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Most people would cheerfully agree that statistics is a useful subject – but 
how many would recognise that it also has many facets which are engaging, 
and even fascinating?

We have written this book for students and their teachers, as well as for 
practitioners  –  indeed, for anyone who knows some statistics. If this 
describes you, we invite you to come with us on a panoramic tour of the 
subject. Our intent is to highlight a variety of engaging and quirky facets of 
statistics, and to let you discover their fascinations. Even if you are only 
casually acquainted with statistical ideas, there is still much in this book 
for you.

This is not a textbook. In a lively way, it expands understanding of topics 
that are outside the scope of most textbooks – topics you are unlikely to find 
brought together all in the one place elsewhere.

Each of the first 25 chapters is devoted to a different statistical theme. 
These chapters have a common structure. First, there is an Overview, 
offering perspectives on the theme – often from several points of view. 
About half of these Overviews need, as quantitative background, only high 
school mathematics with a basic foundation in statistics. For the rest, it may 
be helpful to have completed an introductory college or university course in 
statistics.

Following the Overview, each chapter poses five questions to pique your 
curiosity and stimulate you to make your own discoveries. These questions 
all relate to the theme of the chapter. As you seek answers to these ques-
tions, we expect you will be surprised by the variety of ways in which statis-
tics can capture and hold your interest.

The questions are not for technical, numerical or web‐search drill. Rather, 
they seek to widen your knowledge and deepen your insight. There are 
questions about statistical ideas and probabilistic thinking, about the 
value of statistical techniques, about both innocent and cunning misuses 
of statistics, about pathbreaking inspirations of statistical pioneers, and 

Preface
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about making the best practical use of statistical information. Also, there 
are amusing statistical puzzles to unravel and tantalising statistical para-
doxes to resolve. Some questions have a single correct answer, but many 
more invite your reflection and your exploration of alternatives.

We invite you to plunge in and tackle the questions that you find appeal-
ing. Compare your findings with our own answers (including wide‐ranging 
commentary), which are collected together in Chapter 26.

To help you to choose questions that best match your current statistical 
background, we have labelled each question A, B or C. Questions labelled A 
(40% of the total) are well suited to those who are studying an introductory 
course in statistics at tertiary level. Good senior high school students should 
also find many of them within their capability. Questions labelled B (55% of 
the total) cover a wide spectrum of challenges and, in many cases, a knowl-
edge of statistics at the level of a second course will make the best starting 
point. The remaining 5% of questions are labelled C, and are for graduates 
in statistics, including professional practitioners.

In each chapter, the Overview and its five questions are extensively 
cross‐referenced to related material in other chapters. They also include 
suggestions for further reading, both in print and online. The web links are 
available live on this book’s companion website www.wiley.com/go/
sowey/apanoramaofstatistics. Readers of the electronic edition should check 
this  website for an update if they find a broken link among the chapter 
bibliographies.

To make it clear when a mentioned Chapter, Question or Figure refers to 
a place elsewhere in this book (rather than to an external source), the words 
are printed in small capitals: Chapter, Question, Figure.

We hope that your time spent with this book will be enjoyable and 
enriching.

May 2016 Eric Sowey
Peter Petocz

www.wiley.com\go\sowey\apanoramaofstatistics
www.wiley.com\go\sowey\apanoramaofstatistics
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In the real world, little is certain. Almost everything that happens is influ-
enced, to a greater or lesser degree, by chance. As we shall explain in 
this  chapter, statistics is our best guide for understanding the behaviour 
of  chance events that are, in some way, measurable. No other field of 
 knowledge is as vital for the purpose. This is quite a remarkable truth and, 
statisticians will agree, one source of the subject’s fascination.

You may know the saying: data are not information and information is not 
knowledge. This is a useful reminder! Even more useful is the insight that it is 
statistical methods that play the major role in turning data into information 
and information into knowledge.

In a world of heavily promoted commercial and political claims, a familiarity 
with statistical thinking can bring enormous personal and social benefits. 
It  can help everyone to judge better what claims are trustworthy, and so 
become more competent and wiser as citizens, as consumers and as voters. 
In short, it can make ours not only a more numerate, but also a more accurately 
informed, society. This is an ideal we shall return to in Chapter 3.

Chance events are studied in the physical, biological and social sciences, 
in architecture and engineering, in medicine and law, in finance and 
 marketing, and in history and politics. In all these fields and more, statistics 
has well‐established credentials. To use John Tukey’s charming expression, 
‘being a statistician [means] you get to play in everyone’s backyard’. (There 
is more about this brilliant US statistician in Chapter 22, Figure 22.2.)

‐‐‐oOo‐‐‐

To gain a bird’s eye view of the kinds of practical conclusions this subject can 
deliver, put yourself now in a situation that is typical for an applied statistician.

Why is statistics such a fascinating subject?
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Suppose you have collected some data over a continuous period of 150 
weekdays on the daily number of employees absent from work in a large 
insurance company. These 150 numbers will, at first, seem to be just a jumble 
of figures. However, you – the statistician – are always looking for patterns in 
data, because patterns suggest the presence of some sort of systematic behav-
iour that may turn out to be interesting. So you ask yourself: can I find any 
evidence of persisting patterns in this mass of figures? You might pause to 
reflect on what sorts of meaningful patterns might be present, and how you 
could arrange the data to reveal each of them. It is clear that, even at this early 
stage of data analysis, there is lots of scope for creative thinking.

Exercising creativity is the antithesis of following formalised procedures. 
Unfortunately, there are still textbooks that present statistical analysis as no 
more than a set of formalised procedures. In practice, it is quite the  contrary. 
Experience teaches the perceptive statistician that a sharpened curiosity, 
together with some preliminary ‘prodding’ of the data, can often lead to 
surprising and important discoveries. Tukey vigorously advocated this 
approach. He called it ‘exploratory data analysis’. Chatfield (2002) excellently 
conveys its flavour.

In this exploratory spirit, let’s say you decide to find out whether there is 
any pattern of absenteeism across the week. Suppose you notice at once that 
there seem generally to be more absentees on Mondays and Fridays than on 
the other days of the week. To confirm this impression, you average the 
absentee numbers for each of the days of the week over the 30 weeks of data. 
And, indeed, the averages are higher for Mondays and Fridays.

Then, to sharpen the picture further, you put the Monday and Friday aver-
ages into one group (Group A), and the Tuesday, Wednesday and Thursday 
averages into a second group (Group B), then combine the values in each 
group by averaging them. You find the Group A average is 104 (representing 
9.5% of staff ) and the Group B average is 85 (representing 7.8% of staff ).

This summarisation of 30 weeks of company experience has demonstrated 
that staff absenteeism is, on average, 1.7 percentage points higher on Mondays 
and Fridays as compared with Tuesdays, Wednesdays and Thursdays. 
Quantifying this difference is a first step towards better understanding 
employee absenteeism in that company over the longer term – whether your 
primary interest is possible employee discontent, or the financial costs of 
absenteeism to management.

Creating different kinds of data summaries is termed statistical  description. 
Numerical and graphical methods for summarising data are valuable, 
because they make data analysis more manageable and because they can 
reveal otherwise unnoticed patterns.
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Even more valuable are the methods of statistics that enable statisticians 
to generalise to a wider setting whatever interesting behaviour they may 
have detected in the original data. The process of generalisation in the 
face  of the uncertainties of the real world is called statistical inference. 
What makes a statistical generalisation so valuable is that it comes with an 
objective measure of the likelihood that it is correct.

Clearly, a generalisation will be useful in practice only if it has a high 
chance of being correct. However, it is equally clear that we can never be 
sure that a generalisation is correct, because uncertainty is so pervasive in 
the real world.

To return to the example we are pursuing, you may be concerned that the 
pattern of absenteeism detected in 30 weeks of data might continue indefi-
nitely, to the detriment of the company. At the same time, you may be unsure 
that that pattern actually is a long‐term phenomenon. After all, it may have 
appeared in the collected data only by chance. You might, therefore, have 
good reason to widen your focus, from absenteeism in a particular 30‐week 
period to absenteeism in the long term.

You can test the hypothesis that the pattern you have detected in your 
data occurred by chance alone against the alternative hypothesis that it did 
not occur by chance alone. The alternative hypothesis suggests that the 
 pattern is actually persistent  –  that is, that it is built into the long‐term 
behaviour of the company if there are no internal changes (by management) 
or external impacts (from business conditions generally). As just mentioned, 
the statistical technique for performing such a hypothesis test can also 
 supply a measure of the likelihood that the test result is correct. For more on 
hypothesis testing, see Chapter 16.

When you do the test, suppose your finding is in favour of the alternative 
hypothesis. (Estimating the likelihood that this finding is correct requires 
information beyond our scope here, but there are ways of testing which 
optimise that likelihood.) Your finding suggests a long‐term persisting 
 pattern in absenteeism. You then have grounds for recommending a suitable 
intervention to management.

Generalising to ‘a wider setting’ can also include to ‘a future setting’, as 
this example illustrates. In other words, statistical inference, appropriately 
applied, can offer a cautious way of forecasting the future – a dream that has 
fascinated humankind from time immemorial.

In short, statistical inference is a logical process that deals with ‘chancy’ 
data and generalises what those data reveal to wider settings. In those wider 
settings, it provides precise (as opposed to vague) conclusions which have a 
high chance of being correct.



1 Why is statistics such a fascinating subject?6

‐‐‐oOo‐‐‐

But this seems paradoxical! What sort of logic is it that allows highly reliable 
conclusions to be drawn in the face of the world’s uncertainties? (Here, and 
in what follows, we say ‘highly reliable’ as a shorter way of saying ‘having a 
high chance of being correct’.)

To answer this pivotal question, we need first to offer you a short over-
view of the alternative systems of logic that philosophers have devised over 
the centuries. For an extended exposition, see Barker (2003).

A system of logic is a set of rules for reasoning from given assumptions 
towards reliable conclusions. There are just two systems of logic: deduction 
and induction. Each system contains two kinds of rules:

i) rules for drawing precise conclusions in all contexts where that logic is 
applicable; and

ii) rules for objectively assessing how likely it is that such precise conclu-
sions are actually correct.

The conclusions that each system yields are called deductive inferences 
and inductive inferences, respectively.

It’s worth a moment’s digression to mention that there are two other 
thought processes – analogy and intuition – which are sometimes used in 
an attempt to draw reliable conclusions. However, these are not systems of 
logic, because they lack rules, either of the second kind (analogy) or of both 
kinds (intuition). Thus, conclusions reached by analogy or by intuition are, 
in general, less reliable than those obtained by deduction or induction. 
You will find in Questions 9.4 and 9.5, respectively, examples of the failure 
of analogy and of intuition.

In what kind of problem setting is deduction applicable? And in what kind 
of setting is induction applicable? The distinguishing criterion is whether 
the setting is (or is assumed to be) one of complete certainty.

In a setting of complete certainty, deduction is applicable, and there is no 
need for induction. Why? Because if all assumptions made (including the 
assumption that nothing is uncertain) are correct, and the rules of deduction 
are obeyed, then a deductive inference must be correct.

If you think back to the problems you solved in school mathematics 
 (algebra, calculus, geometry and trigonometry), you will recall that, in these 
areas, chance influences were given no role whatever. No surprise, then, 
that deduction is the system of logic that underpins all mathematical 
 inferences – which mathematicians call ‘theorems’.

It is a great strength of deductively based theorems that they are universally 
correct (i.e. for every case where the same assumptions apply). For instance, 
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given the assumptions of (Euclidean) plane geometry and the definition of a 
right‐angled triangle, Pythagoras’s Theorem is true for every such triangle, 
without exception.

Now, what about reasoning in a setting of uncertainty? Here, induction is 
applicable, and you can see how it contrasts with deduction. In a setting 
of  uncertainty, even if all assumptions made are correct and the rules of 
induction are obeyed, an inductive inference might not be correct, because 
of chance influences, which are always at work.

Still, induction is more reliable in this setting than deduction, because the 
rules of induction explicitly recognise the influence of chance, whereas 
the rules of deduction make no mention of it whatever. In short, when the 
influence of chance is inescapable  –  as is the case in most real‐world 
 situations – induction is the system of logic that underpins all inferences.

If you head out one morning at the usual time to catch your regular 
7.30 am train to work, you are reasoning inductively (or ‘making an induc-
tive inference’). Train timetables are vulnerable to bad weather delays, 
signal failures, and accidents along the rail line. So, even if, on all previous 
occasions, the 7.30 am train arrived on time, it is not correct to conclude 
that it must arrive on time today. Of course, the train is highly likely to 
arrive on time. But you cannot logically say more than that.

It follows that inductive inferences that are highly reliable in one circum-
stance are not necessarily highly reliable in other circumstances, even where 
the same assumptions apply. That is because chance influences can take many 
different forms, and always (by definition) come ‘out of the blue’. For instance, 
even though the on‐time arrival of your 7.30 am train has turned out to be 
highly reliable, reliability may shrink when you are waiting for your train 
home in the afternoon peak hours  –  the most likely period (our Sydney 
 experience shows) in which unforeseen disruptions to train schedules occur.

‐‐‐oOo‐‐‐

We have now seen that it is inductive logic that enables inferences to be 
made in the face of uncertainty, and that such inferences need not be reliable 
in any particular instance. You may be thinking, ‘it’s no great achievement to 
produce unreliable conclusions’.

This thought prompts a new question: given that induction is the only 
system of logic that is applicable in chance situations, can rules of induction 
be configured to allow the conclusions it produces to be highly reliable in 
principle?

The answer is yes. Over the past century, statisticians have given a great 
deal of attention to refining the rules of induction that have come down to us 
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through the cumulative work of earlier logicians, beginning with Francis 
Bacon (1561–1626). These refined rules of induction, now designed expressly 
for quantitative inferences, are called the rules of statistical induction.

The distinction between an inductive inference and a statistical inductive 
inference may seem both subtle and trivial. For an excellent discussion of 
the distinction, see chapters 4 and 5 of Burbidge (1990). While it is a subtle 
distinction, it is definitely not trivial. Relative to alternative ways of specifying 
rules of induction, the rules of statistical induction have, in principle, the 
highest chance of producing reliable conclusions in any particular instance.

In other words, statistical inductive inference is the most reliable version of 
the most powerful logic that we have for reasoning about chance events. 
As statisticians, we find this both fascinating and inspiring.

For simplicity, we shall now drop the formal term ‘statistical inductive 
inference’ and revert to using its conventional equivalent  –  ‘statistical 
inference’.

Statistical description and statistical inference are the workaday roles of 
statistics. These two roles define the highways, so to speak, of statistical 
activity.

‐‐‐oOo‐‐‐

Statistics also has many byways. You will find them prominent in this book. 
Yet, they are not front and centre in statistics education curricula, nor are 
they part of the routine activities of applied statisticians. So, how do they 
come to attention?

Statistical theorists come upon several of these byways when refining 
and enhancing basic methods of analysis. In one category are paradoxes of 
probability and statistics (see, for some examples, Chapters 10 and 11). 
In  another are problems of using standard statistical techniques in non‐
standard situations (see Chapter 17). In a third are unifying principles: 
fundamental ideas that are common to diverse areas of statistical theory. 
Discovering unifying principles means identifying previously unrecognised 
similarities in the subject. Unification makes the subject more coherent, 
and easier to understand as a whole. Examples of unifying principles are 
the Central Limit Theorem (see Chapters 12 and 14) and the power law 
(see Chapter 24).

Another byway is the history of statistical ideas. Historians with this 
 special interest bring to life the philosophical standpoints, the intellectual 
explorations and the (sometimes controversial) writings of statistical pio-
neers, going back over several centuries. Though pioneering achievements 
may look straightforward to us in hindsight, the pioneers generally had to 
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struggle to succeed  –  first, in formulating exactly what it was they were 
trying to solve, and then in harnessing all their insight, knowledge and 
 creativity towards finding solutions, often in the face of sceptical critique 
(see, for instance, Chapters 18 and 22).

Yet another byway is the social impact of statistics. Here are three paths 
worth exploring on this byway: consequences of the low level of statistical 
literacy in the general community, and efforts to raise it (see Chapters 3 
and 6); public recognition of statisticians’ achievements via eponymy 
(see Chapter 23); and the negative effects of widespread public misuse of 
statistical methods, whether from inexperienced analysts’ ignorance, or 
from a deliberate intention to deceive (see Chapters 8 and 9).

These are by no means all the byways of statistics. You will discover others 
for yourself, we hope, scattered through the following chapters.

You may then also come to share our view that, to people who are curious, 
the lightly visited byways of statistics can be even more delightful, more 
surprising and more fascinating than the heavily travelled highways of 
standard statistical practice.

If, at this point, you would like to refresh your knowledge of statistical ideas 
and principles, we recommend browsing the following technically very acces-
sible books: Freedman, Pisani and Purves (2007), and Moore and Notz (2012).

 Highways and byways.
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Questions

Question 1.1 (A)

Figure 1.1 shows, on a logarithmic horizontal scale, the cumulative 
 percentage frequency of heads in a sequence of 10,000 tosses of a coin.

These 10,000 tosses were performed by a South African statistician, John 
Kerrich, who went on to be the Foundation Professor of Statistics at 
Witwatersrand University in 1957.

a) Where, and under what unusual circumstances, did Kerrich perform 
these 10,000 tosses?

b) Does the information in the graph help us to define ‘the probability of 
getting a head when a fair coin is tossed once’?

Question 1.2 (A)

When young children are asked about their understanding of probability, 
they quickly decide that the sample space for rolling a single die consists of 
six equally likely outcomes. When it comes to two dice, however, they often 
conclude that the sample space has 21 outcomes that are equally likely. 
Where does the number 21 come from?

Question 1.3 (A)

‘Most people in London have more than the average number of legs.’ Is this 
statement correct? Does it indicate some misuse of statistical methods?
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Figure 1.1 Scatterplot of Kerrich’s coin‐tossing results. Data from Freedman, Pisani and 
Purves (2007).
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Question 1.4 (A)

Based on thirty continuous years of recorded temperature data, the average 
temperature over the 12 months in a calendar year in New York is 11.7 °C, in 
New Delhi it is 25.2 °C, and in Singapore it is 27.1 °C. (To see the data – which 
may vary slightly over time – go online to [1.1], select the three cities in turn 
from the menu, and find the monthly average temperatures in the left‐hand 
frame for each city.)

Does this mean that it gets roughly twice as hot in New Delhi during the 
year as it does in New York? Does it mean that the climate in Singapore is 
much the same as that in New Delhi?

Question 1.5 (B)

The map in Figure 1.2 shows a part of London. By whom was it drawn and 
when? With what famous event in the history of epidemiology is it con-
nected? (Hint: note the street‐corner pump.)
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Figure 1.2 Extract from a map showing a part of London. Reproduced with the 
permission of Michael Rip.
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2

‘What’s the difference between mathematics and statistics?’ Many school 
students put this question to their teacher, aware that these subjects are 
related but not clear on what it is, exactly, that distinguishes them. 
Unravelling this puzzle is generally not made any easier for students by the 
fact that, in most schools around the world, it is the mathematics depart-
ment that normally teaches statistics. To these curious but bewildered 
students, ‘maths’ seems to be defined by the topics that the teacher and the 
textbook say are maths, and similarly for ‘stats’. So, algebra, calculus, geom-
etry and trigonometry are ‘maths’, while frequency distributions, averages, 
sampling, the normal distribution, and estimation are ‘stats’. That doesn’t 
go very far towards providing a convincing answer to our opening ques-
tion. Anyway, what about probability? Is that ‘maths’ or ‘stats’?

A thoughtful teacher will want to supply a better answer. Surprisingly, in 
our experience, a better answer is rarely found either in curriculum docu-
ments or in textbooks. So let’s see if we can formulate a better answer in a 
straightforward way.

A constructive start is to ask in what ways statistics problems differ from 
mathematics problems.

Here is something fairly obvious: statistics problems have a lot to do with 
getting a view of the variability in data collected from the real world. For 
example, a statistical problem may present 100 measurements (by different 
people) of the length of a particular object, using a tape measure, with the 
assigned task being to construct a frequency distribution of these measure-
ments to see whether measurement errors tend to be symmetrical about the 
correct value, or whether people tend to veer more to one side or the other. 
By contrast, in a mathematical problem involving the length of an object, 
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the single measurement stated is simply to be taken to be the correct one, 
and the assigned task goes on from there.

If we ask why 100 people don’t all produce exactly the same length meas-
urement for the same object, using the same tape measure, we are led to a 
fundamental realisation. There are many factors at work in the physical act 
of measurement that cause different results to be reported for the same task 
by different people. Among these factors are: the attentiveness with which 
the task is undertaken; the effect of parallax in reading the scale marks on 
the tape; possible tremor in the hand holding the tape measure; and eyesight 
variations in those reporting measurements. Some of these factors might 
lead a person to mismeasure in a way that exceeds the correct value, while 
other factors might cause that same person to fall short of the correct value. 
Moreover, different people might react differently to any particular factor.

While it would be theoretically possible to study systematically some, or 
all, of these causes of variation individually (and there are contexts where it 
would be important to do so), it is generally convenient to lump all these 
real‐world factors together and to refer to their net effect on measurement 
as chance (or random) variation around the correct value. This highlights 
the truth that chance influences are inseparable from almost all experience 
of life in the real world. (For more detail about the meaning of randomness, 
see Chapters 10 and 11.)

Chance variation has long been recognised. A famous passage in the bibli-
cal Book of Ecclesiastes, written some 2,200 years ago, shows how random 
events can have perplexing impacts: ‘… the race is not to the swift, nor the 
battle to the strong, nor bread to the wise, nor riches to the intelligent, nor 
favour to those with knowledge, but time and chance happen to them all.’

One may, of course, choose to abstract from chance influences (as the 
Public Transport Department does, for example, when it publishes a train 
timetable), but looking away from them should be understood as a deliberate 
act to simplify complex reality. In contexts where chance effects are ordinarily 
small (e.g. train journey times along a standard urban route), abstracting from 
chance is unlikely to cause decision errors to be made frequently (e.g. about 
when to come to the station to catch the train). However, where events are 
heavily dominated by random ‘shocks’ (e.g. daily movements in the dollar/
pound exchange rate on international currency markets), predictions of what 
will happen even a day ahead will be highly unreliable most of the time.

As we mentioned in Chapter 1, school mathematical problems are 
generally posed in abstract settings of complete certainty. If, on occasion, a 
mathematical problem is posed in an ostensibly real‐life setting, the student 
is nevertheless expected to abstract from all chance influences, whether 
doing so is true to life or not. Here is a typical example: try solving it now.
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According to the timetable, a container train is allowed 90 minutes for a 
journey of 60 miles over mountainous country. On a particular trip, the 
train runs into fog and its speed is reduced, making it 25 minutes late at its 
destination. Had the fog appeared six miles closer to its point of departure, 
the train would have been 40 minutes late. At what rate does the train travel 
through fog?

(The answer is 15 miles per hour. Did you see in which way the problem is 
unrealistic and where chance influences are ignored? The train, incidentally, 
is pictured on the cover of this book.)

However appealing such problems may be for exhibiting the ‘relevance’ of 
mathematics, they risk concealing from students its fundamental logical 
limitation. The great physicist, Albert Einstein (1879–1955), expressed it 
concisely: ‘As far as the propositions of mathematics refer to reality, they 
are not certain; and as far as they are certain, they do not refer to reality.’ 
(see Einstein (1921), online in the German original at [2.1] and in English 
translation at [2.2]).

We can elaborate Einstein’s aphorism like this. In solving a problem in a 
real‐life setting, the mathematical approach neglects all chance influences 
in that setting and, on that account, the mathematical solution is stated with 
certainty – but that solution is evidently an approximation to the solution in 
reality. Moreover, the error in the approximation is indeterminate. The sta-
tistical approach, by contrast, recognises the chance influences explicitly 
and, on that account, the statistical solution cannot be stated with certainty. 
The statistical solution, too, is an approximation to the solution in reality – but 
in the statistical approach, the error due to the chance influences can be 
dependably assessed within bounds.

Well, what about problems in probability? Self‐evidently, they are problems 
about chance events but, here, calculating the probability of occurrence of 
some random event is the entire goal: it is simply an exercise in arithmetic 
according to predefined rules. Moreover, within the scope of the problem, it 
is certain that the calculated probability is correct. Therefore such prob-
lems, too, are mathematical problems. However, were the random event 
embedded in some inferential context, then the inferential problem would 
thereby be a statistical problem.

‐‐‐oOo‐‐‐

So far, we have seen that the central focus of statistics is on variation and, in 
particular, on chance variation. Mathematics acknowledges variables, but 
it does not focus centrally on their variation, and it abstracts entirely from 
the influence of chance.
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The central focus of mathematics is on those general properties that are 
common to all the varying members of a set. Circles, for example, vary in 
their diameters, but circle theorems relate to the properties that all circles 
have in common, regardless of their particular diameter. Similarly, 
Pythagoras’s Theorem is true for all plane right‐angled triangles, regardless 
of their size.

While mathematicians’ prime objective is to prove general theorems, 
which then imply truths about particular cases, statisticians proceed in 
reverse. They start with the ‘particular’ (namely, a sample of data) and, from 
there, they seek to make statements about the ‘general’ (that is, the popula-
tion from which their data were sampled).

‐‐‐oOo‐‐‐

Finally, we come to the contrasting nature of numerical data in mathemati-
cal and in statistical problems. Data (literally, ‘givens’ – from the Latin) 
are indispensable inputs to any process of computational problem 
 solving. However, ‘data’ mean different things to mathematicians and to 
statisticians.

As we have seen, to a mathematician data are values of non‐random vari-
ables, and the task is to apply those numbers to evaluate a special case of a 
known general theorem –  for example, to find the equation of the (only) 
straight line that passes (exactly) through two points with given coordinates 
on a plane. To a statistician data are values of random variables, and the 
statistician asks, ‘How can I confidently identify the underlying systematic 
information that I think there is in these data, but that is obscured by the 
random variability?’ For example, what is the equation of the best‐fitting 
straight line that passes as near as possible to ten points with given coordi-
nates, scattered about on the same plane in a pattern that looks roughly 
linear, and how well does that scatter fit to that line? The statistician also 
asks, ‘How reliably can I generalise the systematic sample information to the 
larger population?’ A large part of a practising statistician’s work is the 
analysis of data – but a mathematician would never describe his or her work 
in this way.

As if practising statisticians did not have enough of a challenge in seeking 
out meaningful systematic information ‘hidden’ in their randomly‐varying 
data, they must also be prepared to cope with a variety of problems of data 
 quality – problems that could easily send their analysis in the wrong direction.

Among such problems are conceptual errors (a poor match between the 
definition of an abstract concept and the way it is measured in practice), 
information errors (e.g. missing data, or false information supplied by 


