system.

1.3.2 Multi-stage Degradation Models

Multi-stage degradation models are proposed to handle the period differences existing
in the degradation process. In Wang’s two stage degradation model, the degradation
data after the defect point were used to estimate the parameters in the degradation
model and predict the RUL of the system [46]. In order to evaluate the remaining
storage lifetime of a system, Feng el al. proposed a multi-stage Wiener degrada-
tion model in [47], where some related works were listed. These works include the
nonhomogeneous Poisson process which can be used to analyse time-varying fail-
ure rate of software, the nonlinear model with random coefficients which is applied
to the multi-state nonmonotonic degradation process of hardware, the multi-stage
linear regression model, the multi-stage linear stochastic process model, and so on.
Li and Pham studied the reliability modeling problem of multi-state degrading sys-
tems, under the interaction of multi competing failure modes and random shocks
[48]. The common shared by these models is the presence of change points, such
as the defect point in two-stage model and the starting/finish points of each stage.
Generally, the unknown locations of these change points have to be determined by
selecting appropriate detection methods before model identification and RUL esti-
mation. This problem has been considered as highlight but also aporia. Currently, the
maximum likelihood estimation, stochastic filtering, and control charts are the most
popular methods to estimate the change points in multi-stage degradation models.
Thus, the accuracy of change points estimate has direct influence on the accuracy
of the RUL estimation. Another popular multi-stage degradation process for RUL
estimation is the Markovian model. To model the hidden degradation process, Hid-
den Markovian Model (HMM) was first introduced to RUL estimation and condition
based maintenance (CBM) [49]. On this basis, Dong et al. proposed the RUL esti-
mation framework by using Hidden semi-Markov Models (HsMM), which extends
the exponential assumption of state sojourn time to more general situations [50].
He and Dong extended the work in [50] and obtained RUL estimation through a
comprehensive consideration of sojourn time in each state which has been modeled
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by a single HsMM [51]. Prognosis of both performance and RUL were achieved in
[52] by a combination of HsMM and AR model for time series data. Giorgio, Guida
and Pulcini considered the age- and state-dependency of the degradation process
in the framework of Markovian degradation model [53, 54]. A very good result
was obtained when the proposed models were applied to the degradation process of
marine engine cylinder.

The proposition of these models improves the accuracy of degradation modeling,
and enriches the selections of models for different degradation processes. However,
almost all multi-stage degradation models face the problem of determining the num-
ber of degradation stages, and a large amount of training data as well as a complex
computation procedure are needed for parameter estimation. Further, instead of a
derivable analytical solution to the PDF estimate of the RUL, a time-consuming
simulation based methods have to be executed. In addition, the RUL estimation in
multi-stage degradation models is based on the information since the latest change
point. Such an estimation of RUL is accurate if there will be no change occur in the
future time of the system. In more practical situations with possible change points
in the future, severe bias will be introduced into the RUL estimation if using such
estimation mechanism, i.e., ignoring the possible change points in the future. To
tackle this problem, the possible change points in the future should be considered in
multi-stage degradation processing modeling and RUL estimation.

1.3.3 Covariate Hazards Model

Factors that affect degradation in performance of systems are defined as covariates
in engineering pactive. The classical model for lifetime analysis, named proportion
hazards model, is the most widely used ones in the fields of RUL estimation, reliability
analysis/evaluation, decision-making and optimization on maintenances, etc. The
existing works related to hazards models have been reviewed in [55]. The description
of the system failure rate is the core of the proportional hazards model, and also the
key for reliability assessment and RUL estimation. Failure rate in the proportional
hazards model usually consists of the product of a reference failure rate function
h0(t) and the covariate function ψ(β z(t)),

h(t |z(t)) = h0(t)ψ(β z(t)),

where z(t) are the covariate variable, β are the regression coefficients which can be
estimated using historical lifetime data or censored lifetime data of the system from
the same category. Proportional intensities model and proportional covariates model,
developed from the proportional hazards model, are also popular models for RUL
estimation [].

In heterogeneous working environments, the failure rate of the system will be
affected. Ye et al. studied the influence of heterogeneity in the working conditions
on the estimation of the RUL, based on the analysis of accelerated life test [56].
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A system may experience fixed, time-varying, and even stochastic environmental
conditions and the corresponding covariates may also be constants, time-varying or
even random variables. In order to characterize the influence of random covariates on
the failure rates in the proportional hazard models, researchers have considered using
some stochastic process to model the time-varying covariates, and incorporating
the modeled covariates into the proportion hazard models. For example, Markov
chains, which can naturally describe the operating process of a system, are the most
frequently used process to model the changing procedure of covariates [57–59].
A HMM with a known state transition law was utilized to model the stochastic
degradation process, and the formula to calculate the mean RUL was derived in [60].
Lu and Liu studied the relationship between failure rates and the dynamic working
environment [61]. In their research, the changing covariates were modeled by a two
states (normal/severe) Markov Chain, as such, failure rate functions are changing
with operation function, and the lifetime of the system can then be determined by its
working conditions.

Although their strong explanatory property makes covariate hazard models dom-
inant both in theory and application researches, this kind of method does have some
inborn limitations, which have been summarized by Si et al. in [11]. Furthermore,
some difficulties should be solved before the practical applications of this kind of
methods. First, with the development of high reliability and small amount systems,
the lifetime data required for estimating parameters β and reference failure rate func-
tion h0(t) are difficult and expensive to obtain. Second, it is hard to determine the
form of covariate function when systems become complex.

1.3.4 Degradation Models Involving Random Shocks

During the degradation process, a system may suffer various kinds of shocks, which
will impact the performance of the system as well as its underlying degradation
process. Typically, there are five different types of random shock models existing in
the literature [62]: (i) extreme shock model: the system fails when the size of a shock is
beyond a specified threshold value; (ii) cumulative shocks model: a system fails when
the accumulated damage of shocks is beyond a critical level; (iii) m-shock model:
a system failures after suffering m shocks whose sizes are greater than a critical
level; (iv) run shock model: failure occurs when there is a series of n consecutive
shocks that are greater than a threshold; and (v) shock model: a system experiences
failure when the inter-arrival time of two sequential shocks is less than a threshold.
As for reliability modeling and RUL estimation under random shocks, there have
been a number of studies including [63, 64] to which we can refer. Random shocks,
whose influences on the performance of a system are addressed in this section,
are regarded as heterogeneity in the working environment. In general, failure is
a result from the interaction and competition of the performance degradation and
external random shocks [65–67]. Poison process (homogeneous/nonhomogeneous)
[68], Markov Chains [69], and the phase-type distribution [70, 71] have all been
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used to describe the arriving process of random shocks. Models for degradation
processes with random shocks can be divided into two categories here, according to
the existing of interdependency between the continuous degradation processes with
random shocks.

Degradation processes and random shocks are supposed to be independent of
the first type of models. Klutke and Yang first proposed an availability model for
the system under interaction of degradation and random shocks [65]. Afterward,
Huang and Askin analyzed and constructed a reliability model for systems under the
competing impact of the degradation process and sudden failure [72]. Li and Pham
proposed a reliability model for a system suffering two types of degradation and a type
of random shocks [73]. Chen and Li assumed that from the external environment the
degrading system may experience two types of random shocks, i.e., fatal or nonfatal
[74]. An optimal maintenance strategy was proposed under a further assumption that
system’s tolerance of the total number of nonfatal shocks decreases subjected to the
times of maintenance. A common underlying assumption of the works in [65, 72–
74] is that degradation processes causing softer failures and random shocks leading
to hard failures are independent from each other, and no mutual influence between
degradation and shocks exists.

The interactions between shocks and degradations are considered in the second
type of models. When studying the reliability and maintenance model for the system
under competing degradation process and random shocks, Wang and Pham supposed
that fatal shocks caused a direct failure of the system while nonfatal shocks resulted
in abrupt increases in the degradation level [75]. The interdependency of soft failure
caused by degradation and the hard failure caused by random shocks was included in
Peng’s work about reliability modeling [76]. Liu et al. considered the relationships
between the failure rate of a system with age, degradation level and their interactions
in the degradation model [64]. Recently, Koosha studied the influence of various
types of random shocks on the degradation processes of the system and supposed
that the level of degradation process jumped once a shock came while the degradation
rate changed only after a particular type random shock [62]. A reliability model for
dependent competing failure processes with changing degradation rate was then
proposed based on this dependency of degradation process on random shocks.

The primary drawbacks of using such kind of methods are the following: (1) Lots
of existing works incorporated random shocks to the linear degradation process,
while degradation processes of actual systems are often nonlinear. To be more prac-
tical, the influence of random shocks on nonlinear degradation processes should
be considered, which has seldom been done except [76, 77]. (2) As for discretely
inspected system, the time and influence amplitude of random shocks can hardly be
measured directly, which may introduce extreme difficulties in model identification
and parameter estimation. (3) In cases where the dependency between degradation
processes with random shocks is considered, attention has been focused on the influ-
ence of random rocks on (levels and rates) degradation process, while researches
about impact of degradation on random shocks and the interdependency between
each other are rarely reported except for [77, 78]. (4) Random shocks in degradation
models are assumed to be negative, causing the increase in degradation level and
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even the failure of the system. However, there exist some shocks improving the sys-
tem’s performance, e.g., the state-of-health regeneration phenomena in lithium-ion
battery systems. As such, this kind of shock should be further considered into the
degradation process in the future.

1.4 Methods Considering the Impact of Tasks
and Workloads

1.4.1 Degradation Modeling for Systems with Dynamic
Workloads

Due to the diversity and randomness in the operating environments and workloads of
systems, the characteristic of degradation varies with age throughout the whole life-
time cycle. If the dynamic operating model of the system’s workload is constructed
scientifically and incorporated into the degradation model reasonably, a more accu-
rate estimation of the RUL will be achieved.

During the industrial applications, some systems change their working state in
several different working modes, corresponding to which are the different workloads
and various degradation processes. For example, a missile weapon system with an
extremely long storage before being launched may experience different working
states involving storage, transportation, inspection and maintenance during its ser-
vice. Studies have shown that, due to influences of temperature, humidity and human
factors in the storage conditions, the performance of gyroscopes installed in an inertial
navigation system (INS) exhibit some decreasing trends, which will be accelerated
by each electrifying inspection, after some time of storage [79]. Moreover, the states
switching of the system is a stochastic process, because of the uncertainty in the
coming of different tasks or missions A continuous-time Markov model (CTMM)
with finite state is a natural selection to describe such a stochastic operating process
[80, 81]. In literature, CTMM was used to capture the time-varying random working
conditions of a system in Jeffrey and Steven’s stochastic models for degradation-
based reliability [82]. Si el al. also utilized two-state CTMM to represent the states
switching process between storage and usage, and the operating model was suc-
cessfully applied to estimate the remaining storage life (RSL) of gyroscopes in INS
[83]. Hawkes proposed a reliability assessment model based on the CTMM mod-
eling of working condition switches. Huynh modeled changing working conditions
using CTMM and incorporated the results into the decision-making framework for
adaptive CBM decisions [84]. Another focus when the dynamics of the workloads
are of concern is to establish the relationship between the operating conditions and
the degradation process of the system. This relationship is usually supposed to be
totally known or at least particular functions with unknown parameters which can
be estimated by using the observations of both operating conditions and degradation
process. Jeffery pointed out that this relationship varies case-by-vase and should be
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determined according to the specific characteristics of the device [82]. When Wiener
process was used as the degradation model, Si el al. assigned different drift coef-
ficient values for the system in the state of usage and storage, respectively [83].
Besides, Arrhenius model and Eying model are frequently used to represent the
relation between the degradation and working environments for electromechanical
systems.

It is worth noting that the existing methods suffer some limitations. On one hand,
the primary limit of CTMM is that the sojourn time in each state is exponentially
distributed, which may be incompatible with the facts in practical applications in
industry. To overcome this shortcoming, a semi-Markov model can be employed.
Besides, when the operating information cannot be recorded directly, the according
HMM and HsMM should be used to model the operation process of the system. On
the other hand, with more and more complex structures of systems, the relationship
between the degradation with operating conditions can be neither characterized by the
simple existing laws, nor constructed through physical analysis, which may restrict
the application of this kind of methods.

1.4.2 Degradation Modeling for System with Maintenances

Maintenance is an effective way to remove faults, reduce failure rates and improve
the reliability throughout the lifetime of the system. Scientific and reasonable mainte-
nance schedule can efficiently reduce the operating costs and the risks of the system,
which also works for degrading systems [85]. Degradation modeling and mainte-
nance activities of systems are closely related. On the one hand, the results of relia-
bility evaluation and RUL estimation based on the degradation data offer the health
evaluation information required for scheduling maintenance activities. On the other
hand, maintenances improve the performance of the system and thus change the
degradation path. To extend the application of the degradation model and improve
the accuracy of RUL estimation, the influence of maintenance on degradation should
be taken into consideration.

There are plenty of studies addressing preventive maintenance and optimal inspec-
tion based on degradation modeling [86–88], and some relate to the effects of main-
tenances on systems’ performance [89, 90]. Popular models include the ’repair as
new’ model and the ‘repair as old’ model [91]. Both kinds of models assume that
the performance of the system will be improved by maintenances, and the hazards
functions are used to describe the effects of maintenance activities. In the ‘repair as
new’ model, the system can be restored to the original state after a perfect main-
tenance, usually corresponding to the hazard increasing model [92]. The ‘repair as
old’ models assume that maintenances on a system are imperfect so that the perfor-
mance of the system recovers to a level worse than that of new system [93] Besides,
the system degrades until the next maintenance or failure whichever comes first.
Recently, Wang et al. employed a renewal-reward process perturbed by a diffusion,
which is also defined as a Wiener process with random jumps elsewhere, to model


