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Foreword

It is a great pleasure to present this nice book in a subject which occupied my
studies for a long while. The authors have enthusiastically started a cultural and
scientific endeavour which surely deserves a great investment in intelligence and
study. Indeed to base the continuum mechanics of porous media on variational
principles presents some relevant difficulties of mathematical nature as well as very
important issues related to applicability to real-world problems. It has been a
pleasure to see how the younger (compared with me) authors have approached the
increasingly difficult problems which they met in pursuing their scientific objective
and I hope that the discussions which we had were of some use. Actually the
mathematical description of the flow of a compressible fluid in a deformable
medium presents relevant difficulties and we cannot expect that these are solved
quickly and naturally without an important change of the conceptual paradigm used
to confront them. This monograph presents some ideas of the authors which are
framed nicely in the logic started by the papers by Biot and, more recently, by
Coussy and it seems to me that many of the presented methods are well grounded.
The state of the art is examined from the point of view of the authors and seems
rather complete, while the formulation of the mathematical models follows the
standards commonly accepted in continuum mechanics. One can expect therefore
that this work will have some beneficial effects in the scientific community inter-
ested in such a kind of problems. Indeed: (1) mathematicians will find a wealth of
interesting problems to be studied and formalised, (2) engineers may find inter-
esting methods for forecasting the behaviour of applicable mechanical systems,
(3) theoretical mechanicians may find a further evidence about the importance of
Lagrangian methods.

The enthusiasm of the authors may have led them to underestimate the relevance
of some of their simplifying assumptions: however, this is the needed approach for
attacking problems which resisted too much to the efforts of scientists. It is very
good that they did not want to follow my invitation to prudence and to circum-
spection and they finally wanted to dare to formulate models in which the
microstructure of the deformable matrix was explicitly taken into account: maybe it
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could have been done in a better way. However, it is better to start an investigation
instead of postponing it, while waiting for the moment in which the logical tools are
ripened. Indeed the logical tools will ripen under the push of the conjectures which
are presented, for instance, in this monograph. I wish to the authors a long scientific
career, which seems to me has started under the best auspices.

Rome, Italy Francesco dell’Isola
October 2016
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Preface

The main objective of this monograph is to provide a comprehensive picture of the
Variational Macroscopic Theory of Porous Media (VMTPM), a general two-phase
variational continuum theory with microstructure which we have been developing
since 2013, based on a previous theory originally proposed in 2011. Therefore, this
book contains a detailed derivation of VMTPM based on canonical arguments of
variational continuum mechanics, followed by the presentation of several appli-
cations to consolidation problems we believe to be of relevance in both geome-
chanics and biomechanics. The intent is to show the variational consistency of this
theory and to exemplify its capability to describe a large class of linear and non-
linear mechanical behaviors observed in two-phase saturated materials.

During these years, VMTPM was consolidated in the theoretical fundamentals
and corroborated with studies showing its capability of predicting established
experimental evidences as well as of encompassing paradigms of widespread use in
multiphase poroelasticity applied to geomechanics and biomechanics, such as
Terzaghi’s stress partitioning principle and Biot’s equations. Most of the results
produced by this research have been published on specialized journals and pre-
sented at international meetings in the field. Nevertheless, we believe that the
monograph format provides the ideal ground to report a revisited exposition of this
variational theory keeping uniformity of treatment and of notation.

In this contribution, we strove to provide a theoretical approach capable of
attaining a medium-independent framework, presenting to the poroelasticity com-
munity a set of equations which any other continuum theory of poroelasticity
should be downward compatible to. This is indeed rather an ambitious plan, since it
requires a general enough statement of the variational model, as well as a due
discussion of a number of limit cases which should be consistently embraced by
any candidate general medium-independent theory of this alleged kind.
Accordingly, to achieve generality, the variational theory is developed in this work
proceeding from a finite kinematic description. Just to mention a few of the limit
cases specifically addressed here, it is shown that VMTPM is downward compatible
to single-continuum elasticity when porosity achieves zero or unity limit conditions;
special care was also taken in showing that the kinematics and the mechanics
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of VMTPM consistently include the description of fluid flow outside of a porous
body, and consistently address the presence of free solid-fluid surfaces.
A discussion is also included on the extent to which the equations of this theory
apply, beyond the purely mechanical context, to media with inelastic dissipative
behavior, such as in elastoplasticity. Hence, the monograph format provided a
wider editorial template suitable to accommodate this more extended treatment.

This work was written for an intended audience including investigators in the
fields of continuum mechanics, geomechanics and biomechanics, as they will find
in this contribution not only a thorough presentation of VMTPM as a theoretical
framework for porous media, but also several of its applications of relevance for
their research.

The authors would like to acknowledge Prof. Luciano Rosati from University of
Naples Federico II, Dr. Alessandro della Corte from University of Rome La
Sapienza, and Dr. Shihab Asfour from University of Miami for their scientific
contribution to the material presented in Chaps. 1 and 5.

Finally, the authors wish to thank Prof. Francesco dell’Isola for the encour-
agement to undertake the task of writing this monographic work, for his support,
and for the many insightful discussions on the roots of continuum mechanics.

Benevento, Italy Roberto Serpieri
Miami, USA Francesco Travascio
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Chapter 1
Variational Multi-phase Continuum Theories
of Poroelasticity: A Short Retrospective

Abstract This chapter aims at offering a comprehensive overview on the family
of two-phase continuum poroelasticity theories whose formulations are based on
the application of classical variational methods, or on variants of Hamilton’s Least
Action Principle. The reader will be walked through several theoretical approaches
to poroelasticity, starting from the early use of variational concepts by Biot, then
covering the variational frameworks which employ porosity-enriched kinematics,
such as those proposed by Cowin and co-workers and by Bedford and Drumheller,
to conclude with the most recent variational theories of multiphase poroelasticity.
Arguments are provided to show that, as a widespread opinion in the poroelastic-
ity community, even the formulation of a simplest two-phase purely-mechanical
poroelastic continuum theory remains, under several respects, a still-open problem
of applied continuum mechanics, with the closure problem representing a crucial
issue where important divergencies are found among the several proposed frame-
works. Concluding remarks are finally drawn, pointing out the existence of delicate
open issues even in the subclass of variational two-phase theories of poroelasticity.

1.1 Introduction

Continuum poroelastic frameworks are employed in a wide range of applications.
Aside from their classical use in the field of soil mechanics [14, 38, 83], poroelastic
models have been garnering increasing popularity for describing the complex phe-
nomenology of biological tissue mechanics and its remodeling processes (see, for
instance, [3, 4, 22, 35, 42, 66, 70]). Several problems encountered in geomechanics
or biomechanics require, however, a multiphase description if one aims at capturing
many concurring deformation-related phenomena. For instance, in geomechanics,
soils might be partially saturated and should be consequently treated as systems
composed of three phases (i.e., solid phase, water and air) [64, 76]. Also, in the
field of biomechanics, cartilaginous tissues have been represented as mixtures of a
solid and electrically charged network of structural macromolecules embedded in an
interstitial solution of water and solutes [48, 52, 54, 84].

© Springer Nature Singapore Pte Ltd. 2017
R. Serpieri and F. Travascio, Variational Continuum Multiphase Poroelasticity,
Advanced Structured Materials 67, DOI 10.1007/978-981-10-3452-7_1
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2 1 Variational Multi-phase Continuum Theories of Poroelasticity …

Despite this broad range of applications, by comprehensively scoping the past and
recent literature related to continuum poroelasticity, one would be led to conclude
that, to date, the achievement of a unified theory of multiphase continuum poroelas-
ticity, capable of addressing multiphase systems with any range of compressibility
of the constituents, still represents a challenge of theoretical and applied continuum
mechanics, even for the simpler two-phase problem. Actually, if by the term standard
poroelasticity one refers to a generally agreed minimal closed set of mathematically
consistent and physically plausible governing equations of two-phase poroelastic-
ity, deducible from the classical principles of physics and with assessed predictive
capabilities, insightful and comprehensive survey works have highlighted that the
development of such a standard theory has been complex and controversial since
the first conception of multiphase continuum theories.

A quite complete picture of the researches conducted from the beginning of the last
century to the eighties can be gained from the historical review by De Boer [24] and
from the comprehensive survey by Bedford and Drumheller on the group of theories
frequently gathered under the term Theories of Immiscible Mixtures (TIM) [9]. The
review [24] covers, in particular, most of the continuum poroelastic approaches pro-
posed since the early Terzaghi-Fillunger dispute [38, 83], including the fundamental
theoretical contributions by Biot [14] and the compelling experimental evidences
from geomechanics [73, 81]. The review on TIMs encompasses classical theories
such as the so-called Continuum theory of mixtures contributed by Truesdell [85]
as well as poroelasticity theories deriving from generalized continuum formulations
which employ enhanced microstructural descriptions of the solid phase deformation
(such as Mindlin’s theory of linear elasticity with microstructure [67] and the micro-
morphic theory by Eringen [36]), up to multiphase theories, contemporary to the end
of the seventies and the beginning of the eighties, [7–9, 21, 43].

From the eighties onwards, theoretical research efforts have been aimed at devel-
oping general and comprehensive multiphase flow theories, driven by the increase of
advanced applications of multiphase poroelasticity in geomechanics, biomechanics,
environmental engineering and material engineering. On the one hand, research in
this area has accordingly experienced a proliferation of porous media frameworks
which have proceeded quite independently by stressing different arguments in order
to achieve the formulation of a standard macroscopic governing set of continuum
equations. On the other hand, theoretical research has kept steadily searching for a
fundamental set of governing equations achieving general consensus.

Tofind a possible logical organization of the several research efforts driven by such
a multiplication of languages from the eighties until current times, a classification of
the mainstream approaches might be attempted, without any claim of completeness
and of clean-cut separation.

A first classification criterion can be considered according to the conceptual
scheme followed for introducing enhanced mechanical features into the theory,
whereby two approaches can be identified: (1) Purely Macroscale Theories (PMT),
which are based on the introduction of kinematic descriptors or constitutive features
expressly at the macroscale level, and (2) upscaling/Averaging Theories (AT), which
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proceed by considering a detailed representation of the geometry and flow processes
at the microscale to subsequently apply space averaging techniques.

Both PMT and AT approaches are not exempt to criticisms (see for intance the
debates in [5, 46, 47]). In any case, PMT approaches are exposed to the criticism of
lacking a strong connection with the pore scale physics and of performing implicit
approximations. On the other hand, AT frameworks have been criticized for being
frequently employed in combination with assumptions justifiable only on a heuris-
tic basis, and also for lacking sometimes in their application a clear link with the
macroscopic measurement processes.

As observed in [40], purely macro-scale theories can be further classified accord-
ing to the setting employed for the definition of energy potentials of the constituent
phases. In particular, a first group of PMT approaches adopts a single macroscopic
energy potential of the whole saturated mixture from which stresses of individ-
ual phases are derived (see for instance [20]). A second group of PMT includes
approaches where the two phases are treated as superposed continua, each one
endowed with a separate energy potential. As observed by several authors, among
them Svendsen andHutter [82], the use of individual strain energy potentials for each
phase requires, alongside of linear momentum and mass balances, an additional gov-
erning equation tomatch the number of unknownfieldswith the number of equations.
This lacking equation is referred to by most authors as the closure equation.

It should be remarked that, in the specialized literature, very different solutions
to the problem of the proper identification of such missing closure equation (or of
the set of closure equations) have been proposed to construct a minimal set of gov-
erning balance equations achieving a general consistent formulation of compressible
poroelasticity. For instance, in several works, in agreement with an early indication
by Truesdell (requoted after Bedford andDrumheller) according towhom “the ‘miss-
ing principle’, surely, is a proper generalization of the Clausius-Duhem inequality”,
the closure of the poroelastic problem has been attempted by supplementing momen-
tum and mass balance equations with the second law of thermodynamics [17, 49,
76]. In [17], the closure of the problem has been also attempted by supplying the
governing equations with the momentum of momentum balance (tracing back to
Cosserat’s theory [19, 37]) and by further including evolution equations of volume
fractions similar to [32]. Further approaches deployed to achieve the closure of the
biphasic problem have been proposed by incorporating a saturation constraint in the
entropy inequality, together with the use of an incompressibility hypothesis and of a
Lagrangian multiplier [24, 82]. Also, in [31], a multiplicative decomposition of the
strain tensor has been considered in combination with moment of momentum bal-
ance. Among several other solutions proposed for the closure problem, Albers and
Wilmański, upon adding porosity as an additional independent kinematic descriptor
field, have investigated, as candidate closure equations, a postulated porosity balance
equation and an equation representing an integrability condition for the deformation
of the solid skeleton [2, 88].More recently, a geometric saturation constraint has also
been considered, combined with a multiplicative decomposition of the deformation
gradient, by de Boer [16].



4 1 Variational Multi-phase Continuum Theories of Poroelasticity …

The above highlighted diverging solutions given to the closure problem by differ-
ent research groups motivates the opinion, widely spread indeed in the multiphase
poroelasticity community, that even the simpler two-phase purely-mechanical prob-
lem of poroelasticity remains to date an open problem of continuummechanics. This
opinion is well represented by thewords ofDeBoer: “the necessity to attack the prob-
lem of developing a consistent general poroelasticity theory is still existent” [16],
and it has been more recently remarked also by Lopatnikov and Gillespie [61] “... in
spite of a tremendous number of publications in this field, the discussion continues
about physical background of the poroelastic theory. Even the form of basic govern-
ing equations are sufficiently different [...] in frame of different approaches that one
can find in literature. It seems that there is no final agreement about consistency of
proposed different approaches”.

The objective of the present chapter is to provide an updated survey on the family
of two-phase continuum poroelasticity theories which can be identified to be of
variational type and to be based on a purely macroscale formulation (PMT). The
survey reported in this chapter retraces the review on variational multiphase theories
reported in [80] and is mainly intended to provide a scientific background for the
subsequent chapters where a variational multiphase theory is proposed.

The reason for paying special attention to variational theories is that we share the
opinion that variational statements are privileged means for the continuum descrip-
tion of physical phenomena ensuring “a natural and rigorously correct way to think
of [...] continuum physics” [74]. Far from being only a matter of formal elegance and
consistency, the minimization principle built in variational approaches is also very
convenient as a natural ground for the development of advanced numerical integra-
tion schemes for multiphase problems. Actually, as the minimization automatically
provides theories inweak formwhose discretization naturally leads to Finite Element
(FE) formulations, variational methods appear to be suited for developing equations
prone to robust numerical integration. This is especially true in presence of high-
order differential terms, such as those characteristically stemming from generalized
continuum theories andmultiphase theories, especiallywhen high-regularity interpo-
lations are invoked. This has been recently shown in different contexts, in particular,
when one desires to deal with complex geometries by invoking isogeometric analysis
(see e.g., [18, 23, 51, 58, 69]).

The survey herein reported, refraining from pursuing a comprehensive updated
review of the whole class and variants of the currently available porous media mul-
tiphase frameworks (what would indeed represent a major bibliographical review
effort) restricts the attention to the subclass of those two-phase and multi-phase con-
tinuum poroelasticity theories whose formulations are based on the application of
differently named declinations and variants of classical variational methods (Prin-
ciple of Virtual Powers, Principle of Virtual Works, extended Hamilton-Rayleigh
principle, etc.), all ultimately stemming from Hamilton’s Least Action Principle [10,
27, 56, 68]. Attention is primarily payed on those theoretical works which share a
specific focus on solidmechanics. This survey recalls also fewworkswhich, although
not properly variational, employ, at least in part, some variational concepts to mul-
tiphase continuum solid mechanics.
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To keep the number of pages of this monograph limited, this chapter does not
include further importantworkswheremore elaborated concepts have been applied to
themultiphase poroelastic problem, such as the dependency of the energy functionals
upon higher-order deformation and density gradients, [25, 44, 79]. Further important
theoretical contributions which, although having a variational content, are primarily
focused on fluid mechanics, e.g., [41, 45], are also not included in the present review.

A final remark concerns the notation employed in the mathematical expressions
reported in this chapter. We deliberately decided to leave the number of recalled
equations and symbols to a minimum. Also, in reviewing some equations, we pre-
ferred to preserve a coherent and uniform notation, even though this required, in
some cases, the modification of the original format of some equations. All the rela-
tions in the present chapter were however intended to be a faithful rendering of the
original ones in the cited papers. These choices were made necessary to deal with the
fact that, especially among pioneering works, substantially different notations and
conventions are employed.

1.2 Variational Theories from the 70s to the 80s

An early use of variational concepts in the derivation of a mixture theory has been
claimed by Truesdell [87] (p. 567) to trace back to Duhem [33].

It should also be recalled that even the seminal andvery popular theory of poroelas-
ticity by Biot [13–15], although partly developed also with the aid of definition of
stress measures and elastic relations based on intuitive (and sometimes heuristic)
mechanical considerations [6], was subsequently framed into a quasi-static isother-
mal variational framework [11]whose equilibriumequations are obtained proceeding
from the statement of a principle of virtual works. Later, this framework was further
extended to account for nonisothermal deformations and to incorporate dynamics
[12].

Specifically, in [11], variational concepts are applied proceeding from the con-
sideration of an ‘isothermal free energy density function’. This function is defined
to be dependent upon the finite strain tensor of the solid phase and on a further state
descriptor m which is the total mass of fluid added during deformation in the pores
of the specimen. It should be remarked that the possibility of defining a proper vari-
ational theory combined with the choice of including m among the descriptors has
been questioned by several authors. Indeed, it has been observed, for instance by
Wilmański [89], that it is not possible to construct a true variational principle since,
for openmechanical systemswheremass is not fixed,m is a nonequilibrium variable.

Other formulations appeared in the seventies which combine some variational
ideas with postulated momentum balance equations for deriving multiphase porous
media theories are those in [1, 53]. In particular, in [53], the employed kinematic
descriptors are the densities and the deformation gradients of each phase, and a
variational postulate is proposed to obtain the linear momentum balance equations
introduced by Truesdell [86].
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1.2.1 Cowin’s Theory

The multiphase theories of mixtures by Nunziato and Walsh [72] and by Passman
[75] can be also stated to have a partly variational character. Such frameworks turn
out to be extensions of the continuum theory for granular materials by Goodman and
Cowin [43], and exploit the idea of adding the volume fraction of the solid phase as
an additional kinematic continuum scalar descriptor. In the above mentioned works
an additional balance scalar equation, proposed by Goodman and Cowin [43] and
termed equation of balance of equilibrated force, is considered to pair the number
of unknown fields with the number of governing PDEs, incremented by one due to
the addition of this scalar descriptor.

While the formulation by Goodman and Cowin had not been originarily pre-
sented, in [43], in a variational guise as it contained ad-hoc modified forms of mass
balance and ad-hoc modified momentum and energy balances, the same authors in
a subsequent study, [21], were able show that the equation denominated ‘balance
of equilibrated forces’ can be actually derived by a postulated variational principle
encompassing the dependence of a stored energy density function upon the solid
volume fraction, the true density of the solid porous phase ρ̂(s), and upon the solid
volume fraction φ(s) and its space gradient φ(s)∇.

However, it might still be remarked that such restated variational theory does
not appear to be a standard one. In particular, Eq. (13) therein presents a postulated
condition, directly expressed in the form of first-variations, which contains two pos-
tulated generalized stress quantities, H , l, termed self-equilibrated stress system and
self-equilibrated body force, respectively. Also, in this theory the stress tensor of the
solid phase is not defined as a quantity work-associated with the symmetric part of
the displacement gradient, being instead introduced as a quantity work-associated
with the solid true density ρ̂(s).

1.2.2 Mindlin’s Variational Single-Phase Theory

Mindlin’s single-phase continuum theory of materials with microstructure [67],
although not directly applied by Mindlin to multiphase problems, has a promi-
nent importance in the formulation of multiphase theories, as it has laid the ground
for several subsequent consistent developments, on a variational basis, of multi-
phase poroelastic continuum frameworks which, similar to the works of the previous
section, have made use of porosity, and volume fractions, as additional kinematic
descriptors.

In [67], the equations of motion are derived via Hamilton’s principle:

δ

∫ t2

t1

(T − V )d t +
∫ t2

t1

δW d t = 0, (1.1)
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where t1 and t2 are two arbitrarily assigned time instants, T is the kinetic energy,
V is the internal potential energy. The term δW in (1.1) synthetically comprehends
the virtual work of external body forces, external traction vectors, generalized body
forces and generalized surface forces (referred to as double forces).

Mindlin’s theory is quite general and very well known, indeed, since it has set the
basis for several important formulations of generalized continua. InMindlin’s frame-
work a macroscopic second-order tensor field, the microdeformation, is added as a
further kinematic descriptor complementing the displacement field. Next, a vectorial
linear momentum balance is derived expressing the stationarity of (1.1) with respect
to the displacement field, and additional scalar equations are derived expressing
stationarity with respect to the independent components of the microdeformation.

The strain measures of this theory are the standard strain tensor, defined as the
symmetric part of the gradient of the displacement field, together with two additional
strainmeasure fields related to themicrodeformation: themicrodeformation gradient,
and the so-called relative deformation field, defined as the difference between the
gradient of the displacement and the microdeformation. On this basis, the strain
energy turns out to be a homogeneous quadratic function of the strain tensor, of the
gradient of the microdeformation, and of the relative deformation field.

1.2.3 The Variational Theory of Immiscible and Structured
Mixtures by Bedford and Drumheller

Advances in the derivation of variational theories of multiphase porous media and
structured mixtures were provided by Bedford and Drumheller. In their works [7–9],
these authors extended the original Mindlin’s ideas of single-continuum framework
of microstructured continua and the approaches for the variational treatment of a
single continuum in solid and fluid mechanics found in [34, 39, 50, 55, 57, 74]
to derive the balance equations for porous multiphase problems by means of the
Hamilton’s principle.

These authors assume, in particular in [8], that the mechanical response of the
generic phase ξ (with ξ ∈ {1, . . . , N } and where N is the number of phases) is
defined by a density of strain energy ψ which is only dependent on the true density
ρ̂(ξ), related to the relevant apparent density ρ̄(ξ) by the usual relation:

ρ̂(ξ) = ρ̄(ξ)

φ(ξ)
, (1.2)

where φ(ξ) is the volume fraction of the generic ξ -th phase. In the subsequent work
[7] this conceptual scheme is enhanced encompassing a dependence of ψ upon ρ̂(ξ)

and upon the (infinitesimal) strain tensor ε.
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The primary descriptors of this formulation are φ(ξ) and ρ̂(ξ), together with the
placement field χ (ξ) which operates the association x(ξ) = χ (ξ)

(
X(ξ)

)
between the

current position x(ξ) of phase ξ and its reference material position X(ξ). In agree-
ment with Leech [57], the least-Action condition is written integrating over a fixed
reference volume domain containing a fixed mass of mixture.

It should be noted that, in this formulation, the primary descriptors are not uncon-
strained fields. In fact, φ(ξ), ρ̂(ξ), and χ (ξ) are constrained by the mass balance:

J (ξ)ρ̄(ξ) = ρ̄
(ξ)
0 (1.3)

and by the saturation condition:

N∑
ξ=1

φ(ξ) = 1. (1.4)

In compliance with (1.3) and (1.4), the variations δφ(ξ), δρ̂(ξ) and δx(ξ) are also
constrained to each other. Such constraints are included via the addition of (1.3) and
(1.4) into (1.1) with the aid of Lagrange multipliers λ and μξ . The resulting equation
has the format:

δ

∫ t2

t1

(T − V )d t +
∫ t2

t1

δW d t+

+
∫ t2

t1

⎡
⎣ N∑

ξ=1

∫
Ω

μξδ

(
J (ξ) − φ

(ξ)
0 ρ̂

(ξ)
0

φ(ξ)ρ̂(ξ)

)
dV0 −

∫
Ω

λδ

⎛
⎝ N∑

ξ=1

φ(ξ)

⎞
⎠

∣∣∣∣∣∣
x

dV0

⎤
⎦ d t = 0.

(1.5)
The physical interpretation of parameters λ and μξ has been discussed [7]: based

on the standard notion of Lagrange multipliers as generalized forces ensuring the
constraint to be satisfied, and to some considerations on pressure force balances,
the authors interpret λ as an interface pressure between constituents, and obtain for

μξ the relationship μξ = p(ξ)φ(ξ)

J (ξ)
, where p(ξ) indicates the pressure of the ξ -th

constituent.
It should be remarked that the mechanical consistency of the choice of incorpo-

rating of the effect of constraints in a variational framework has been subjected to
debate andobjections between researchers. In the review [9],Bedford andDrumheller
recall a criticism by Truesdell and Toupin who observed that incorporating the effect
of constraints in variational principles “... is a somewhat dubious blessing” [87].
Bedford and Drumheller rebutted that the volume fraction constraint does not entail
ill-posedness issues, and remarked that the admissibility and usefulness of the volume
fraction constraint in multiphase theories can be standardly accepted as a continuum
mechanical analogue to the treatment of connections between rigid bodies in the
variational description of the mechanics of these rigid systems.


