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Preface

Itis likely that the demand for embedded computing systems with low energy
dissipation will continue to increase. This book is concerned with the develop-
ment and validation of techniques that allow an effective automated design of
energy-efficient embedded systems. Special emphasis is placed upon system-
level co-synthesis techniques for systems that contain dynamic voltage scalable
processors which can trade off between performance and power consumption
during run-time.

The first part of the book addresses energy minimisation of distributed em-
bedded systems through dynamic voltage scaling (DVS). A new voltage se-
lection technique for single-mode systems based on a novel energy-gradient
scaling strategy is presented. This technique exploits system idle and slack
time to reduce the power consumption, taking into account the individual task
power dissipation. Numerous benchmark experiments validate the quality of
the proposed technique in terms of energy reduction and computational com-
plexity.

The second part of the book focuses on the development of genetic algorithm-
based co-synthesis techniques (mapping and scheduling) for single-mode sys-
tems that have been specifically developed for an effective utilisation of the
voltage scaling approach introduced in the first part. The schedule optimisation
improves the execution order of system activities not only towards performance,
but also towards a high exploitation of voltage scaling to achieve energy sav-
ings. The mapping optimisation targets the distribution of system activities
across the system components to further improve the utilisation of DVS, while
satisfying hardware area constraints. Extensive experiments including a real-
life optical flow detection algorithm are conducted, and it is shown that the
proposed co-synthesis techniques can lead to high energy savings with moder-
ate computational overhead.

The third part of this book concentrates on energy minimisation of emerg-
ing distributed embedded systems that accommodate several different appli-

XV
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cations within a single device, i.e., multi-mode embedded systems. A new
co-synthesis technique for multi-mode embedded systems based on a novel
operational-mode-state-machine specification is presented. The technique in-
creases significantly the energy savings by considering the mode execution
probabilities that yields better resource sharing opportunities.

The fourth part of the book addresses dynamic voltage scaling in the con-
text of applications that expose extensive control flow. These applications are
modelled through conditional task graphs that capture control flow as well as
data flow. A quasi static scheduling technique is introduced, which guarantees
the fulfilment of imposed deadlines, while at the same time, reduces the energy
dissipation of the system through dynamic voltage scaling.

The new co-synthesis and voltage scaling techniques have been incorporated
into the prototype co-synthesis tool LOPOCOS (Low Power Co-Synthesis).
The capability of LOPOCOS in efficiently exploring the architectural design
space is demonstrated through a system-level design of a realistic smart phone
example that integrates a GSM cellular phone transcoder, an MP3 decoder, as
well as a JPEG image encoder and decoder.
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Chapter 1

INTRODUCTION

Over the last several years, the popularity of portable applications has ex-
plosively increased. Millions of people use battery-powered mobile phones,
digital cameras, MP3 players, and personal digital assistants (PDAs). To per-
form major pans of the system’s functionality, these mass products rely, to a
great extent, on sophisticated embedded computing systems with high perfor-
mance and low power dissipation. The complexity of such devices, caused by
an ever-increasing demand for functionality and feature richness, has made the
design of modern embedded systems a time-consuming and error-prone task. To
be commercially successful in a highly competitive market segment with tight
time-to-market and cost constraints, computer-based systems in mobile appli-
cations should be cheap and quick to realise, while, at the same time, consume
only a small amount of electrical power, in order to extend the battery-lifetime.
Designing such embedded systems is a challenging task.

This book addresses this problem by providing techniques and algorithms for
the automated design of energy-efficient distributed embedded systems which
have the potential to overcome traditional design techniques that neglect im-
portant energy management issues. In this context, special attention is drawn
to dynamic voltage scaling (DVS) — an energy management technique. The
main idea behind DVS is to dynamically scale the supply voltage and operational
frequency of digital circuits during run-time, in accordance to the temporal per-
formance requirements of the application. Thereby, the energy dissipation of
the circuit can be reduced by adjusting the system performance to an appropriate
level. Furthermore, the proposed synthesis techniques target the coordinated
design (co-design) of mixed hardware/software applications towards the effec-
tive exploitation of DVS, in order to achieve substantial reductions in energy.

The main aims of this chapter are to introduce the fundamental problems
that are involved in designing distributed embedded systems and to provide
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the terminology used throughout this work. The remainder of this chapter is
organised as follows. Section 1.1 outlines a typical system-level design process.
A task graph specification model, used to capture the system’s functionality, is
introduced in Section 1.2. Section 1.3 describes the individual system design
steps using some illustrative examples. Hardware and software synthesis are
briefly discussed in Section 1.4. Finally, Section 1.5 gives an overview of the
book contents.

1.1 Embedded System Design Flow

A typical embedded system, as it can be found, for example, in a smart-
phone, is shown in Figure 1.1. It consists of heterogeneous components such
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Figure 1.1. Example of a typical embedded system (smart-phone)

as software programmable processors (CPUs, DSPs) and hardware blocks (FP-
GAs, ASICs). These components are interconnected through communication
links and form a distributed architecture, such as the one shown in Figure 1.1 (a).
Analogue-to-digital converters (ADC), digital-to-analogue converters (DAC),
as well as input/output ports (I/O) allow the interaction with the environment. A
complete embedded system, however, consists additionally of application soft-
ware (Figure 1.1 (b)) that is executed on the underlying hardware architecture
(Figure 1.1(a)). Clearly, effective embedded system design demands optimisa-
tion in both hardware and software parts of the application. When designing
an embedded computing system, as part of a new product, it is common to go
through several design steps that bring a novel product idea down to its physical
realisation. This is usually referred to as system-level design flow. A possible
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and common design flow is introduced in Figure 1.2. Itis characterised by three
important design steps: system specification (Step A), co-synthesis (Step B), as
well as concurrent hardware and software synthesis (Step C). The remainder
of this section briefly outlines this design flow.

Starting from a new product idea, the first step towards a final realisation is
system specification. At this stage, the functionality of the system is captured
using different conceptual models [61] such as natural language, annotated-
graphic representations (finite state machines, data-flow graphs), or high-level
languages (VHDL, C/C++, SystemC). This design step is indicated as Step A
in Figure 1.2. Having specified the system’s functionality, the next stage in the
design flow is the co-synthesis, shown as Step B in Figure 1.2. The goal of
co-synthesis is threefold:

Architecture allocation: Firstly, an adequate target architecture needs to be
allocated, i.e., it is necessary to determine the quantity and the types of
different interconnected components that form the distributed embedded
system. Components that can be allocated are given in a predefined tech-
nology library.

Application mapping: Secondly, all parts of the system specification have
to be distributed among the allocated components, that is, tasks (function
fragments) and communications (data transfers between tasks) are uniquely
mapped to processing elements and communication links, respectively.

Activity scheduling: Thirdly, a correct execution order of tasks and commu-
nications has to be determined, i.e., the activities have to be scheduled under
the consideration of interdependencies.

These three co-synthesis stages aim to optimise the design according to objec-
tives set by the designer, such as power consumption, performance, and cost.
In order to reduce the power consumption, emerging co-synthesis approaches
(as the one proposed in this work) tightly integrate the consideration of energy
management techniques within the design process [67, 76, 99, 100].

Energy management Energy management techniques utilise existing idle times
to reduce the power consumption by either shutting down the idle compo-
nents or by reducing the performance of the components.

The consideration of energy management techniques during the co-synthesis
allows the optimisation of allocation, mapping, and scheduling towards their ef-
fective exploitation. After the co-synthesis has allocated an architecture as well
as mapped and scheduled the system activities (tasks and communications), the
next stage in the design flow is the concurrent hardware and software synthesis,
indicated as Step C in Figure 1.2. These separated design steps transform the
system specification, which has been split between hardware and software, into
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physical implementations. System parts that are mapped onto customised hard-
ware are designed using high-level [8, 19, 60, 134, 154], logic [9, 42, 110, 131],
and layout [56] synthesis tools. While system parts that have been mapped onto
software programmable processors (CPUs, DSPs) are compiled into assembler
and machine code, using either standard or specialised compilers and assem-
blers [1, 93]. The main advantage of a concurrent hardware (HW) and software
(SW) synthesis is the possibility to co-simulate both system parts, with the aim
of finding errors in the design as early as possible to avoid expensive re-designs.
The following section describes the whole design process shown in Figure 1.2
in more detail and introduces the terminology used throughout this book.

1.2 System Specification (Step A)

The functionality of a system can be captured using a variety of conceptual
specification models [61]. Different modelling styles are, for example, high-
level languages (hardware description and programming languages) such as
SystemC, Verilog HDL, VHDL, C/C++, or JAVA, as well as more abstract
models such as block diagrams, task graphs, finite state machines (FSMs),
Petri nets, or control/dataflow graphs. Typical applications targeted by the
presented work can be found in the audio and video processing domain (e.g.
multi-media and communication devices with extensive data stream operations).
Such applications fall into the category of data-flow dominated systems. An
appropriate representation for these systems is the task graph model [84, 112,
157], which will be introduced in the following section.

1.2.1  Task Graph Representation

The functionality of a complex system with intensive data stream operations
can be abstracted as a directed, acyclic graph (DAG) Gs = (7,C), where the
set of nodes T = {7y, 71, ..., Tn } denotes the set of tasks to be executed, and the
set of directed edges C refers to communications between tasks, with v;; € C
indicating a communication from task 7; to task 7;. A task can only start its
execution after all its ingoing communications have finished. Each task can be
annotated with a deadline 8, the time by which its execution has to be finished.
Furthermore, the task graph inherits a repetition period ¢ which specifies the
maximal delay between to invocations of the source tasks (tasks with no in-
going edges). Structurally, task graphs are similar to the data-flow graphs that
are commonly used in high-level synthesis [60, 154]. However, while nodes in
data-flow graphs represent single operations, such as multiplications and addi-
tions, the nodes in task graphs are associated with larger (coarse) fragments of
functionality, such as whole functions and processes. The concept behind this
model can be exemplified using a simple illustrative example.
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Example 1: For the purpose of this example, consider an MP3 audio de-
coder. In order to reconstruct the “original” stereo audio signal from an encoded
stream, the decoder reads the data stream and applies several transformations
such as Huffman decoding, dequantisation, inverse discrete cosine transforma-
tion (IDCT), and antialiasing. A possible task graph specification along with
a high-level language description in C of such an MP3 decoder is shown in
Figure 1.3. The figure outlines the relation between task graph model and
high-level description. In this particular example the granularity of each task in
the task graph corresponds to a single sub-function of the C specification. For
instance, the Huffman Decoder tasks (7r3and 74)in Figure 1.3(a) reflect the
functionality that is performed by the third sub-function in Figure 1.3(b). The
flow of data is expressed by edges between the individual tasks. The output
data produced by the Huffman Decoder tasks, for example, is the input of
the dequant tasks (75 and 7g), indicated by the communication edges 3 5 and
“Y4,6. In order to decode the compressed data into a high quality audio signal,
one execution of all tasks in the graph, starting from task 7y and finishing with
T16, has to be performed in at most 25ms as expressed by the task deadline 8.
However, to obtain real-time decompression of a continuous music stream, the
execution of all tasks has to be performed 40 times per second, i.e., with a
repetition rate of ¢ = 25m.s. Although in this particular example the deadline
and the repetition rate are identical, they might vary in other applications. As
opposed to the C specification, the task graph explicitly exhibits application
parallelism as well as communication between tasks (data flow), while the ex-
act algorithmic implementation of each function is abstracted away. O

Task graphs can be derived from given high-level specification either manually
or using extraction tools, such as the one proposed in [148].

1.3  Co-Synthesis (Step B)

Once the system’s functionality has been specified as task graph, the sys-
tem designers will start with the system-level co-synthesis. This is indicated
as Step B in Figure 1.2. In addition, Figure 1.4 shows the co-synthesis flow
in diagrammatic form. Co-synthesis is the process of deriving a mixed hard-
ware/software implementation from an abstract functional specification of an
embedded system. To achieve this goal, the co-synthesis needs to address four
fundamental design problems: architecture allocation, application mapping,
activity scheduling, and energy management. Figure 1.4 shows the order in
which these problems have to be solved. In general, these co-synthesis steps
are iteratively repeated until all design constraints and objectives are satisfied
[52, 54, 70, 156]. An iterative design process has the advantage that valuable
feedback can be provided to the different synthesis steps. This feedback, which



