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The Life and Work of Nikolai Vasilevski

Sergei Grudsky, Yuri Latushkin and Michael Shapiro

Nikolai Leonidovich Vasilevski was born on January 21, 1948 in Odessa, Ukraine.
His father, Leonid Semenovich Vasilevski, was a lecturer at Odessa Institute of
Civil Engineering, his mother, Maria Nikolaevna Krivtsova, was a docent at the
Department of Mathematics and Mechanics of Odessa State University.

In 1966 Nikolai graduated from Odessa High School Number 116, a school
with special emphasis in mathematics and physics, that made a big impact at his
creative and active attitude not only to mathematics, but to life in general. It was
a very selective high school accepting talented children from all over the city, and
famous for a high quality selection of teachers. A creative, nonstandard, and at the
same time highly personal approach to teaching was combined at the school with
a demanding attitude towards students. His mathematics instructor at the high
school was Tatjana Aleksandrovna Shevchenko, a talented and dedicated teacher.
The school was also famous because of its quite unusual by Soviet standards sys-
tem of self-government by the students. Quite a few graduates of the school later
became well-known scientists, and really creative researchers.

In 1966 Nikolai became a student at the Department of Mathematics and
Mechanics of Odessa State University. Already at the third year of studies, he
began his serious mathematical work under the supervision of the well-known
Soviet mathematician Georgiy Semenovich Litvinchuk. Litvinchuk was a gifted
teacher and scientific adviser. He, as anyone else, was capable of fascinating his
students by new problems which have been always interesting and up-to-date. The
weekly Odessa seminar on boundary value problems, chaired by Prof. Litvinchuk
for more than 25 years, very much influenced Nikolai Vasilevski as well as others
students of G.S. Litvinchuk.

N. Vasilevski started to work on the problem of developing the Fredholm the-
ory for a class of integral operators with nonintegrable integral kernels. In essence,
the integral kernel was the Cauchy kernel multiplied by a logarithmic factor. The
integral operators of this type lie between the singular integral operators and the
integral operators whose kernels have weak (integrable) singularities. A famous
Soviet mathematician F.D. Gakhov posted this problem in early 1950ies, and it
remained open for more than 20 years. Nikolai managed to provide a complete so-
lution in the setting which was much more general than the original. Working on
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this problem, Nikolai has demonstrated one of the main traits of his mathematical
talent: his ability to achieve a deep penetration in the core of the problem, and
to see rather unexpected connections between different theories. For instance, in
order to solve Gakhov’s Problem, Nikolai utilized the theory of singular integral
operators with coefficients having discontinuities of first kind, and the theory of
operators whose integral kernels have fixed singularities – both theories just ap-
peared at that time. The success of the young mathematician was well recognized
by a broad circle of experts working in the area of boundary value problems and
operator theory. In 1971 Nikolai was awarded the prestigious M. Ostrovskii Prize,
given to the young Ukrainian scientists for the best research work. Due to his solu-
tion of the famous problem, Nikolai quickly entered the mathematical community,
and became known to many prominent mathematicians of that time. In particular,
he was very much influenced by the his regular interactions with such outstanding
mathematicians as M.G. Krein and S.G. Mikhlin.

In 1973 N. Vasilevski defended his PhD thesis entitled “To the Noether theory
of a class of integral operators with polar-logarithmic kernels”. In the same year he
became an Assistant Professor at the Department of Mathematica and Mechanics
of Odessa State University, where he was later promoted to the rank of Associate
Professor, and, in 1989, to the rank of Full Professor.

Having received the degree, Nikolai continued his active mathematical work.
Soon, he displayed yet another side of his talent in approaching mathematical
problems: his vision and ability to use general algebraic structures in operator
theory, which, on one side, simplify the problem, and, on another, can be used in
many other problems. We will briefly describe two examples of this.

The first example is the method of orthogonal projections. In 1979, study-
ing the algebra of operators generated by the Bergman projection, and by the
operators of multiplication by piece-wise continuous functions, N. Vasilevski gave
a description of the C∗-algebra generated by two self-adjoint elements s and n
satisfying the properties s2 + n2 = e and sn + ns = 0. A simple substitution
p = (e + s− n)/2 and q = (e− s− n)/2 shows that this algebra is also generated
by two self-adjoint idempotents (orthogonal projections) p and q (and the identity
element e). During the last quarter of the past century, the latter algebra has been
rediscovered by many authors all over the world. Among all algebras generated
by orthogonal projections, the algebra generated by two projections is the only
tame algebra (excluding the trivial case of the algebra with identity generated by
one orthogonal projection). All algebras generated by three or more orthogonal
projections are known to be wild, even when the projections satisfy some addi-
tional constrains. Many model algebras arising in operator theory are generated
by orthogonal projections, and thus any information of their structure essentially
broadens the set of operator algebras admitting a reasonable description. In par-
ticular, two and more orthogonal projections naturally appear in the study of
various algebras generated by the Bergman projection and by piece-wise contin-
uous functions having two or more different limiting values at a point. Although
these projections, say, P , Q1, . . . , Qn, satisfy an extra condition Q1+ · · ·+Qn = I,
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they still generate, in general, a wild C∗-algebra. At the same time, it was shown
that the structure of the algebra just mentioned is determined by the joint prop-
erties of certain positive injective contractions Ck, k = 1, . . . , n, satisfying the
identity

∑n
k=1 Ck = I, and, therefore, the structure is determined by the structure

of the C∗-algebra generated by the contractions. The principal difference between
the case of two projections and the general case of a finite set of projections is
now completely clear: for n = 2 (and the projections P and Q + (I − Q) = I)
we have only one contraction, and the spectral theorem directly leads to the de-
sired description of the algebra. For n ≥ 2 we have to deal with the C∗-algebra
generated by a finite set of noncommuting positive injective contractions, which is
a wild problem. Fortunately, for many important cases related to concrete oper-
ator algebras, these projections have yet another special property: the operators
PQ1P, . . . , PQnP mutually commute. This property makes the respective algebra
tame, and thus it has a nice and simple description as the algebra of all n × n
matrix-valued functions that are continuous on the joint spectrum Δ of the oper-
ators PQ1P, . . . , PQnP , and have certain degeneration on the boundary of Δ.

Another notable example of the algebraic structures used and developed by
N. Vasilevski is his version of the Local Principle. The notion of locally equiva-
lent operators, and localization theory were introduced and developed by I. Si-
monenko in mid-sixtieth. According to the tradition of that time, the theory was
focused on the study of individual operators, and on the reduction of the Fred-
holm properties of an operator to local invertibility. Later, different versions of the
local principle have been elaborated by many authors, including, among others,
G.R. Allan, R. Douglas, I.Ts. Gohberg and N.Ia. Krupnik, A. Kozak, B. Silber-
mann. In spite of the fact that many of these versions are formulated in terms of
Banach- or C∗-algebras, the main result, as before, reduces invertibility (or the
Fredholm property) to local invertibility. On the other hand, at about the same
time, several papers on the description of algebras and rings in terms of continuous
sections were published by J. Dauns and K.H. Hofmann, M.J. Dupré, J.M.G. Fell,
M. Takesaki and J. Tomiyama. These two directions have been developed inde-
pendently, with no known links between the two series of papers. N. Vasilevski
was the one who proposed a local principle which gives the global description of
the algebra under study in terms of continuous sections of a certain canonically
defined C∗-bundle. This approach is based on general constructions of J. Dauns
and K.H. Hofmann, and results of J. Varela. The main contribution consists of
a deep re-comprehension of the traditional approach to the local principles uni-
fying the ideas coming from both directions mentioned above, which results in a
canonical procedure that provides the global description of the algebra under con-
sideration in terms of continuous sections of a C∗-bundle constructed by means of
local algebras.

In the eighties and even later, the main direction of the work of Nikolai
Vasilevski has been the study of multi-dimensional singular integral operators with
discontinuous coefficients. The main philosophy here was to study first algebras
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containing these operators, thus providing a solid foundation for the study of var-
ious properties (in particular, the Fredholm property) of concrete operators. The
main tool has been the described above version of the local principle. This princi-
ple was not merely used to reduce the Fredholm property to local invertibility but
also for a global description of the algebra as a whole based on the description of
the local algebras. Using this methodology, Nikolai Vasilevski obtained deep re-
sults in the theory of operators with Bergman’s kernel and piece-wise continuous
coefficients, in the theory of multi-dimensional Toeplitz operators with pseudo-
differential presymbols, in the theory of multi-dimensional Bitsadze operators, in
the theory of multi-dimensional operators with shift, etc. In 1988 N. Vasilevski
defended the Doctor of Sciences dissertation, based on these results, and entitled
“Multi-dimensional singular integral operators with discontinuous classical sym-
bols”.

Besides being a very active mathematician, N. Vasilevski has been an excel-
lent lecturer. His lectures are always clear, and sparkling, and full of humor, which
so natural for someone who grew up in Odessa, a city with a longstanding tradi-
tion of humor and fun. He was the first at Odessa State University who designed
and started to teach a class in general topology. Students happily attended his
lectures in Calculus, Real Analysis, Complex Analysis, Functional Analysis. He
has been one of the most popular professor at the Department of Mathematics
and Mechanics of Odessa State University. Nikolai is a master of presentations,
and his colleagues always enjoy his talks at conferences and seminars.

In 1992 Nikolai Vasilevski moved to Mexico. He started his career there as
an Investigator (Full Professor) at the Mathematics Department of CINVESTAV
(Centro de Investagacion y de Estudios Avansados). His appointment significantly
strengthen the department which is one of the leading mathematical centers in
Mexico. His relocation also visibly revitalized mathematical activity in the country
in the field of operator theory. Actively pursuing his own research agenda, Nikolai
also served as the organizer of several important conferences. For instance, let us
mention the (regular since 1998) annual workshop “Análisis Norte-Sur”, and the
well-known international conference IWOTA-2009. He initiated the relocation to
Mexico a number of active experts in operator theory such as Yu. Karlovich and
S. Grudsky, among others.

During his tenure in Mexico, Nikolai Vasilevski produced a sizable group of
students and younger colleagues; five of young mathematicians received PhD under
his supervision.

The contribution of N. Vasilevski in the theory of multi-dimensional singular
integral operators found its rather unexpected development in his work on quater-
nionic and Clifford analysis, published mainly with M. Shapiro in 1985–1995, start-
ing still in the Soviet Union, with the subsequent continuation during the Mexican
period of his life. Among others, the following topics have been considered: The
settings for the Riemann boundary value problem for quaternionic functions that
are taking into account both the noncommutative nature of quaternionic multi-
plication and the presence of a family of classes of hyperholomorphic functions,
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which adequately generalize the notion of holomorphic functions of one complex
variable; algebras, generated by the singular integral operators with quaternionic
Cauchy kernel and piece-wise continuous coefficients; operators with quaternion
and Clifford Bergman kernels. The Toeplitz operators in quaternion and Clifford
setting have been introduced and studied in the first time. This work found the
most favorable response and initiated dozens of citations.

During his life in Mexico, the scientific interests of Nikolai Vasilevski mainly
concentrated around the theory of Toeplitz operators on Bergman and Fock spaces.
In the end of 1990ies, N. Vasilevski discovered a quite surprising phenomenon in
the theory of Toeplitz operators on the Bergman space. Unexpectedly, there exists
a rich family of commutative C∗-algebras generated by Toeplitz operators with
non-trivial defining symbols. In 1995 B. Korenblum and K. Zhu proved that the
Toeplitz operators with radial defining symbols acting on the Bergman space over
the unit disk can be diagonalized with respect to the standard monomial basis
in the Bergman space. The C∗-algebra generated by such Toeplitz operators is
therefore obviously commutative. Four years later N. Vasilevski also showed the
commutativity of the C∗-algebra generated by the Toeplitz operators acting on
the Bergman space over the upper half-plane and with defining symbols depend-
ing only on Im z. Furthermore, he discovered the existence of a rich family of
commutative C∗-algebras of Toeplitz operators. Moreover, it turned out that the
smoothness properties of the symbols do not play any role in commutativity: the
symbols can be merely measurable. Surprisingly, everything is governed by the
geometry of the underlying manifold, the unit disk equipped with the hyperbolic
metric. The precise description of this phenomenon is as follows. Each pencil of
hyperbolic geodesics determines the set of symbols which are constant on the cor-
responding cycles, the orthogonal trajectories to geodesics forming the pencil. The
C∗-algebra generated by the Toeplitz operators with such defining symbols is com-
mutative. An important feature of such algebras is that they remain commutative
for the Toeplitz operators acting on each of the commonly considered weighted
Bergman spaces. Moreover, assuming some natural conditions on “richness” of the
classes of symbols, the following complete characterization has been obtained: A
C∗-algebra generated by the Toeplitz operators is commutative on each weighted
Bergman space if and only if the corresponding defining symbols are constant on
cycles of some pencil of hyperbolic geodesics. Apart from its own beauty, this result
reveals an extremely deep influence of the geometry of the underlying manifold on
the properties of the Toeplitz operators over the manifold. In each of the mentioned
above cases, when the algebra is commutative, a certain unitary operator has been
constructed. It reduces the corresponding Toeplitz operators to certain multiplica-
tion operators, which also allows one to describe their representations of spectral
type. This gives a powerful research tool for the subject, in particular, yielding
direct access to the majority of the important properties such as boundedness,
compactness, spectral properties, invariant subspaces, of the Toeplitz operators
under study.
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The results of the research in this directions became a part of the monograph
“Commutative Algebras of Toeplitz Operators on the Bergman Space” published
by N. Vasilevski in Birkhäuser in 2008.

Nikolai Leonidovich Vasilevski passed his sixties birthday on full speed, and
being in excellent shape. We, his friends, students, and colleagues, wish him further
success and, above all, many new interesting and successfully solved problems.
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1. Introduction and main results

Given a function a in L1 on the complex unit circle T, we denote by a� the �th
Fourier coefficient,

a� =
1
2π

∫ 2π

0

a(eix)e−i�xdx (� ∈ Z),

and by Tn(a) the n × n Toeplitz matrix (aj−k)nj,k=1. We assume that a is real-
valued, in which case the matrices Tn(a) are all Hermitian. Let

λ
(n)
1 ≤ λ(n)2 ≤ · · · ≤ λ(n)n

be the eigenvalues of Tn(a) and let

{v(n)1 , v
(n)
2 , . . . , v(n)n }

This work was partially supported by CONACYT project 80503, Mexico.
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be an orthonormal basis of eigenvectors such that Tn(a)v(n)j = λ
(n)
j v

(n)
j . The

present paper is dedicated to the asymptotic behavior of the eigenvectors v(n)j

as n→∞.

To get an idea of the kind of results we will establish, consider the function
a(eix) = 2−2 cosx. The range a(T) is the segment [0, 4]. It is well known that the
eigenvalues and eigenvectors of Tn(a) are given by

λ
(n)
j = 2− 2 cos

πj

n+ 1
, x

(n)
j =

√
2

n+ 1

(
sin

mπj

n+ 1

)n

m=1

. (1.1)

(We denote the eigenvectors in this reference case by x(n)j and reserve the notation

v
(n)
j for the general case.) Let ϕ be the function

ϕ : [0, 4]→ [0, π], ϕ(λ) = arccos
2− λ

2
.

We have ϕ(λ(n)j ) = πj/(n + 1) and hence, apart from the normalization factor√
2/(n+ 1), x(n)j,m is the value of sin(mϕ(λ)) at λ = λ

(n)
j . In other words, an

eigenvector for λ is given by (sin(mϕ(λ)))nm=1. A speculative question is whether
in the general case we can also find functions Ωm such that, at least asymptotically,
(Ωm(λ))nm=1 is an eigenvector for λ. It turns out that this is in general impossible
but that after a slight modification the answer to the question is in the affirmative.
Namely, we will prove that, under certain assumptions, there are functions Ωm,
Φm and real-valued functions σ, η such that an eigenvector for λ = λ

(n)
j is always

of the form(
Ωm(λ)+Φm(λ)+(−1)j+1e−i(n+1)σ(λ)e−iη(λ)Φn+1−m(λ)+error term

)n
m=1

. (1.2)

The error term will be shown to decrease to zero exponentially fast and uniformly
in j andm as n→∞. Moreover, we will show that Ωm(λ) is an oscillating function
of m for each fixed λ and that Φm(λ) decays exponentially fast to zero as m→∞
for each λ (which means that Φn+1−m(λ) is an exponentially increasing function
of m for each λ). Finally, it will turn out that

n∑
m=1

|Φm(λ)|2
/ n∑

m=1

|Ωm(λ)|2 = O

(
1
n

)
as n → ∞, uniformly in λ. Thus, the dominant term in (1.2) is Ωm(λ), while the
terms containing Φm(λ) and Φn+1−m(λ) may be viewed as twin babies.

If a is also an even function, a(eix) = a(e−ix) for all x, then all the matrices
Tn(a) are real and symmetric. In [4], we conjectured that then, again under addi-
tional but reasonable assumptions, the appropriately rotated extreme eigenvectors
v
(n)
j are all close to the vectors x(n)j . To be more precise, we conjectured that if

n → ∞ and j (or n − j) remains fixed, then there are complex numbers τ (n)j of
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modulus 1 such that ∥∥∥τ (n)j v
(n)
j − x(n)j

∥∥∥
2

= o(1), (1.3)

where ‖ · ‖2 is the �2 norm. Several results related to this conjecture were estab-
lished in [3] and [4]. We here prove this conjecture under assumptions that will be
specified in the following paragraph. We will even be able to show that the o(1)
in (1.3) is O(j/n) if j/n→ 0 and O(1 − j/n) if j/n→ 1.

Throughout what follows we assume that a is a Laurent polynomial

a(t) =
r∑

k=−r

akt
k (t = eix ∈ T)

with r ≥ 2, ar �= 0, and ak = a−k for all k. The last condition means that a is
real-valued on T. We assume without loss of generality that a(T) = [0,M ] with
M > 0 and that a(1) = 0 and a(eiϕ0) = M for some ϕ0 ∈ (0, 2π). We require that
the function g(x) := a(eix) is strictly increasing on (0, ϕ0) and strictly decreasing
on (ϕ0, 2π) and that the second derivatives of g at x = 0 and x = ϕ0 are nonzero.
Finally, we denote by [α, β] ⊂ [0,M ] a segment such that if λ ∈ [α, β], then the
2r − 2 zeros of the Laurent polynomial a(z) − λ that lie in C \ T are pairwise
distinct.

Note that we exclude the case r = 1, because in this case the eigenvalues
and eigenvectors of Tn(a) are explicitly available. Also notice that if r = 2, which
is the case of pentadiagonal matrices, then for every λ ∈ [0,M ] the polynomial
a(z) − λ has two zeros on T, one zero outside T, and one zero inside T. Thus,
in this situation the last requirement of the previous paragraph is automatically
satisfied for [α, β] = [0,M ].

The asymptotic behavior of the extreme eigenvalues and eigenvectors of
Tn(a), that is, of λ(n)j and v

(n)
j when j or n − j remain fixed, has been stud-

ied by several authors. As for extreme eigenvalues, the pioneering works are [7],
[9], [11], [12], [18], while recent papers on the subject include [3], [6], [8], [10], [13],
[14], [15], [19], [20]. See also the books [1] and [5]. Much less is known about the
asymptotics of the eigenvectors. Part of the results of [4] and [19] may be inter-
preted as results on the behavior of the eigenvectors “in the mean” on the one hand
and as insights into what happens if eigenvectors are replaced by pseudomodes on
the other. In [3], we investigated the asymptotics of the extreme eigenvectors of
certain Hermitian (and not necessarily banded) Toeplitz matrices. Our paper [2]
may be considered as a first step to the understanding of the asymptotic behavior
of individual inner eigenvalues of Toeplitz matrices. In the same vein, this paper
intends to understand the nature of individual eigenvectors as part of the whole,
independently of whether they are extreme or inner ones.

To state our main results, we need some notation. Let λ ∈ [0,M ]. Then there
are uniquely defined ϕ1(λ) ∈ [0, ϕ0] and ϕ2(λ) ∈ [ϕ0 − 2π, 0] such that

g(ϕ1(λ)) = g(ϕ2(λ)) = λ;
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recall that g(x) := a(eix). We put

ϕ(λ) =
ϕ1(λ)− ϕ2(λ)

2
, σ(λ) =

ϕ1(λ) + ϕ2(λ)
2

.

We have

a(z)− λ = z−r
(
arz

2r + · · ·+ (a0 − λ)zr + · · ·+ a−r

)
= arz

−r
2r∏
k=1

(z − zk(λ)),

and our assumptions imply that we can label the zeros zk(λ) so that the collection
Z(λ) of the zeros may be written as

{z1(λ), . . . , zr−1(λ), zr(λ), zr+1(λ), zr+2(λ), . . . , z2r(λ)}
= {u1(λ), . . . , ur−1(λ), eiϕ1(λ), eiϕ2(λ), 1/u1(λ), . . . , 1/ur−1(λ)} (1.4)

where |uν(λ)| > 1 for 1 ≤ ν ≤ r − 1 and each uν(λ) depends continuously on
λ ∈ [0,M ]. Here and in similar places below we write uk(λ) := uk(λ). We define
δ0 > 0 by

eδ0 = min
λ∈[0,M ]

min
1≤ν≤r−1

|uν(λ)|.

Throughout the following, δ stands for any number in (0, δ0). Further, we denote
by hλ the function

hλ(z) =
r−1∏
ν=1

(
1− z

uν(λ)

)
.

The function Θ(λ) = hλ(eiϕ1(λ))/hλ(eiϕ2(λ)) is continuous and nonzero on [0,M ]
and we have Θ(0) = Θ(M) = 1. In [2], it was shown that the closed curve

[0,M ]→ C \ {0}, λ 
→ Θ(λ)

has winding number zero. Let θ(λ) be the continuous argument of Θ(λ) for which
θ(0) = θ(M) = 0.

In [2], we proved that if n is large enough, then the function

fn : [0,M ]→ [0, (n+ 1)π], fn(λ) = (n+ 1)ϕ(λ) + θ(λ)

is bijective and increasing and that if λ(n)j,∗ is the unique solution of the equation

fn(λ(n)j,∗ ) = πj, then the eigenvalues λ(n)j satisfy

|λj − λ(n)j,∗ | ≤ K e−δn

for all j ∈ {1, . . . , n}, where K is a finite constant depending only on a. Thus, we
have

(n+ 1)ϕ(λ(n)j ) + θ(λ(n)j ) = πj +O(e−δn), (1.5)

uniformly in j ∈ {1, . . . , n}.
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Now take λ from (α, β). For j ∈ {1, . . . , n} and ν ∈ {1, . . . , r − 1}, we put

A(λ) =
eiσ(λ)

2i hλ(eiϕ1(λ))
, B(λ) =

eiσ(λ)

2i hλ(eiϕ2(λ))
,

Dν(λ) =
e2iσ(λ) sinϕ(λ)

(uν(λ)− eiϕ1(λ))(uν(λ) − eiϕ2(λ))h′λ(uν(λ))
,

Fν(λ) =
sinϕ(λ)

(uν(λ) − e−iϕ1(λ))(uν(λ)− e−iϕ2(λ))h′λ(uν(λ))

×|hλ(eiϕ1(λ))hλ(eiϕ2(λ))|
hλ(eiϕ1(λ))hλ(eiϕ2(λ))

and define the vector w(n)
j (λ) = (w(n)

j,m(λ))nm=1 by

w
(n)
j,m(λ) = A(λ)e−imϕ1(λ) −B(λ)e−imϕ2(λ)

+
r−1∑
ν=1

(
Dν(λ)

1
uν(λ)m

+ Fν(λ)
(−1)j+1e−i(n+1)σ(λ)

uν(λ)n+1−m

)
.

The assumption that zeros uν(λ) are all simple guarantees that h′(uν) �= 0. We
denote by ‖ · ‖2 and ‖ · ‖∞ the �2 and �∞ norms on Cn, respectively.

Here are our main results.

Theorem 1.1. As n→∞ and if λ(n)j ∈ (α, β),

‖w(n)
j (λ(n)j )‖22 =

n

4

(
1

|hλ(eiϕ1(λ))|2 +
1

|hλ(eiϕ2(λ))|2
)∣∣∣∣

λ=λ
(n)
j

+O(1),

uniformly in j.

Theorem 1.2. Let n → ∞ and suppose λ(n)j ∈ (α, β). Then the eigenvectors v(n)j

are of the form

v
(n)
j = τ

(n)
j

(
w
(n)
j (λ(n)j )

‖w(n)
j (λ(n)j )‖2

+O∞(e−δn)

)

where τ (n)j ∈ T and O∞(e−δn) denotes vectors ξ(n)j ∈ Cn such that ‖ξ(n)j ‖∞ ≤
Ke−δn for all j and n with some finite constant K independent of j and n.

Note that the previous theorem gives (1.2) with

Ωm(λ) = A(λ)e−imϕ1(λ) −B(λ)e−imϕ2(λ), Φm(λ) =
r−1∑
ν=1

Dν(λ)
uν(λ)m

,

e−iη(λ) =
|hλ(eiϕ1(λ))hλ(eiϕ2(λ))|
hλ(eiϕ1(λ))hλ(eiϕ2(λ))

.
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Things can be a little simplified for symmetric matrices. Thus, suppose all
ak are real and ak = a−k for all k. We will show that then {u1(λ), . . . , ur−1(λ)} =
{u1(λ), . . . , ur−1(λ)}. Put

Qν(λ) =
|hλ(eiϕ(λ))| sinϕ(λ)

(uν(λ)− eiϕ(λ))(uν(λ)− e−iϕ(λ))h′λ(uν(λ))

and let y(n)j (λ) = (y(n)j,m(λ))nm=1 be given by

y
(n)
j,m(λ) = sin

(
mϕ(λ) +

θ(λ)
2

)
−

r−1∑
ν=1

Qν(λ)
(

1
uν(λ)m

+
(−1)j+1

uν(λ)n+1−m

)
. (1.6)

Theorem 1.3. Let n→∞ and suppose λ(n)j ∈ (α, β). If ak = a−k for all k, then

‖y(n)j (λ(n)j )‖22 =
n

2
+O(1)

uniformly in j, and the eigenvectors v(n)j are of the form

v
(n)
j = τ

(n)
j

(
y
(n)
j (λ(n)j )

‖y(n)j (λ(n)j )‖2
+O∞(e−δn)

)

where τ (n)j ∈ T and O∞(e−δn) is as in the previous theorem.

Let J be the n× n matrix with ones on the counterdiagonal and zeros else-
where. Thus, (Jv)m = vn+1−m. A vector v is called symmetric if Jv = v and
skew-symmetric if Jv = −v. Trench [17] showed that the eigenvectors v(n)1 , v

(n)
3 , . . .

are all symmetric and that the eigenvectors v(n)2 , v
(n)
4 , . . . are all skew-symmetric.

From (1.5) we infer that

sin

(
(n+ 1−m)ϕ(λ(n)j ) +

θ(λ(n)j )
2

)

= (−1)j+1 sin

(
mϕ(λ(n)j ) +

θ(λ(n)j )
2

)
+O(e−δn)

and hence (1.6) implies that

(Jy(n)j (λ(n)j ))m = (−1)j+1y
(n)
j,m(λ(n)j ) +O(e−δn).

Consequently, apart from the term O(e−δn), the vectors y(n)j (λ(n)j ) are symmetric
for j = 1, 3, . . . and skew-symmetric for j = 2, 4, . . .. This is in complete accordance
with Trench’s result.

Due to (1.5), we also have

sin

(
mϕ(λ(n)j ) +

θ(λ(n)j )
2

)
= sin

((
m− n+ 1

2

)
ϕ(λ(n)j )

)
+O(e−δn).


