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Foreword

Terrorism is one of the serious threats to international peace and security that we

face in this decade. No nation can consider itself immune from the dangers it poses,

and no society can remain disengaged from the efforts to combat it.

The term counterterrorism refers to the techniques, strategies, and tactics used in

the fight against terrorism. Counterterrorism efforts involve many segments of soci-

ety, especially governmental agencies including the police, military, and intelligence

agencies (both domestic and international). The goal of counterterrorism efforts is

to not only detect and prevent potential future acts but also to assist in the response

to events that have already occurred.

A terrorist cell usually forms very quietly and then grows in a pattern – span-

ning international borders, oceans, and hemispheres. Surprising to many, an effec-

tive “weapon”, just as quiet – mathematics – can serve as a powerful tool to combat

terrorism, providing the ability to connect the dots and reveal the organizational

pattern of something so sinister.

The events of 9/11 instantly changed perceptions of the words terrorist and net-
work, especially in the United States. The international community was confronted

with the need to tackle a threat which was not confined to a discreet physical lo-

cation. This is a particular challenge to the standard instruments for projecting the

legal authority of states and their power to uphold public safety. As demonstrated by

the events of the 9/11 attack, we know that terrorist attacks can happen anywhere.

It is clear that the terrorists operate in networks, with members distributed widely

across the globe. To fight such criminals, we need to understand the new “terrain”:

networks – how they are formed, how they evolve, and how they operate.

The case for the development of mathematical methods and tools to assist in-

telligence and law enforcement officials is undeniable. The intelligence community

is faced with the overwhelming tasks of gleaning critical information from vast ar-

rays of disparate data, choosing the best forms of gathering information, developing

new data sources and setting up personnel to effectively function in adverse circum-

stances. Each of these difficult tasks demands an intensive effort on behalf of the

mathematical community to develop techniques and tools to assist in the asymmet-

ric confrontation with secretive terrorist networks.
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vi Foreword

The important role of mathematics in the scientific advances of the last century,

from advanced computing to lasers and optical communications to medical diag-

nosis, is now widely recognized. The central role of mathematical principles and

techniques in assisting intelligence and law enforcement officials is equally striking.

From new cryptographic strategies to fast data processing techniques, mathematical

ideas have provided the critical link.

We are now faced with an extraordinary situation in the global fight against ter-

rorism, and this book seeks to encourage the mathematical community to bring its

full capabilities to bear in responding to this challenge. It presents the most cur-

rent research from mathematicians and computer scientists from around the world

aimed at developing strategies to support counterterrorism and enhance homeland

security. These new methods are more important now than ever in order to glean the

maximal possible benefit from the tremendous amount of information that has been

gathered since 2001 regarding terrorist cells and individuals potentially planning

future attacks.

I am confident that this book will help to advance the discourse, and enable its

insights to be shared among a broad range of researchers, policy makers, politi-

cians, and the members of intelligence and law enforcement agencies. The articles

the book contains can help create momentum in the effort to transform theoretical

techniques and strategies into concrete results on the ground.

Finally, I congratulate Nasrullah Memon, co-editors of the book, and the authors

for their substantial efforts to address one of the most important crises faced by the

international community today.

Brussels, January 2009 Gilles de Kerchove

Gilles de Kerchove is the EU Counterterrorism Coordinator and Law Professor at the
Catholic University of Louvain and the Free University of Brussels.
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Mathematical Methods in Counterterrorism:
Tools and Techniques for a New Challenge

David L. Hicks, Nasrullah Memon, Jonathan D. Farley, and Torben Rosenørn

1 Introduction

Throughout the years mathematics has served as the most basic and fundamental

tool employed by scientists and researchers to study and describe a wide variety

of fields and phenomena. One of the most important practical application areas of

mathematics has been for national defense and security purposes. For example, dur-

ing the Second World War, the mathematical principles underlying game theory and

cryptography played a very important role in military planning. Since that time, it

has become clear that mathematics has an important role to play in securing victory

in any global conflict, including the struggle faced by national security and law en-

forcement officials in the fight against those engaged in terrorism and other illicit

activities.

Recent events of the past decade have produced an increased interest in and focus

upon the area of counterterrorism by a broad range of scholars, including mathe-

maticians. At the same time, government decision makers have often been skeptical

about mathematics and statistics, even while faced with the considerable challenges

of sifting through enormous amounts of data that might hold critically important

clues. Realizing that policy makers were not always receptive, the mathematical
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community has pondered about how best to put what they knew to work in building

a more secure world. They felt especially qualified to help decision makers see the

important patterns in the haystack of data before them and detect the most important

and relevant anomalies.

Though governments have begun to engage the research community through

grants and collaborative opportunities, across the sciences, and in particular within

the fields of mathematics and statistics, the interesting problems and viable method-

ologies are still at a very early and speculative stage. The recently increased interest

in counterterrorism has driven the research focus towards revisiting and strength-

ening the foundations necessary to build tools and design techniques capable of

meeting the new challenges and producing more accurate results. This book pro-

vides a look at some of the latest research results in a variety of specialty topics that

are central to this area.

2 Organization

This volume is composed of 21 contributions authored by some of the most promi-

nent researchers currently focused on the application of mathematical methods to

counterterrorism. The contributions span a wide variety of technical areas within

this research field. In this book they have been organized into the five categories

of network analysis, forecasting, communication/interpretation, behavior, and game

theory. The remainder of this section provides a brief overview of the contributions

in each of those categories.

Section 1: Network Analysis. The first section of the book begins with a con-

tribution by Brantingham, Glässer, Jackson, and Vajihollahi. The authors describe

their work on the development of a comprehensive framework and tool to support

the mathematical and computational modeling of criminal behavior. They focus

on criminal activities in urban environments, but also seek to extend the approach

beyond conventional areas and support the application of computational thinking

and social simulations to the analysis process in the area of counterterrorism. The

next contribution in this section is from Skillicorn and discusses methods to obtain

knowledge from graphs that are used to represent and study adversarial settings. It

describes that, while graphs are appropriate for use in such analyses, they can also

be more difficult to analyse than more traditional representations, and this article

presents practical methods to help understand the structures these graphs contain.

The section continues with a contribution from McGough that examines the mod-

eling of terrorist cells. The focus is on discussing and determining the strength of

terrorist cell structures, and using the partially order set model and algorithms to

do so. The next contribution in the first section is from Zaidi, Ishaque, and Levis.

It describes an approach to combine and apply temporal knowledge representation

and reasoning techniques to criminal forensics. An emphasis is placed on answer-

ing questions concerning time sensitive aspects of criminal or terrorist activities.

The section concludes with a contribution by Farley that examines the structure of
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the “perfect” terrorist cell. In particular it examines two theoretical questions related

to the number of cutsets that exist in partially ordered sets that are used to represent

that structure.

Section 2: Forecasting. A contribution by Gutfraind begins the second section of

the book. It describes a dynamic model that is capable of representing the relevant

factors involved as a terrorist organization changes over time. The approach enables

those factors and their effects to be considered together, in a quantitative way, rather

than individually, and for predictions to be made about the organization based on

these analyses. In the next contribution of the section, Rhodes describes methods for

constructing social networks of covert groups. The focus is on the use of Bayesian

inference techniques to infer missing links, making the approach suitable for cases

where only limited and incomplete data is available.

The following contribution, by Pinker, develops a model to represent the uncer-

tainty in the timing and location of terror attacks. A framework is then described for

guiding the issuance of terror warnings and the deployment of resources to combat

attacks, and balancing the tradeoffs between these two defensive mechanisms. In the

final contribution of the section, Ferry, Lo, Ahearn, and Phillips consider detection

theory from the traditional military domain and its relationship to network theory. In

particular they describe ways in which the detection theory approach might be used

to leverage results from network theory as a way to find and track terrorist activities.

Section 3: Communication/Interpretation. The third section begins with a con-

tribution by Hartnell and Gunther that focuses on communication in covert groups.

A graph is used as a theoretical model to study the tradeoff between the compet-

ing demands of ease of communication and the potential danger for betrayal when

members are captured, and a number of related questions. The section continues

with a contribution from Woo that examines constraints on terrorist network plots

imposed by the intelligence gathering efforts of law enforcement services. It also

describes some of the implications inherent in both the intelligence gathering level

and the methods that are utilized, and their relation to the important campaign to

win the hearts and minds of the larger population.

In the following contribution, Lindelauf, Borm, and Hamers examine a theo-

retical framework for analysing homogeneous networks, especially in terms of the

competing factors of secrecy and operational efficiency. An evaluation and compar-

ison are provided of the different network topologies and their suitability for use

for different graph orders. In the final contribution of the section, Ozgul, Erdem,

and Bowerman describe two models for representing terrorist groups and analysing

terrorist groups. The models are evaluated and compared in terms of their ability to

support the semi-supervised detection of covert groups.

Section 4: Behavior. The fourth section starts with a contribution by Sliva, Sub-

rahmanian, Martinez, and Simari in which they examine group behavior. Moving

forward from previous research efforts focused on models derived mainly from past

group behavior, they describe an architecture and algorithms to predict the condi-

tions under which a group is likely to change their behavior. The next contribution

in this section is from Baccara and Bar-Isaac and discusses the impact of methods of

interrogation on terror networks. They investigate how the legal limits of interroga-
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tion to extract information under which authorities operate relate to and have impact

on the degree to which terrorist organizations diffuse or distribute their information

in the attempt to increase the efficiency of the organization.

The section continues with a contribution from McCormick and Owen that dis-

cusses state-terrorist coalitions. They examine the factors of mutual advantage and

mutual trust, how they change and evolve over time, and the impact these changes

have upon the behavior of the partners in this type of coalition, and in particular

the circumstances that might lead to continued cooperation, or the dissolution of the

partnership. A contribution by McGough concludes the section with a look at the

modeling of the behavior of terrorist groups. A mathematical model is described to

represent terrorist groups and their behavior, and then it is evaluated through ex-

perimentation to test its projections, shedding light on the question of theory versus

reality.

Section 5: Game Theory. A contribution by Melese begins the fifth section of the

book. It describes a game theory approach to simulate terrorist cells. The principal

question that is considered in the analysis examines under what conditions a threat

of preemptive action by a world leader might successfully deter terrorist organiza-

tions or a sovereign state from the acquisition of weapons of mass destruction. The

section continues with a contribution from Arce and Sandler in which they examine

continuous policy models and describe an extension of them including differentiable

payoff functions. They also consider the relationship between terrorist actions and

government responses, and the effects they might have on the future support for

terrorist organizations, within a game-theoretic context.

In the final contribution of the fifth section, Shapiro and Siegel discuss funding

aspects of terrorist organizations. A model of a hierarchical terror organization is

used to examine the implications of an arrangement in which leaders delegate fi-

nancial and logistical tasks to middlemen, and, for security reasons, are not able to

closely monitor their actions. A series of policy implications based on the analysis

are also discussed.

Section 6: History of the Conference on Mathematical Methods in Counterter-
rorism. A contribution from Farley in the last section provides a look at the back-

ground and history of the Mathematical Methods in Counterterrorism conference

series along with some personal observations.

3 Conclusion and Acknowledgements

The science of counterterrorism is still unfolding. As demonstrated by the variety

of contributions to this volume, researchers welcome the opportunity to influence

and shape the landscape of this important emerging area. The task before them is

a challenging one, nothing less than to develop a new kind of mathematics, one

that can equip national security and law enforcement officials with the tools they

urgently need to face a new challenge – a new kind of war.
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Modeling Criminal Activity in
Urban Landscapes

Patricia Brantingham, Uwe Glässer, Piper Jackson, and Mona Vajihollahi

Abstract Computational and mathematical methods arguably have an enormous po-

tential for serving practical needs in crime analysis and prevention by offering novel

tools for crime investigations and experimental platforms for evidence-based policy

making. We present a comprehensive formal framework and tool support for math-

ematical and computational modeling of criminal behavior to facilitate systematic

experimental studies of a wide range of criminal activities in urban environments.

The focus is on spatial and temporal aspects of different forms of crime, includ-

ing opportunistic and serial violent crimes. However, the proposed framework pro-

vides a basis to push beyond conventional empirical research and engage the use

of computational thinking and social simulations in the analysis of terrorism and

counter-terrorism.

1 Introduction

Innovative research in criminology and other social sciences promotes mathemati-

cal and computational methods in advanced study of social phenomena. The work

Patricia Brantingham
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presented here proposes a comprehensive framework and supporting tool environ-

ment for mathematical and computational modeling of criminal behavior to facili-

tate systematic experimental studies of a wide range of criminal activities in urban

environments. The focus is on uncovering patterns in the spacial and temporal char-

acteristics of physical crime in urban environments, including forms of crime that

are opportunistic in nature, like burglary, robbery, motor vehicle theft, vandalism,

and also serial violent offenses such as homicide; they can involve multiple offend-

ers and multiple targets. The principles of environmental criminalogy [1] suggest

that criminal events can best be understood in the context of people’s movements in

the course of their everyday lives: offenders commit offenses near places they spend

most of their time, and victims are victimized near places where they spend most

of their time. This line of theory and supporting research argues that location of

crimes is determined by perception of the environment – separating good criminal

opportunities from bad risks [2] – and implies there is a set of patterns and/or rules

that govern the working of a social system: one composed of criminals, victims and

targets. They interact with each other and their environment, and their movements

are influenced by the city’s underlying land use patterns and high activity nodes

like shopping centers and entertainment districts, street networks and transportation

systems.

Computational methods and tools arguably have an enormous potential for serv-

ing practical needs in crime analysis and prevention, namely as instruments in crime

investigations [3], as an experimental platform for supporting evidence-based pol-

icy making [4], and in experimental studies to analyze and validate theories of crime

[5, 6]. The approach presented here proposes a formal modeling framework to sys-

tematically develop and validate discrete event models of criminal activities; specif-

ically, it focuses on describing dynamic properties of the underlying social system in

abstract mathematical terms so as to provide a reliable basis for computational meth-

ods in crime analysis and prevention. Besides training and sandbox experiments, our

approach aims at intelligent decision support systems and advanced analysis tools

for reasoning about likely scenarios and dealing with ’what-if’ questions in exper-

imental studies. Building on a cross-disciplinary R&D project in Computational

Criminology [7], called Mastermind [8], we describe here the essential design as-

pects of the Mastermind system architecture in abstract functional and operational

terms, emphasizing the underlying principles of mathematical modeling in an in-

teractive design and validation context. The description presented here extends and

complements our previous work [8, 9, 10] in several ways, opening up new applica-

tion fields.

Mastermind is jointly managed by the Institute for Canadian Urban Research

Studies (ICURS) in Criminology and the Software Technology Lab in Computing

Science at SFU and has partly been funded by the RCMP “E” Division over the past

three years. Crossing boundaries of research disciplines, the Mastermind project is

linked to a wide range of research areas and application fields spanning criminology,

computing, mathematics, psychology and systems science. Not surprisingly, any at-

tempt to integrate such diverse views within a unifying computational framework

in a coherent and consistent manner faces a number of challenging problems to be
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addressed. A particular intriguing aspect is finding the right level of accuracy and

detail to model real-world phenomena so that the resulting observable behavior is

meaningful, at least in a probabilistic sense. This is closely related to the question

of how micro-level behavior affects macro-level behavior and the observable phe-

nomena under study. Another challenging aspect is the question of how to draw the

boundaries of any such system, clearly delineating the system from the environment

into which it is embedded: that is, what needs be included in the model and what is

irrelevant in terms of the resulting behavior of interest?

The nature of modeling something as complex and diverse as crime is an ongoing

and potentially open-ended process that demands for an interactive modeling ap-

proach – one that embraces frequent change and extensions through robustness and

scalability of the underlying mathematical framework. The formal approach taken

here builds on modeling and validation concepts using the Abstract State Machine
(ASM) [11, 12] multiagent modeling paradigm together with CoreASM [13, 14],

an open source modeling tool suite1, as the formal basis for semantic modeling and

rapid prototyping of mobile agents and their routine commuting activities through a

virtual city they inhabit.

The remainder of this chapter is structured as follows. Section 2 discusses funda-

mental concepts in Computational Criminology and specific challenges and needs

in mathematical and computational modeling of complex social systems. Section 3

introduces the mathematical framework and the tool environment used in the Mas-

termind project. Section 4 illustrates the main building blocks for modeling criminal

activity, namely the representation of the urban environment and the agent architec-

ture, and also summarizes some lessons learned from this project. Section 5 con-

cludes the chapter.

2 Background and Motivation

This section briefly reviews the benefits of applying computational methods to

studying crime. We first explain how this new way of thinking and problem solving

benefits researchers in criminology. We then discuss related practical requirements

of developing software tools in a collaborative research environment.

2.1 Computational Criminology

The use of computational techniques has become well-established and valuable in

advancing the boundaries of many research disciplines, such as biology and chem-

istry. Research in Criminology, like other social sciences, faces the problem of lack

of control in running experiments. Computational Criminology aims at pushing

1 CoreASM v1.0.5 is readily available at http://www.coreasm.org.
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these limits through interdisciplinary work with mathematics and computing sci-

ence. By employing novel technologies and formal methodologies, existing theories

of crime can be extended and new applications developed. Computational models

allow for running experiments in simplified artificial situations where abstraction is

used conveniently and systematically to adjust the influence of different elements

under study. This facilitates dealing with the highly complex and dynamic nature of

criminal activities. As such, beyond seeing computers as tools, computational think-
ing [15] presents a way of solving problems and designing systems in Criminology.

Conventional research in crime is empirical in nature and tends to use methods

that rely upon existing data. In order to analyze the data, mostly statistical meth-

ods are used to derive a more abstract view of the data. Nowadays, however, com-

putational methods offer a new way of thinking about the data that leads to new

perspectives and new models for analyzing the problems.

Using computer simulations to conduct experiments virtually or to analyze

“what-if” scenarios is now commonly practiced in the social sciences. The agent-

based modeling paradigm is widely used for describing social phenomena, includ-

ing criminal events, where individuals are represented by agents interacting with one

another in a given environment. Different sub-areas of crime analysis have already

benefited from the blending of criminology, computing science and mathematics

[4, 16, 17]. For a more detailed review of computational modeling approaches in

crime analysis we refer to [8].

Mathematical and computational modeling also introduces a great degree of pre-

cision. In the process of modeling (or defining) a theory of crime in abstract com-

putational and mathematical terms, any incompleteness or lack of rigor becomes

evident. This demands far more effort on the theory development side to complete

existing theories, or discard incomplete ones, or even precisely identify the limita-

tions of existing ones. This opens up new opportunities for criminologists to test the

existing theories beyond conventional means.

There is particular value in expanding the use of computational thinking and so-

cial simulations in the analysis of terrorism and counter-terrorism. Terrorism is, as

would be expected, a growing area of research in criminology where knowledge

gained about human behavior in legal and traditional illegal activities such as rob-

bery, homicide, and burglary is being expanded to include terrorist bombings, kid-

napping, execution and general vulnerability to covert actions [18, 19]. Terrorism

requires networks, exchange of information, and actions. There is a need for fitting

into normal activity patterns until the terrorist act and to maintain safe locations.

This is similar, yet different in severity, to many criminal activities where offenders

operate in normal environs and search for targets close to established time-space

patterns, with a preference for locations where the crime is acceptable or where ac-

tions by individuals are not closely watched. For example, shoplifting, motor vehicle

theft and robbery occur in high activity shopping areas where diversity is accepted.

These high activity and diverse areas are also attractors of terrorist bombing.

In particular, the development and modification of theories that cover terrorism

need to push beyond conventional empirical research and engage in methods that

allow the logical exploration of alternatives, the modification of contextual back-
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ground, including cultural and economic differences [20], the interaction between

terrorist support networks and anti-terrorism networks [21], covert and adaptive net-

works, and the ability to explore “what-if” scenarios of alternative policies, and the

dynamic nature of simulation models.

2.2 Challenges and Needs

For the social sciences, applying computational techniques helps in overcoming

some of the core limitations of studying social phenomena. Social scientists have

always been limited by the inextricability of the subject of their research from its

environment. Hence, it is difficult to study different factors influencing a phenom-

ena in isolation. Particularly for fields that fall under the umbrella of security, safety

and ethical issues can be an obstacle to innovation. For criminologists, it is very

difficult to get first-hand evidence of crimes while they are being perpetrated – an

observer would most likely be legally required to try to prevent the crime rather than

letting it take place. Developing response strategies to unpredictable and dangerous

situations is difficult to do in the field, since such situations are unpredictable and by

their nature very difficult to control. Computational methods allow us to circumvent

these problems by generating scenarios inside a virtual environment. In particular,

modeling and simulation allow us to dynamically and interactively explore our ideas

and existing knowledge.

Computational thinking about social phenomena, however, means thinking in

terms of multiple layers of abstraction [15], which facilitates a systematic study of

the phenomena by adjusting the level of detail given to the various factors under

study. Computer models of social systems simulate dynamic aspects of individual

behavior to study characteristic properties and dominant behavioral patterns of so-

cieties as a basis for reasoning about real-world phenomena. This way, one can

perform experiments as a mental exercise or by means of computer simulation, an-

alyzing possible outcomes where it is difficult, if not impossible, to observe such

outcomes in real life.

2.3 Modeling Paradigm

In the process of interactive modeling of behavioral aspects of complex social sys-

tems, one can distinguish three essential phases, namely conceptual modeling, math-
ematical modeling, and computational modeling, with several critical phase transi-

tions and feedback loops as illustrated in Fig. 1. Starting from a conceptual model

that reflects the characteristic properties of the phenomena under study in a direct

and intuitive way, as perceived by application domain experts, a discrete mathe-

matical model is derived in several steps, gradually formalizing these properties in

abstract mathematical and/or computational terms. This model is then transformed
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into an initial computational model that is executable in principle; that is, any as-

pects that have been left abstract provisionally ought to be details to be filled in

as the result of subsequent refinement steps. Ideally, any such refinement would be

restricted to just adding details as required for running experiments both to help es-

tablishing the validity of the formal representation of the conceptual model and for

further experimental studies. In reality, however, modeling is a highly iterative and

essentially non-linear process with feedback loops within and also across the various

phases, potentially affecting the design of the model in its entirety (see Fig. 1).

Conceptual
Modeling

Mathematical
Modeling

Computational
Modeling

Validation

Fig. 1 Phase transitions in social system modeling

Specifically, the role of the mathematical model is to assist in formalizing the

conceptual view of the target domain so as to provide an exact description of the

characteristic properties as a reliable basis for deriving a computational model.

Marking the transition from an informal (or semi-formal) to a formal description,

this model serves as “semantic middleware” for bridging the gap between the con-

ceptual and the computational view. As such, it provides a blueprint of the essential

understanding, allowing systematic analysis and reasoning about the initial trans-

formation step – typically, the most challenging one. Mathematical precision is es-

sential to accurately characterize the key attributes, ensuring that they are properly

established and well understood prior to actually building the computer model.

3 Mastermind Framework

Our approach to modeling complex criminal behavior in the Mastermind project

follows the modeling paradigm of Sect. 2.3, emphasizing the need for mathematical

rigour and precision. In order to accomodate the highly iterative process of mod-

eling and validation, we build on common abstraction principles of applied com-

putational logic and discrete mathematics using the Abtract State Machine method

as the underlying mathematical paradigm. This section provides an overview of the

ASM method, the CoreASM tool suite, which allows for rapid protyping, and the

Control-State Diagram editor (CSDe), which was designed to facilitate a more in-

teractive modeling approach.
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3.1 Mathematical Framework

A central question in computing science is how to precisely define the notion of al-
gorithm. Traditionally, Turing machines have been used in the study of the theory of

computation as a formal model of algorithms [22]. For semantic purposes, however,

this model is utterly inappropriate due to its fixed level of abstraction. The origin

of Abstract State Machines (formally called evolving algebras [23]) was the idea

to devise a generalized machine model so that any algorithm, never mind how ab-

stract, can be modeled at its natural level of abstraction. That is, every computation

step of the algorithm essentially has a direct counterpart (usually a single step) per-

formed by the machine model. Theoretical foundations show that both the notion of

sequential algorithm and of parallel algorithm are captured respectively by the mod-

els of sequential ASM [12] and parallel ASM [24] in the aforementioned sense. For

distributed algorithms (including concurrent and reactive systems), the distributed
ASM framework provides a generalization of the two other models that is charac-

terized by its asynchronous computation model with multiple computational agents

operating concurrently.

This section outlines the basic concepts for modeling behavioral aspects of dis-

tributed systems as abstract machine runs performed by a distributed ASM. The

description builds on common notions and structures from computational logic and

discrete mathematics. For further details, we refer to [11, 12].

3.1.1 Concurrency, Reactivity and Time

A distributed ASM, or DASM, defines the concurrent and reactive behavior of a col-

lection of autonomously operating computational agents that cooperatively perform

distributed computations. Intuitively, every computation step of the DASM involves

one or more agents, each performing a single computation step according to their

local view of a globally shared machine state. The underlying semantic model reg-

ulates interactions between agents so that potential conflicts are resolved according

to the definition of partially ordered runs [23].2

A DASM M is defined over a given vocabulary V by its program PM and a non-

empty set IM of initial states. V consists of some finite collection of symbols for

denoting the mathematical objects and their relation in the formal representation of

M, where we distinguish domain symbols, function symbols and predicate symbols.

Symbols that have a fixed interpretation regardless of the state of M are called static;

those that may have different interpretations in different states of M are called dy-
namic. A state S of M results from a valid interpretation of all the symbols in V and

constitutes a variant of a first-order structure, one in which all relations are formally

represented as Boolean-valued functions.

Concurrent control threads in an execution of PM are modeled by a dynamic

set AGENT of computational agents. This set may change dynamically over runs

2 For illustrative application examples, see also [25, 26].
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of M, as required to model a varying number of computational resources. Agents

interact with one another, and typically also with the operational environment of M,

by reading and writing shared locations of a global machine state.

PM consists of a statically defined collection of agent programs PM1
, . . . ,PMk , k≥

1, each of which defines the behavior of a certain type of agent in terms of state

transition rules. The canonical rule consists of a basic update instruction of the form

f (t1, t2, . . . , tn) := t0,

where f is an n-ary dynamic function symbol and each ti (0 ≤ i ≤ n) a term. Intu-

itively, one can perceive a dynamic function as a finite function table where each

row associates a sequence of argument values with a function value. An update in-

struction specifies a pointwise function update: an operation that replaces a function

value for specified arguments by a new value to be associated with the same ar-

guments. In general, rules are inductively defined by a number of well defined rule

constructors, allowing the composition of complex rules for describing sophisticated

behavioral patterns.

A computation of M, starting with a given initial state S0 from IM , results in a

finite or infinite sequence of consecutive state transitions of the form

S0

ΔS0−→ S1

ΔS1−→ S2

ΔS2−→ ·· · ,
such that Si+1 is obtained from Si, for i≥ 0, by firing ΔSi on Si, where ΔSi denotes a

finite set of updates computed by evaluating PM over Si. Firing an update set means

that all the updates in the set are fired simultaneously in one atomic step. The result

of firing an update set is defined if and only if the set does not contain any conflicting

(inconsistent) updates.

M interacts with a given operational environment – the part of the external world

visible to M – through actions and events observable at external interfaces, formally

represented by externally controlled functions. Intuitively, such functions are ma-

nipulated by the external world rather than agents of M. Of particular interest are

monitored functions. Such functions change their values dynamically over runs of

M, although they cannot be updated internally by agents of M. A typical example is

the abstract representation of global system time. In a given state S of M, the global

time (as measured by some external clock) is given by a monitored nullary func-

tion now taking values in a linearly ordered domain TIME ⊆ REAL. Values of now
increase monotonically over runs of M. Additionally, ′∞′ represents a distinguished

value of TIME, such that t < ∞ for all t ∈ TIME−{∞}. Finite time intervals are given

as elements of a linearly ordered domain DURATION.

The ASM concept of physical time is defined orthogonally to the concept of

state transition, flexibly supporting a wide range of time models, also including

continuous time [27]. A frequently used model is that of distributed real-time ASM

with time values ranging over positive real numbers.



Modeling Criminal Activity in Urban Landscapes 17

3.1.2 ASM Ground Models

The ASM formalism and abstraction principles are known for their versatility in

mathematical modeling of algorithms, architectures, languages, protocols and ap-

ply to virtually all kinds of sequential, parallel and distributed systems. Widely

recognized ASM applications include semantic foundations of programming lan-

guages, like JAVA [28], C# [29] and Prolog [30], industrial system design languages,

like BPEL [31], SDL [32], VHDL [33] and SystemC [34], embedded control sys-

tems [35], and wireless network architectures [36].3 Beyond hardware and software

systems, this approach has been used more recently in computational criminology

[8, 9] and for modeling and validation of aviation security [37, 38]. A driving factor

in many of the above applications is the desire to systematically reveal abstract ar-

chitectural and behavioral concepts inevitably present in every system design, how-

ever hidden they may be, so that the underlying blueprint of the functional system

requirements becomes clearly visible and can be checked and examined by analyt-

ical means based on human expertise. This idea is captured by the notion of ASM
ground model [39] as explained below.

Intuitively, a ground model serves as a precise and unambiguous foundation for

establishing the characteristic dynamic properties of a system under study in ab-

stract functional and operational terms with a suitable degree of detail that does not

compromise conceivable refinements [40]. A ground model can be inspected by an-

alytical means (verification) and empirical techniques (simulation) using machine

assistance as appropriate. Focusing on semantic rather than on syntactic aspects, the

very nature of ASM ground models facilitates the task of critically checking the

consistency, completeness and validity of the resulting behavioral description. De-

pending on the choice and representation of the ground model, the transformation

from the mathematical to a computational model can be less problematic, whereas

the validation of the outcome of the computational phase usually poses another dif-

ficult problem.

3.2 Rapid Prototyping with CoreASM

CoreASM is an open source project4 focusing on the design and development of

an extensible, executable ASM language, together with a tool environment that

supports high-level design in application-domain terms, and rapid prototyping of

executable ASM models [14, 13]. The tool environment consists of a (1) platform-

independent extensible engine for executing the language, (2) various plugins that

extend the language and the behavior of the engine, and (3) an IDE for interactive

visualization and control of simulation runs. The design of CoreASM is novel and

the underlying design principles are unprecedented among the existing executable

3 See also the ASM Research Center at http://www.asmcenter.org.
4 CoreASM is registered at http://sourceforge.net/projects/coreasm.
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ASM languages, including the most advanced ones: Asmeta [41], AsmL [42], the

ASM Workbench [43], XASM [44], and AsmGofer [45].5

The CoreASM language and tool suite specifically support the early phases of

the software and system design process, emphasizing freedom of experimentation

and the evolutionary nature of design as a creative activity. By minimizing the need

for encoding in mapping the problem space to a formal model, the language allows

writing highly abstract and concise specifications, starting with mathematically-

oriented, abstract and untyped models, gradually refining them down to more con-

crete versions with a degree of detail and precision as needed. The principle of min-

imality, in combination with the robustness of the underlying mathematical frame-

work, makes design for change feasible, effectively supporting the highly iterative

nature of modeling complex system behavior.

Executable specifications offer invaluable advantages in model-based systems

engineering, serving as a tool for design exploration and experimental validation

through simulation and testing [47]. Pertinent to our purpose, they greatly facilitate

validating a ground model by executing different scenarios and comparing the re-

sulting behavior with the behavior expected by the domain experts. In many cases,

observation of system behavior can lead to discovering new concepts or elements in

the underlying system that may have been previously neglected.

3.3 Interactive Design with Control State ASMs

One of the fundamental principles of our approach is the direct involvement of non-

computing experts in the design and development process. Arbitrary design choices

made by computing experts not intimately familiar with the social system under

study are potentially dangerous and can lead to fatal design flaws due to misconcep-

tions or oversights. However, it is usually difficult for non-computing team members

to understand the development process and especially the formal representation of

a system. Hence, it is necessary to make development as transparent as possible, for

instance, by using visual representation means, such as ASM control state diagrams
(CSD)6 as illustrated in Fig. 2. Despite similarity to the more complicated UML ac-

tivity diagrams, ASM CSDs do not require any special training to understand. Their

simplicity allows the interdisciplinary reader to focus on the content of the descrip-

tion rather than the formalism. The accessibility and ease of use of CSDs make them

an integral part of our design process. In our experience, the domain experts were

able to understand a CSD, and even suggest changes to it, regardless of their tech-

nical background. As such, CSDs act as both a means of clarifying communication

between development partners and of enabling straight-forward validation.

5 An in-depth introduction to the architecture of the CoreASM engine and its extensibility mech-
anisms is provided in [13, 46].
6 Control state ASMs provide “a normal form for UML activity diagrams and allow the designer
to define machines which below the main control structure of finite state machines provide syn-
chronous parallelism and the possibility to manipulate data structures” [11].
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Fig. 2 CSDe: A Control State Diagram editor plugin for the Eclipse development environment,
with automatic translation to CoreASM code.

We have further facilitated the involvement of non-computing experts in the de-

velopment process by the construction of an ASM Control State Diagram editor

(CSDe). This editor allows not only the construction and editing of CSDs through

a graphical interface, but also automatic translation of the diagrams into the Core-
ASM language7.

4 Mastermind: Modeling Criminal Activity

In this section, we describe the scope of the Mastermind project, its development

phases, and the core technical aspects of the Mastermind system architecture.

4.1 Overview

Mastermind is a pioneering project in Computational Criminology, employing for-

mal modeling and simulation as tools to investigate offenders’ behavior in an urban

environment. The goal is to capture the complexity and diversity of criminal be-

havior in a robust and systematic way. A variety of software development methods

were applied and constantly reviewed with respect to their usability, expressiveness

7 A diagram contains no initial state, so the code may not be immediately executable. However, it
will provide a structural foundation for an executable model.
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and effectiveness, the result of which has lead to the development of the modeling

framework presented in Sect. 2.3.

Crime is understood to be comprised of four main elements: the law, the offender,

the target and the location [1]. We construct a multi-dimensional model of crime in

order to study the interactions of these elements. Our focus is on the concepts of

environmental criminology, which argues that in spite of their complexity, criminal

events can be understood in the context of people’s movements in the course of

everyday routines [1, 48]. Therefore, we place possible offenders in an environment

they can navigate. Through their movement within this environment, they develop

mental maps that correspond to the ideas of awareness space (the places a person

knows) and activity space (the places a person regularly visits) [1, 49]. In the course

of a routine activity, the agents move from one location to another, and may visit

potential targets on the way [48]. In its core, Mastermind captures what is suggested

by crime pattern theory: crime occurs when a motivated individual encounters a

suitable target [49]. Figure 2 shows this behavior captured in terms of a control state

ASM.

The main building block of Mastermind is a robust ASM ground model devel-

oped through several iterations. To this end, we applied a simple graphical notation

for communicating the design (using CSDe) and utilized abstract executable mod-

els in early stages of design (using CoreASM). Furthermore, the ground model is

refined into more concrete models with specific details systematically added, an ex-

ample of which is the simulation model of Mastermind implemented in Java. This

version provides a responsive user interface and a simulation environment based

on real-world Geographical Information System (GIS) data. We also refined the

CoreASM executable ground model to derive specific refinements to create more

controlled experiments, which allow for a structured analysis of theories in a hypo-

thetical world. Both versions also provide visualization features which are a priority

for criminology publications.

The results of our work on the Mastermind project have been well received both

by the researchers in academia and law enforcement officials. For additional infor-

mation on the project and the results, we also refer to [8, 9] and the project website8.

Next, we describe the main components of the Mastermind architecture, highlight-

ing several key aspects.

4.2 Agent Architecture

The central component of our model is an autonomously acting entity, called a

person agent, which represents an individual living in an urban environment and

commuting between home, work, and recreation locations. Person agents navigate
within the environment and may assume different roles such as offender, victim, or

guardian; depending on the role they exhibit different behaviors.

8 http://stl.sfu.ca/projects/mastermind/


