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Preface

Biometrics in modern computer science is defined as the automated use of biological
properties to identify individuals. The early use of biometrics can be dated back to
nearly 4000 years ago when the Babylon Empire legislated the use of fingerprints
to protect a legal contract against forgery and falsification by having the fingerprints
impressed into the clay tablet on which the contract had been written. Nowadays,
the wide use of the Internet and mobile devices has brought out the booming of the
biometric applications, and research on biometrics has been drastically expanded
into many new domains.

The research trends in biometric research may be categorized into three direc-
tions. The first direction is toward the broader Internet and mobile applications. This
brings out a number of new topics to utilize biometrics in mobile banking, health
care, medical archiving, cybersecurity, and privacy as a service, etc. These new
applications have created a huge market of billion dollars for biometric technologies
and the industry needs comes back to push the research further and vigorously.
The second direction is towards algorithmic development, which includes the
investigation of many new AI techniques in biometrics, such as fuzzy approaches,
ensemble learning, and deep learning. These new approaches can often help improve
the accuracy of automated recognition, making many new applications available
for business. Especially, with the vast amount of data coming from billions of
users on internet/mobile, biometrics now becomes a new Big Data challenge in its
streaming, processing, classification and storage. The third research direction aims
at discovering more types of biometrics for various uses. Besides the conventional
fingerprints and signatures, other types of biometrics (such as iris, vein pattern,
gait, and touch dynamics) have been investigated in recent biometric research. Their
combination as multimodal biometrics is another popular way to exploit these types
of biometrics in research.

This book includes 16 chapters highlighting recent research advances in bio-
metric security. Chapters 1–3 present new research developments using various
biometric modalities including Fingerprints, Vein Patterns and Palmprints. New
tools and techniques such as Deep Learning are investigated and presented.
Chapter 4 reports a new biometric recognition approach based on the acoustic
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vi Preface

features of human ears. Chapters 5–9 discuss new research works relating to a
number of dynamic behavioural biometric traits. Chapters 10–13 focus on face
recognition, which is the most popular topic in biometrics. Chapter 14 carries out a
survey of biometric template protection, a very important topic in biometric privacy
and security. Chapter 15 investigates the use of biometrics for better security in
cloud computing and Internet of Things. Chapter 16 reports the new EU legislation
on biometrics, which should help technology developers be aware of the legal
aspects of biometric technologies.

The target audience for this book includes graduate students, engineers,
researchers, scholars, forensic scientists, police force, criminal solicitors, IT
practitioners and developers who are interested in security and privacy related
issues on biometrics. The editors would like to express their sincere gratitude to
all distinguished contributors who have made this book possible, and the group
of reviewers who have offered insightful comments to improve the quality of
each chapter. A dedicated team at Springer Publishing has offered professional
assistances to the editors from inception to final production of the book. We thank
them for their painstaking efforts at all stages of production.

Richard Jiang
Newcastle upon Tyne, UK
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Chapter 1
Fingerprint Quality Assessment:
Matching Performance and Image
Quality

Zhigang Yao, Jean-Marie Le Bars, Christophe Charrier,
and Christophe Rosenberger

1.1 Introduction

The disadvantage of biometric recognition systems is chiefly attributed to the
imperfect matching in contrast with traditional alphanumeric system. Because of
this, sample quality is more important for image-based biometric systems, and
so is fingerprint image used for the Automatic Fingerprint Identification System
(AFIS). Matching of fingerprint images is generally divided into three classes:
correlation-based, image-based, and minutiae matching, among which the last one
is acknowledged as the primary solution so far [10]. In this case, good quality
sample is basically a prerequisite for extracting reliable and sufficient minutia
points, and is hence the essential factor for the overall matching performance. The
effect of sample quality to the matching performance is defined as the utility of
a biometric sample [12]. Therefore, most of the Fingerprint Quality Assessment
(FQA) approaches (or fingerprint quality metrics) rely on two aspects: subjective
assessment criteria of the pattern [8] and sample utility. In addition, most of the
quality metrics are also evaluated in terms of the utility. [1]. However, this property
is limited by matching configurations, i.e., sample utility varies as the matching
algorithm changes because no matching approach proposed so far is perfect or
robust enough in dealing with different image settings though their resolution is
similar to each other (normal application requires gray-level images of 500-dpi
according to the ISO).

This chapter compares the existing solutions of the FQA in terms of a method-
ological categorization [4]. Such a comparison analyzes whether those quality
metrics based on multi-feature are really able to take the advantages of the employed
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2 Z. Yao et al.

features. Similarly, quality assessment approaches rely on a prior-knowledge of
matching performance still need discussion, especially the prediction to the match-
ing performance. Our work gives a study of these potential problems in an
experimental manner. Each of the selected quality metrics in this chapter represents
a typical solution in the existing studies.

This chapter is organized as follows: Sect. 1.2 presents a brief review of the
categorization of the existing FQA solutions. In Sect. 1.3, the description of trial
fingerprint quality metrics is given. Experimental results are given in Sect. 1.4.
Section 1.5 concludes the paper.

1.2 Background

Yao et al. [4] categorize prior work in FQA into several classes in terms how this
problem is solved. Typical FQA solutions can be summarized as:

1. Single feature-based approaches: these could be further divided into solutions
rely on the feature itself or a regularity [18] observed from the employed
feature. For instance, standard deviation [13] at block-wise is a brief factor
which somehow measures the clarity and differentiates the foreground block
of fingerprint. Some studies also obtain relatively good result by using a single
feature, such as the Pet’s hat wavelet (CWT) coefficients [16] and the regularity
of fingerprint Discrete Fourier Transform (DFT) [6], and Gabor feature [17].
These features also represent the solution of FQA in different domain. In
addition, the “relatively good result” here means that those solutions perform
well in reducing the overall matching performance because we believe that the
evaluation of a quality metric is basically a biometric test which involves both
genuine matching and impostor matching errors.

2. FQA via segmentation-like operations: these kinds of solutions are divided
into two vast classes at first, including global-level and local-level approaches.
Mostly, local-level approaches estimate a quality measure to a fingerprint block
in terms of one or several features or indexes, such as directional information
and clarity [3, 9, 13, 15]. Some other local-level approaches choose to determine
whether a block is a foreground at first [23], and then give a global quality
measure to the fingerprint image. This type of solutions implemented globally
are further divided as non-image quality assessment and image-based approach.
Yao et al. [4] propose one FQA approach by using only minutiae coordinates,
meaning that no real image information is used in assessing fingerprint quality.
Image-based solutions are basically achieved by performing a segmentation at
first, and then estimate the quality of the foreground area according to one or
more measurements [4].

3. FQA approaches by using multi-feature: these could be carried out by using
either fusion or classification. For example, some studies combine several quality
features or indexes together via a linear (or weighted) fusion [5, 7, 15, 25].
The linear fusion is basically used for a specific scenario because coefficient
is a constraint of this kind of solution. Similarly, fusion of multiple features or
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experts outputs could also be achieved via other more sophisticated approaches
such as Bayesian statistics [20] and Dezert-Smarandache (DS) theory [26]. The
effectiveness of the fusion algorithm itself and differences between multiple
experts outputs impact on the fused result. For instance, it is quite difficult to look
out an appropriate way to fuse results generated by two different metrics, where
one gives continuous output and another generalize a few discrete numbers. This
chapter considers only FQA problem of the AFIS rather than any multi-modal,
score/cluster-level fusion, and some fusion related issues.

FQA via multi-feature classification [14, 15] basically employs one (or more)
classifier(s) to classify fingerprint image into different quality levels. Obviously,
this kind of solution depends on the classifier itself. In addition, the robustness
and the reliability of the prior-knowledge used by learning-based classification or
fusion also impacts on the effectiveness of the quality metric, particularly when
generalizing a common solution such as the state-of-the-art (SoA) approach [24].

In addition, some studies propose to use knowledge-based feature by training a
multi-layer neural network [18]. However, it is essentially an observed regularity of
the learnt feature and external factors such as classifier and tremendous training data
set are also required.

According to the discussion above, one can note that fingerprint quality is still
an open issue. Existing studies are mostly limited in these kinds of solutions,
where learning-based approaches are chiefly associated with the prior-knowledge of
matching performance which is debatable for a cross-use. Grother and Tabassi [10]
have introduced that quality is not linearly predictive to the matching performance.
This chapter gives an experimental study to analyze this problem by comparing
FQA approaches selected from each of the categorized solutions.

1.3 Trial Measures

In order to observe the relationship between the quality and the matching perfor-
mance, several metrics carried out by using each of the categorized solution are
employed in this study, given as follows.

1.3.1 Metrics with Single Feature

As mentioned in Sect. 1.2, we first choose one quality metric generalized by using
a single feature. The selected metric is implemented via the Pet’s Hat continuous
wavelet, which is denoted as the CWT as mentioned in Sect. 1.2. The CWT in a
window of W is formulated as

CWT D

sP
W j ci j

W
(1.1)
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where ci is wavelet coefficient and the windows size depends on the image size,
for example, 16 pixels for gray scale images of 512 dpi. In our study, the CWT is
implemented with two default parameters, a scale of 2 and angle of 0. We choose
this quality metric because it outperforms the SoA approach in reducing the overall
error rate for some different image settings. Note that the resolution of fingerprint
image is about 500-dpi, which is the minimum requirement of the AFIS [19].

1.3.2 Segmentation-Based Metrics

Fingerprint segmentation is one way to separate the foreground area (ridge-valley
pattern) from the background (vacuum area) formed by input sensor(s). This opera-
tion is in some measure equivalent to the quality assessment of a fingerprint image
because the matching (or comparison) is mainly dependent on the foreground area.
It is reasonable that a fingerprint image with relatively clear and large foreground
area can generate a higher genuine matching score than those characterized in
an opposite way. In this case, many studies use segmentation-based solutions to
perform quality assessment. This section gives two metrics based on segmentation-
like operations to show how foreground area is important to quality assessment. The
first one is an image-independent quality metric and the second is dependent on the
image pixel (Fig. 1.1).

1.3.2.1 FQA via Informative Region

The image-independent approach employed in this chapter is known as the MQF
[29] which uses only the coordinates information of the minutiae template of the
associated fingerprint image. Figure 1.2 gives a general diagram of this quality
metric.

As depicted by the diagram (Fig. 1.2), the convex-hull and Delaunay triangula-
tion are used at first for modeling the informative region of a fingerprint image in

Fig. 1.1 Example of CWT
(b) of a fingerprint image (a)
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Fig. 1.2 Diagram of the framework of the MQF

terms of the detected minutiae points. Next, some unreasonable-looking triangular
areas marked by pink are removed from the informative region. The remaining area
of the informative region hence represents the quality of the associated fingerprint
or the minutiae template [29].

This quality metric is chosen because it is a new solution of the FQA and it
outperforms the SoA approach in some cases though only minutiae coordinates are
used. The details of this metric can be found in the reference article and are not
given here.

1.3.2.2 FQA via Pixel-Pruning

Another segmentation-based quality metric is denoted as MSEG [4] which performs
a two-step operation to a fingerprint image, including a coarse segmentation
and a pixel-pruning operation. The pixel-pruning is implemented via categorizing
fingerprint quality into two general cases: desired image and non-desired image.
Figure 1.3 illustrates such a categorization.

Obviously, an AFIS basically prefers keeping images like Fig. 1.3a because it is
more probably to give reliable and sufficient feature. Figure 1.3b shows two images
that are not desired subjectively because the left one has some tiny quality problems
and the right one is relatively small and both may lead to low genuine matching
or high impostor matching. In this case, a better quality assessment can be done if
one can make a clearer difference between the desired image and the non-desired
image. The MSEG employs a gradient measure of image pixel to prune pixels of
non-desired image as much as possible. Figure 1.3c, d illustrates the result of pixel-
pruning operation of two kinds of images.
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Fig. 1.3 Demonstration of pixel-pruning approach. (a) Desired. (b) Non-desired. (c) Desired after
pixel-pruning. (d) Non-desired after pixel-pruning

1.3.3 FQA via Multi-feature

Similarly, we also choose two quality metrics that rely on multi-feature and both are
implemented via a prior-knowledge of matching performance. By using this kind of
solutions, an experimental comparison can be made between different approaches,
especially one can find that solutions based on multiple features do not really take
the advantages of the employed features because of the effect generated by the
variation of image specifications, so is the employed prior-knowledge generated
form the big data [21]. The first one is classification-based approach which is the
SoA solution known as NFIQ [24]. The NFIQ estimates a normalized matching
score of a fingerprint sample by sending a set of quality features (11 features) to a
neural network model. The NFIQ algorithm remapped the estimated matching score
into five classes denoted by integers from 1 to 5 where 1 indicates the best quality
level.

On the other hand, we choose quality metric based on multi-feature fusion which
is actually a No-reference Image Quality Assessment (NR-IQA) [22] solution used
for FQA by integrating multiple features with a set of weighted coefficients. The
selected approach is denoted as Qabed [7], which is basically defined as
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Q D

NX
iD1

˛iFi ; (1.2)

where N is the number of quality features Fi (i D 1; : : : ; N), ˛i are the weighted
coefficients obtained by optimizing a fitness function of a genetic algorithm. The
fitness function is defined as a correlation between linearly combined quality value
and genuine matching score [11]. Maximizing such a linear relation is somehow
equivalent to the concept that quality predicts matching performance. The weighted
coefficient is dependent on a training set of fingerprint samples. We choose this
approach because it performs well in predicting the matching performance in
comparison with the SoA quality metric.

1.4 Experimental Results

Some existing studies propose to calculate correlation between different metrics [2]
for comparing the behavior of them. However, this is not completely observable,
because there is no explicit linear relation among every group of variant quality
metrics. Generally, this kind of measure is to observe the similarity between two
different variables such as wavelet coefficients. In this case, to compare the studied
metrics, we simply provide experiment results of two evaluation approaches, one
is a validation approach relied on Enrollment Selection (ES) [30] and another is an
evaluation method with multiple bins of sorted biometric samples [6].

1.4.1 Software

In the experiment, we use two matching systems where one is the OpenSource
NBIS [27] and another is a commercial fingerprint SDK known as “id3”. The
NIST software contains several modules, among which the MINDTCT is used for
generating INCITS 378-2004 standard minutiae template and the matching scores
are calculated via Bozorth3. The commercial SDK has six options of the existing
minutiae template standards and the minutiae templates of ISO/IEC 19794-2:2005
standard [19] have been extracted in the experiment. Similarly, a corresponding
matcher has also been implemented with the SDK. By using these two sets of
programs, the comparative study is accomplished via an interoperate analysis of
the selected quality metrics.
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Table 1.1 Dataset specification

DB Sensor Dim. Resolution (dpi)

00DB2A Low-cost capacitive 256�364 500

02DB2A Optical 296�560 569

04DB1A Optical 640�480 500

04DB2A Optical 328�364 500

04DB3A Thermal 300�480 512

CASL2 Optical 328�356 512

CASR2 Optical 328�356 512

1.4.2 Database et Protocol

In the experiment, one dataset of the 2000 Fingerprint Verification Competition
(FVC) test, one of FVC2002, three of FVC2004, and two CASIA1 datasets are
employed. Each of the FVC datasets includes 800 images of 100 individuals,
8 samples per individual. The CASIA database contains fingerprint images of 4
fingers of each hand of 500 subjects, where each finger has 5 samples. In this study,
we create the two re-organized databases by using samples of the second finger of
each hand, and they are, respectively, denoted as CASL2 and CASR2. Therefore,
each sub-database has 2500 images of 500 individual (5 samples per individual)
(Table 1.1).

The image size of each dataset is different from one another and the resolution is
over 500-dpi. A glance of the datasets is given by several samples in Fig. 1.4. In this
study, the experiment includes two parts, one is utility-based evaluation and another
is quality-based evaluation. The evaluation approach employed in the experiment is
based on the Enrollment Selection (ES) [28].

1.4.3 Results

1.4.3.1 ES with Quality

The evaluation task is a comparison between variant frameworks of fingerprint
quality metric. We use each group of quality values and two types of matching
scores to perform enrollment selection for each dataset. The global Equal Error Rate
(EER) values obtained by the selected quality metrics are given in Table 1.2.

One can found that the quality metrics providing the lowest global EER are
not always ones based on multi-feature, even for an associated vendor such as
NBIS matching software of the NFIQ. The quality metric based on a single feature

1http://biometrics.idealtest.org/detailsDatabase.do?id=3.

http://biometrics.idealtest.org/detailsDatabase.do?id=3
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Fig. 1.4 Illustration of dataset samples

Table 1.2 Global EERs obtained via ES with quality metrics

QM

DB NFIQ (%) QMF (%) MQF (%) CWT (%) MSEG (%)

00DB2A (N.) 4:97 6:57 5:03 4:93 4:50
02DB2A (N.) 13:33 11:11 11:18 11:11 10:79
04DB1A (N.) 15:37 14:72 14:98 17:53 16:54

04DB2A (N.) 13:32 16:64 15:02 14:16 14:05

04DB3A (N.) 7:47 7:36 6:87 7:00 7:18

CASL2 (N.) 43:09 40:64 40:48 40:09 42:30

CASR2 (N.) 43:51 41:39 40:62 40:45 43:20

00DB2A (S.) 0:22 0:40 0:76 0:09 0:10

02DB2A (S.) 0:11 0:30 0:12 0:10 0:20

04DB1A (S.) 2:66 1:74 1:73 1:91 1:93

04DB2A (S.) 3:86 3:94 3:43 3:33 3:24
04DB3A (S.) 1:89 1:66 1:51 1:59 1:51
CASL2 (S.) 40:92 42:72 42:19 42:35 38:61
CASR2 (S.) 38:20 41:26 40:94 39:70 35:97

“NBIS” and “SDK” are two sets of matching scores
Note: NFIQ and QMF rely on multi-feature and prior-knowledge of GMS; MQF and MSEG are
based on segmentation, CWT is a single feature-based metrics
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(CWT) also performs well on many datasets. In addition, both the CWT and MSEG
demonstrate relatively good generality for the employed matching algorithms,
especially when a better matching algorithm is involved.

For instance, MSEG obtains the best results from the last four of the seven
employed dataset when performing evaluation with the matching scores of the SDK,
while the results obtained from other three databases are also not bad. Particularly,
MSEG decreases the error rates more than other metrics for the two difficult
databases: CASL2 and CASR2. In addition, the CWT also performs well for most
of the databases. The QMF and NFIQ do not give dominant results, especially when
the NBIS matching scores are used in the experiment because QMF relies on the
GMS of the NBIS software, while the NFIQ depends on 11 quality features (or
real metrics). The confidence interval (CI) of the global EER values are given in
Table 1.3.

Furthermore, one can observe the effect of matching scores to the knowledge-
based metrics: NFIQ and QMF. The NFIQ obtains quite high (bad) EER values
from the two CASIA datasets when NBIS matching scores are employed in the
evaluation, while it generalizes relatively better results for the two datasets when
using the SDK. The QMF obtains better results than NFIQ from five (02DB2,
04DB1, 04DB3, CASL2, and CASR2) of the seven databases when using the NBIS
matching scores because its training is independently performed for each dataset via
the NBIS matching scores, meaning it is appropriate to a specific scenario. However,
in comparison with the knowledge-free metrics, both the two metrics do not show
a higher performance though they employ different sets of features. Meanwhile, the
MQF is a no-image quality metric but the performance is not bad in comparison with
the NFIQ and QMF, especially when using the NBIS matching scores because it
relies on the minutiae extractor associated with the NBIS software. In this case, one
can observe that a good matching algorithm and a relatively good dataset (such as
00DB2, 02DB2 and 04DB3) may blurs the effect of a quality metric, i.e., it is easier
to approach to a relatively better performance if the matcher is relatively robust.
Thus, it is really necessary to perform an offline biometric test via “bad” datasets.
In addition, it is possible to consider that the implementation of a metric should be
independent from the matching performance if we emphasize its “generality.” The
effect of matching performance to quality metrics is further discussed in Sect. 1.4.4.

1.4.3.2 Isometric Bins

The ES with sample’s quality reveals the best of quality metrics’ capability in
reducing the error rate. In this section, another evaluation is performed by using
an approach based on isometric bins of the samples that had been sorted in terms
of quality [6]. We don’t assert that quality metric is fully able to predict matching
performance due to the diversity of matching algorithms. In this case, this kind of
evaluation is somehow to demonstrate the linearity between a quality metric and
the performance of a matcher. The NFIQ is used as a reference, while the QMF,
MQF, and CWT represent metrics based on multi-feature fusion, segmentation,
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and single feature, respectively. We do not use all databases and metrics because
these results are enough to show what the quality predicting matching performance
is. The results obtained by using two types of matching scores (NBIS and SDK)
are given by global EERs’ plots in Figs. 1.5 and 1.6, respectively. One can found
that the EER values of the bins obtained by some of the quality metrics are
monotonically decreasing, which assert the purpose of proving the validity of a
quality metric. Loosely speaking, this kind of property demonstrates the so-called
quality predicting matching performance. On the other hand, it shows the similarity
or linear relationship between the quality scores and GMS. This could be observed
with correlation coefficients between the two measurements.

In the experiment, the maximum GMS for each sample is calculated to demon-
strate such an observation, see Table 1.4. For instance, when MSBoz is used,
the Pearson correlation coefficients of NFIQ for 00DB2A and QMF for 02DB2
with respect to the maximum GMS are �0:4541 and 0.5127. Similarly, this kind
of correlation also could be found for the monotonically decreased cases when
MSSDK is employed. Here, we simply gives the result of some opposite cases,
where the Pearson coefficients of CWT for 04DB1A, NFIQ for 02DB2A, and MQF
for 04DB1A with respect to the maximum GMS of MSSDK are 0.0444, �0:2596,
and 0.0585, respectively. These non-correlated values or some negative correlated
cases such as the CWT in Fig. 1.5c are mostly caused by outliers of either the
metric or the matching algorithm. Meanwhile, with the results in Table 1.2, Figs. 1.5
and 1.6 together, it reveals that quality predicting matching performance is not
always reached linearly, such as the CWT for 04DB2A shown by the three sets
of results. The global EERs in Table 1.2 demonstrate that the two metrics perform
relatively better for determining the best cases of sample quality, while no linear
relationship were found between them and both employed matching algorithms
according to Figs. 1.5d and 1.6d, so is learning-based metric such as Figs. 1.5d
and 1.6b.

Table 1.4 Pearson
correlation between metrics
and maximum GMS

QM

DB NFIQ QMF TMQ CWT

00DB2A (N.) �0:4541 �0:0014 �0:0268 0:2885

02DB2A (N.) �0:3308 0:5217 0:3940 0:2626

04DB1A (N.) �0:1579 0:2601 0:0027 0:0122

04DB2A (N.) �0:3937 �0:0177 0:1450 0:1684

04DB3A (N.) �0:3063 0:5922 0:3132 0:4604

00DB2A (S.) �0:4379 �0:0021 0:0402 0:3246

02DB2A (S.) �0:2596 0:3254 0:3732 0:3230

04DB1A (S.) �0:1970 0:3734 0:0585 0:0444

04DB2A (S.) �0:5843 0:0615 0:1309 0:1961

04DB3A (S.) �0:4131 0:4142 0:4371 0:6121

“NBIS” and “SDK” are two sets of matching scores
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Fig. 1.5 Enrollment
selection with quality metrics.
(a) 00DB2A, (b) 02DB2A,
(c) 04DB1A, (d) 04DB2A,
(e) 04DB3A
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Fig. 1.5 (continued)

1.4.4 Discussion via Sample Utility

To validate a biometric quality metric, an objective index [30] is used for represent-
ing the quality of a sample. The objective measure is an offline sample EER (SEER)
value calculated from a set of intra-class matching scores and a set of inter-class
matching scores formulated as N � 1 genuine matching scores (GMS)

GMSi;j;k D R
�
Si;j; Si;k

�
j¤k (1.3)

and N � 1�M � 1 impostor matching scores (IMS)

IMSi;j;l;k D R
�
Si;j; Sl;k

�
i¤l and j¤k; (1.4)

where N and M denote sample number and individual number of a trial dataset, R is
a matcher, and Si;j indicates the jth sample of the ith individual (Sl;k is similar).
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Fig. 1.6 Enrollment
selection with quality metrics.
(a) 00DB2A, (b) 02DB2A,
(c) 04DB1A, (d) 04DB2A,
(e) 04DB3A
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Fig. 1.6 (continued)

Therefore, with a SEERi;j of one sample, one can have a measure of how much
the contribution of a sample is within the experimental framework consisted of
employed datasets and matching algorithms. The objective measure is denoted as
sample’s Utility throughout the experiments.

The utility study in this part is actually an ES operation with the objective indexes
presented in Sect. 1.4.4. The objective measure of each sample reflects the behavior
of the sample under one matching algorithm of a specific vendor. This kind of
measurement is simply used for explaining the limitation of those quality metrics
implemented via prior knowledge of matching scores.

According to the definition given in Sect. 1.4.4, one can obtain an M-by-N matrix
of sample utility for a trial database. The matrix is hence used as a quality result by
which the enrollment selection is performed via interoperate matching algorithms,
see graphical results in Fig. 1.7.

Figure 1.7 gives the plots of global EER values obtained by using ES with
sample utility values, where Fig. 1.7a is the result based on NBIS matching scores
(MSBoz) and Fig. 1.7b is generated from the SDK’s matching scores (MSSDK).
In the experiment, first of all, the utility value of each sample (SEERi;j) with
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Fig. 1.7 Enrollment
selection with objective
measures. (a) Matcher of
NBIS. (b) Matcher of SDK

respect to each matcher is calculated, respectively. In this case, two matrices of the
sample utility were figured out and then used for enrollment selection. The utility
values correspond to NBIS software and the SDK are denoted as “UtilityBoz” and
“UtilitySDK,” by which the global EER values calculated with ES are plotted in the
figure, indicating by blue and red points, respectively.

The enrollment selection task chooses the best sample of one individual as the
enrollment in terms of their utility values. In this case, the best performance of a
matching algorithm obtained from a trial dataset cannot go over the global EER
value. Apparently, the utility value is mostly dependent on the performance of the
matching algorithm which is illustrated by two set of plots. In addition, according to
the results, we believe that a quality metric based on a prior knowledge of matching
score is not fully able to predict the matching performance in a cross-use. In fact,
one can consider that whether two genuine samples should produce high GMS when
one of them is not able to give reliable and sufficient features [29]. Besides, it is not
clear that how much the prior knowledge is close to the ground-truth of sample
quality.
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1.5 Conclusion

Recent studies of fingerprint quality metrics mainly focus on reducing error rates in
terms of utility of the samples. In this study, we make an interoperability analysis
to observe the behavior of several representative fingerprint quality metrics from
the existing frameworks, and hence reveal the limitations of this issue. Among the
experimental study, one can note that it is not very easy to achieve a common good
quality metric, even to those with multiple features. For instance, by comparing with
the metrics carried out via a single feature, some metrics based on multi-feature
do not show the advantage that should have obtained after fusion. Utility-based
quality metrics, especially those related to matching scores are more probably
affected by the change of matching algorithm, which is clearly brought out with the
experiments. Nevertheless, the linear relationship between GMS and quality values
is a valid criterion for assessing quality. However, it is not absolutely appropriate
for a different matching circumstance. To the end, the offline trials also reveal that
quality metrics is not an absolutely predictive measure for matching performance.
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Chapter 2
A Novel Perspective on Hand Vein
Patterns for Biometric Recognition:
Problems, Challenges,
and Implementations

Septimiu Crisan

2.1 Introduction

In biometric applications, a relatively new technology is emerging, namely the
optical scanning of superficial vein patterns. In order to be viable, a biometric
parameter has to be easily identifiable but hidden from view so that it cannot be
reproduced or simulated. It can be observed that the veins of the human body do not
leave external marks like fingerprints, are not easily falsifiable like the voice, cannot
be disguised like face traits, and are extremely hard to covertly extract during and
after the lifetime of an individual in order to be reused by an impostor. In the same
time, the technology used to acquire the vein pattern has reduced costs and is not
invasive, requires minimal cooperation from a person, and is largely a noncontact
procedure that allows it to be used where hygienic concerns are an issue [1].

Some of the most important requirements for a biometric system are the
uniqueness and permanence of the biometric parameter used for recognition. Even
in the case of complete uniqueness, a biometric system should be sensitive enough
to be able to accurately discriminate between samples acquired from different
individuals.

A review of the scientific literature shows that the visual structure of the veins
is a unique property of an individual both in the retina [2, 3] and in the hand
[1, 4–7]. Furthermore, it is often assumed that the localization of arteries, veins, and
capillaries is specific to each person [7, 8]. Due to the novelty of the technology, the
scientific studies related to the uniqueness of the vein model are rather scarce.
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From a medical point of view, the cardiovascular system is formed first in the
human body. The exact reason for the actual shape and path of veins, arteries, and
capillaries is not completely known but, until now, from the study of the scientific
literature, the probability of finding two individuals with the same vein pattern
is very low. In vitro studies of the cells’ spatial distribution show the automatic
forming of blood vessels and the migration of cells in order to create a connected
vascular network. The migration process and the dynamic aggregation result in a
fractal-like behavior at both a small and a large scale [9]. Taking this premise into
account, while it is impossible to predict the future blood network arrangement, a
realistic vein model simulation has to take into account different aspects such as:

• The local anatomy,
• The blood irrigation requirements, and
• Other case-specific hemodynamic constraints—veins anastomose frequently,

redundant vein paths.

In this manner, while there is a comfortable variation degree for a discrimination
detection system, the veins are not randomly formed. Thus, in order to guarantee
the uniqueness parameter, designing and implementing a vein pattern recognition
system is not a trivial task.

A possible vein network arrangement belonging to a person’s hand can be
observed in Fig. 2.1.

The second property mentioned in this chapter is the permanence of the vein
pattern. A biometric recognition system is only useful if an individual can be
identified after subsequent scans on different timeframes. For blood vessels, there
are three processes that can modify partially or totally their network:

• Natural changes of the vascular system over the course of a healthy individual’s
life

• Changes in the vascular network due to traumas or diseases
• Changes of the blood vessels due to surgical interventions

From the genesis of the blood vessels during gestation, most differences in the
pattern as an individual grows up are related to the overall size and position of the
network. Veins will get thicker or thinner or exhibit irregularities but the general
path will remain mostly unchanged. Taking into account the fact that this model is
unaffected by superficial wounds or lacerations of the skin, it is a viable biometric
parameter for scans taken at large intervals of time from each other [3]. In extreme
cases, such as surgery that can modify—through sectioning, rerouting, grafts, etc.—
the vein model, the biometric device can reenroll the individual or compensate the
modifications between two successive scans by using automated algorithms.

Condensing the three presented processes that can modify the vein pattern,
several concerning factors are:

• The degree of pigmentation or discoloration of the skin. Color changes triggered
by sun exposure, pigmentation due to old age, or even the native color of the skin
do not interfere significantly with the vein scanning process as validated in [11]



2 A Novel Perspective on Hand Vein Patterns for Biometric Recognition: : : 23

Fig. 2.1 Possible vein
network in the back of the
hand [10]

• Blood loss—a relevant factor since a lower quantity of blood could diminish the
absorption rate at the vein level

• Medical conditions that are known to cause blood vessel constriction or dilatation
• Reduced number of blood cells, anemia, or other diseases that may modify the

normal amount of deoxidized hemoglobin
• Deep skin cuts or surgical procedures that may potentially modify the vein model

(although common skin problems should not interfere with the actual detection
of the vein pattern)

• Environmental factors such as differences in altitude, prolonged change in hand
orientation, physical stress, etc.

From a permanence point of view, using the vein pattern as a biometric feature is
correct because it is a parameter with predictable modifications during the lifetime
of an individual and the types of surgery or diseases that can completely modify the
model in the hand region are rare and can be compensated through reenrollment.
Nevertheless, in order to minimize the complexity of the scanning algorithms, vein
pattern detection should be performed on individuals close to adulthood for a less
drastic modification of the blood vessel network from one scan to the next. In [12],
it is also observed that, generally, no major growth happens during the adult life and


