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The origins of what is now called supramolecular chemistry have been somewhat  disparate, 
arising in part from studies of the chemistry of macrocycles (a development of naturally 
occurring analogues), spherands and carcerands, and cryptates . . . but the award of the 
1987 Nobel Prize to Donald Cram, Charles Pedersen and Jean-Marie Lehn in many ways 
gave it a consolidated focus and led to its emergence as a field that retains vigorous and 
distinctly multidisciplinary activities. Supramolecular chemistry – defined by Lehn as 
“the chemistry of molecular assemblies and of the intermolecular bond” – deals with the 
organization of molecules into defined assemblies using noncovalent interactions, includ-
ing weaker and reversible associations such as hydrogen bonds, п-п interactions, dispersion 
interactions, hydrophobic and solvophobic effects, and metal-ligand interactions. The aspect 
of stereochemistry within such chemical architectures, and in particular chirality, is of very 
special interest as it impacts on considerations of molecular recognition, the development 
of functional materials, the vexed question of homochirality, nanoscale effects of interac-
tions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic 
synthesis.

This book is intended to address the nature of the phenomenon of chirality in its broadest 
sense, noting the change in its nuances and subtlety in the progression from simple indi-
vidual molecules to molecular assemblies, and to show the manifestations of chirality in 
the synthesis, properties, and applications of supramolecular systems, emphasizing their 
multidisciplinary importance.

The book is essentially divided in to four broad parts. The first constitutes an introduction 
to chirality: Chapter 1 develops the concept of chirality from rigid isolated molecules 
through to assemblies of molecules (in supramolecular entities), to topological chirality. 
Chapter 2 discusses chirogenesis and the phenomenon of homochirality (loss of parity) 
in  the development of naturally occurring polymers (including nucleic acids and 
 polypeptides) – and its consequences for the formation of artificial supramolecular 
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 aggregates. Chapter 3 provides an overview of chiral aspects arising in the crystallization of 
small organic molecules – principles that are applicable to all classes of molecules, includ-
ing supramolecular assemblies.

The second part is predominantly (but not exclusively) centered on metallosupramolecular 
chemistry. By the use of examples, Chapter 4 addresses the diversity of supramolecular 
assemblies – and in particular metallosupramolecular assemblies – and describes the com-
plexity of chiral structures and their construction through self-assembly procedures. Chapter 
5 describes the role of chirality in molecular recognition and host-guest systems. Chapter 6 
develops the notion that unique characteristics can be built into supramolecular assemblies 
because of features of chirality – characteristics that can lead to functional properties of such 
materials. Chapter 7 addresses bulk homochiral solids formed using chiral reagents – either 
by direct incorporation, or by templating or induction, during synthesis. Chapter 8 considers 
the basic design principles that underpin the construction of metallosupramolecular 
polyhedra.

The third part is devoted to chirality at interfaces. Chapter 9 focuses on chirality expression 
and amplification at solution / solid-state interfaces, and applications such as heterogeneous 
catalysis and chiral separations. Chapter 10 addresses the initiation of chiral suprastructures 
on surfaces, and their modeling by high-resolution experimental methods and theoretical 
calculations.

The fourth part addresses chirality in organic hosts, and in biological / enzymatic sys-
tems: organic hosts are used in analytical chemistry to separate racemic guest mixtures or 
simply to distinguish enantiomers, and chiral hosts can function as catalysts in asymmetric 
reactions – Chapter 11 reviews particular features and applications of chiral organic host 
systems based primarily on cyclodextrins, calixarenes, and crown ethers in this regard. 
Chapter 12 stresses the enormous potential of microorganisms and enzymes as catalysts in 
asymmetric synthesis for controlling the stereochemical outcome of reactions, and dis-
cusses the use of whole cells and isolated enzymes as an attractive option for the chemical 
industry.

It is always understood that supramolecular chemistry is so diverse that one book cannot 
be totally equitable in its coverage of all aspects of the field. This book attempts to address 
some of the major aspects authoritatively and highlight important current thrusts. It will be 
useful to researchers working with chiral supramolecular assemblies, and will hopefully 
draw others with an existing interest in supramolecular systems to a further appreciation of 
the importance of chirality in the field, as seen through contributions of experts in their 
respective parts of that firmament.

F. Richard Keene
Adelaide, Australia
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1
Principles of Molecular Chirality

Jean‐Claude Chambron and F. Richard Keene

1.1 General Introduction

Chirality is probably one of the most significant topics in chemistry. The strong connection 
between chirality and symmetry has made it appealing from the mathematical and aes-
thetic viewpoints, and the recent interest in topologically chiral interlocked and knotted 
 molecules has increased its intellectual attraction, raising the concept of a hierarchy in 
chirality [1]. The most fascinating aspect of chirality stems from the dynamic properties of 
molecules and supramolecular assemblies, rather than their static properties, because they 
are the cause of many intriguing and sometimes paradoxical issues. At the same time, 
dynamic chirality is also the most useful topic because of the numerous applications it 
underpins, from chiral recognition to molecular motors.

Historically, chirality is rooted into crystallography (the concept of hemiedry), and the 
first breakthrough into the field of molecular chirality was Louis Pasteur’s hypothesis that 
the dissymmetry of a crystal was a consequence of dissymmetry at the molecular level [2]. 
The second milestone was the Le Bel and van’t Hoff model of the tetrahedral carbon atom, 
which accounted for the chirality of the organic compounds known at that time, and several 
years later Werner was the first to study and provide evidence for the chirality of metal 
complexes. The discovery of organic molecules that did not owe their chirality to tetrahe-
dral carbon atoms carrying four different substituents (e.g., allenes, biphenyls, cyclo-
phanes), and of helical structures in nucleic acids and proteins, finally led Cahn, Ingold, 
and Prelog to establish a general system for the description of chiral structures. Since then, 
many novel chiral molecules have been reported, and most of them could be described in 
the frame of the CIP rules. The most notable developments in chirality in recent decades 
concern aspects of the generation and control of chirality: transfer by supramolecular 
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interactions; chirality of molecular assemblies (chirality at the supramolecular level or 
“supramolecular chirality”); and finally, the concept of “topological chirality” brought 
 forward by the development of interlocked and knotted molecules.

This chapter constitutes an introduction to molecular chirality from the rigid geometrical 
model to the topological model, but also from the isolated molecule to assemblies of 
 molecules. As the first chapter in this book on the causes and consequences of chirality in 
supramolecular assemblies, it will, nevertheless, not cover all the aspects of chirality 
 transfer – in particular those resulting from a covalent bond formation.

1.2 Geometrical Chirality

A chiral object is the one that does not coincide with its mirror image. The source object 
and its mirror image are called enantiomorphs. From the point of view of symmetry, enan-
tiomorphic objects can have only rotation axes C

n
, n ≥ 1, as symmetry elements: they are 

either asymmetric (C
1
) or dissymmetric (C

n
, n ≠ 1). There are many natural examples of 

enantiomorphic objects, the prototypical one being the human hand, the Greek word for 
which (χειρ) has been used to create the English word “chiral.” Molecules are objects at the 
nanometer scale that are made of atoms connected by chemical bonds. If molecules are 
considered as rigid nanoscale objects, the definition given above can be very easily 
 transposed to the molecular level, with the term “enantiomorph” being replaced by “enan-
tiomer.” However, molecules differ from macroscopic objects according to two criteria: 
(i) they are not rigid and can encompass a great variety of shapes called conformations, the 
distribution of which depends on time, temperature, and solvent; (ii) they are not usually 
handled as a single object, but as populations of very large number of individuals 
(~ Avogadro number). These two unique characteristics make the definition of molecular 
chirality not as simple as that of a rigid object (such as a quartz crystal), and therefore it 
needs further developments in order to be refined [2].

The object molecule can be described at different levels of complexity, which are repre-
sented by models [3, 4]. The chemical formula, which uses atomic symbols for the atoms 
and lines for the bonds (traditionally, dashed lines for the weakest bonds), is no more than 
what has been termed a molecular graph, a concept derived from mathematics that has been 
introduced and used fruitfully in various areas of chemistry, in particular in molecular 
topology (see section 1.3). The structural formula is more informative because it shows the 
spatial relationships between the atoms and the bonds, which can be, for example, probed 
by nOe effects in NMR spectroscopy. The most accomplished description of the molecule 
as a rigid object is the 3D representation resulting from an X‐ray crystal structure analysis, 
as it gives the distances between the atoms (bond lengths), and the angles between bonds. 
This points to the fact that the image of the molecule we have depends on the observation 
technique – in particular its timescale, observation conditions such as temperature, but also 
the state of the observed molecule (solid, solution, gas) [5]. In fact, a large number of mol-
ecules, including chiral ones, can be described using the approximation of rigidity (i.e., a 
rigid model) because fluctuations of atom positions are averaged around a thermodynamic 
equilibrium value at the observation timescale. In that approximation, as pointed out by 
Mislow [4], the chirality of the molecule is the chirality of the model, which depends only 
on the atomic positions, so that in principle the bonds can be ignored. However, the 
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presence of a bond between two atoms indicates that these atoms are closer to each other 
than if they were not bonded, so that, in practice the bond formalism is very useful for 
assessing, in a straightforward manner, the chirality of a rigid molecular model. This is the 
case where, for example, within two identical sets of atoms symmetry‐related bonds have 
different lengths, leading to a distortion of the entire structure. Such an example of chirality 
due to alternating bond lengths is illustrated by the Keggin polyoxometallate α‐[P

2
Mo

18
O

62
]6– 1 

of Figure 1.1 [6].

1.2.1 Origins and Description of Chirality within the Rigid Model Approximation

1.2.1.1 General Considerations

This section will deal with general considerations relating to the description and origins of 
chirality. Examples selected for their unique chirality properties will be then discussed in 
more detail in the following sections. Rigidly chiral molecules can only undergo rotations 
about bonds. They belong to one of the following point groups: (C

1
, asymmetric), C

n
, D

n
, 

T, O, and I – the latter three being quite rare (see section 1.2.1.3) – which contain only 
proper symmetry axes as symmetry operations (Table 1.1). Molecular chirality concerns 
molecules or molecular assemblies featuring a 3D structure. The latter is determined by the 
interplay between molecular constitution, atom bonding geometry, and intramolecular and 
intermolecular interactions  –  including repulsions resulting from strain and steric hin-
drance. These factors then translate into arrangements of atoms that are either asymmetric 
(no symmetry element is present) or dissymmetric (with C

n>1
 symmetry elements only) in 

the 3D space – the necessary but not sufficient (see below) criteria for chirality [2].
The conversion of a planar object into a 3D object can be achieved by either of two 

 possible pathways. It is illustrated in Figure 1.2, starting from a rectangle as an example of 
a 2D object. Of course the rectangle, lying horizontally, is achiral (D

2h
 symmetry). In the 

first pathway let us take one of the points of the rectangle, for example its center, and pull 

1 ent-1

Figure  1.1 The enantiomers of the chiral Keggin polyoxometallate α‐[P2Mo18O62]
6– 1. 

The chirality of this molecule has a dynamic character, which allows the dynamic thermodynamic 
resolution of a given enantiomer of this hexaanion by interaction with enantiomerically pure 
cations
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it out of the plane along the vertical direction. This will generate a C
2v

‐symmetric pyramid. 
This achiral pyramid can be made chiral by changing its constitution – e.g. by coloring 
selected vertices: a minimum of two colors is required, as shown in Figure 1.2a, which 
produces an asymmetric (C

1
) pyramid. The second pathway arises from a twist to the 

 rectangle along its principal C
2
 axis, which makes it a propeller with D

2
 symmetry 

(Figure 1.2b). Hence, unlike the former case, the generation of chirality is simultaneous 
with the generation of a 3D object. Next, the symmetry is decreased to C

2
 by color‐ 

differentiation of any two vertices out of the four. Of course, making three vertices of the 
same color would  further decrease the symmetry of the propeller to C

1
.

Stacks of an achiral planar object (such as an isosceles triangle, as shown in Figure 1.3) 
can produce an achiral D

3h
 symmetrical column (b), which upon a regular twist of the 

 individual components is converted into a chiral wreathed column, either left‐ (a) or right‐ 
(c) handed.

In chemical vocabulary, the deformation applied to the rectangle of Figure 1.2a corre-
sponds to a constitutional change as the rectangle (four vertices) has been changed to a 

Table 1.1 Symmetry elements of chiral point groups, the corresponding geometries they are 
generated from, and maximal symmetries

Point group (achiral geometrical figure) Symmetry elements Symmetry properties

C1 (general polyhedron) None Asymmetric
Cn, n≠1 (cone) Cn Dissymmetric
Dn, n≠1 (cylinder) Cn, n × C2 Dissymmetric
T (tetrahedron) 4 × C3, 3 × C2 Dissymmetric
O (octahedron and cube) 3 × C4, 4 × C3, 8 × C2 Dissymmetric
I (icosahedron and dodecahedron) 6 × C5, 10 × C3, 15 × C2

Dissymmetric

twist

D2h D2

C2vD2h

out of plane

take a point Two colors

Two colors

C2

C1

chiral

achiral

achiral

achiral

chiral

chiral

(b)

(a)

Figure 1.2 Two pathways for the conversion of a planar object into a 3D object, exemplified 
by a rectangle. (a) Taking a point out of the plane of the rectangle generates an achiral C2v‐
symmetric pyramid, of which the desymmetrization to a C1‐chiral object requires the use of 
two colored vertices (black and white). (b) Twisting converts the rectangle into a D2‐symmetric 
chiral object, the symmetry of which can be decreased to C2 by coloring (black and white 
disks) of selected vertices
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pyramid (five vertices), whereas in the case of Figure 1.2b it corresponds to a conforma-
tional change as the twisted object has the same number of vertices and faces. Twisting 
may result from various mechanisms, such as rotations about bonds or variations in bond 
lengths  –  and in the case of molecular assemblies, from the generation of a curvature 
because of intermolecular attractions or repulsions.

The two basic processes of Figure 1.2 can be illustrated in the construction of the  mirror‐
image molecular parallelepipeds [Zn

2
‐2]

4
 shown in Figure  1.4 by self‐assembly of 

Zn(porphyrin) covalent dimers (R)‐Zn
2
‐2 and (S)‐Zn

2
‐2 driven by the Zn‐pyridyl interac-

tion [7]. The vertices of the cubes are occupied by Zn porphyrin (ZnPor) subunits, whereas 
four parallel edges are formed either by meso C–C single bonds or the meso C–(4‐pyridyl)–
ZnPor bond sequence. The bis(porphyrin) subunits are twisted by 90° with respect to each 
other, while each Zn2+ cation has a pyramidal N5 environment in the assembly.

The specification of chirality was formalized by Cahn, Ingold, and Prelog using (in the 
first instance) the “chirality model,” which involves three stereogenic elements of chirality: 
the center, the axis, and the plane [8]. The chirality model of molecules is based on the 
tetrahedron, which is also the minimal 3D polyhedron [9]. In the first case (asymmetry, 
Figure 1.5) the perfect tetrahedron of T

d
 symmetry needs four different achiral vertices 

(A, B, C, and D) to be C
1
 chiral (asymmetric constitution). Another possibility is to  consider 

a tetrahedron of C
1
 symmetry, in which all six edges have different lengths (asymmetric 

arrangement of the atoms). In practice, the asymmetric tetrahedron results both from asym-
metric constitution and atom arrangement (Figure 1.5d).

In the second case (dissymmetry, Figure 1.6), elongation along one of the C
2
 symmetry 

axes of the tetrahedron of Figure 1.5a decreases its symmetry to D
2d

, and therefore only two 
different achiral substituents (A and B) are now needed to make it C

2
‐symmetric chiral. 

In addition, the D
2d

 elongated tetrahedron can also be made chiral without the need of 
 substituents, by differentiating another pair of edges that are related by the main C

2
 axis 

(z direction). This is done by compressing the tetrahedron of Figure 1.6a in the y direction, 

(a) (b) (c)

Figure 1.3 Generating chirality by making (b) stacks of a planar triangular figure, followed by 
twisting of the resulting column either anticlockwise (a) or clockwise (c)
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(R)‐Zn2‐2 and (S)‐Zn2‐2, based on the Zn2+‐pyridyl interaction
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which removes its symmetry planes. The resulting tetrahedron (Figure  1.6c) is D
2
‐ 

symmetric. Decreasing the symmetry of the D
2d

 tetrahedron further by moving symmetri-
cally two vertices closer to each other as shown in Figure 1.6d, produces a C

2v
‐symmetric 

tetrahedron, which is made C
2
‐symmetric chiral by differentiating a pair of C

2
 symmetry‐

related edges (Figure 1.6e).

Td C1 C1

(a)
A

B C

D
(b) (c)

C1

A

B

C

D

Figure 1.5 Making the regular, Td symmetric, tetrahedron (a) asymmetric: (b) by assigning 
the vertices four different labels; (c) by differentiating the lengths of all six edges using six 
different “colors”

D2d C2

(a)

A B

A B
(b) (c)

D2

(d)

C2v

(e)

C2

A

A B

B

Figure 1.6 Desymmetrization of the regular tetrahedron. (a) Elongation along one of the C2 
symmetry axes makes the two edges that are perpendicular to it (colored in black) different 
from the others. A view from the top is shown below the side view. (b) This D2d‐symmetric 
tetrahedron is made C2‐symmetric by labeling the four edges with two different labels, A and 
B. (c) It can be made D2‐symmetric by further coloring (in white) two edges that are symmetry 
related by the main C2 axis. As shown in the top view below, this corresponds to a second 
elongation, along the C2’ axis. (d) The symmetry of tetrahedron (a) is further decreased to C2v 
by differentiating a third edge (colored in light gray). (e) The latter is made C2‐chiral by coloring 
in white two edges that are related by the C2 symmetry axis, leaving the two others in dark gray
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Figure 1.7 illustrates how two molecules, the 3D structures of which arise from different 
factors, are described using the same formalism (the chirality model) – in this particular 
case, the chiral axis. (+)‐Twistane 3 (Figure 1.7a) owes its chirality to a highly symmetrical 
arrangement of sp3 carbon atoms in space. The ansa‐biphenyl 4 of Figure  1.7b is D

2
‐ 

symmetric chiral due to strain‐relieving twisting. Both molecules have the same configura-
tion (R

a
), which is obtained from the chirality model. In addition, the biphenyl can also be 

considered as a molecular propeller, and as its 3D structure is of conformational origin, it 
is best described using the M/P nomenclature. From the CIP rules, it is the M conformation 
that corresponds to the R

a
 configuration.

An additional illustration of the chirality axis is given in Figure  1.8, which shows a 
tris(spiroorthocarbonate) cyclophane (5) made in low yield by condensation of (R)‐2,2′,3,3′‐
tetrahydroxy‐1,1′‐binaphthyl with dichlorodiphenoxymethane as the carbon source in 
refluxing toluene [10]. The resulting D

3
‐symmetric cyclophane has six chirality axes, three 

S S

ab

cd

AB

CD

ab

cd

ab

c

d

MRa

(a) (b)

AB

CD

Ra(R)-3 (R)-4

Figure  1.7 Description of chirality using the chirality axis as stereogenic unit (a, b), and 
comparison with the description of chirality by identification of a twist (b). a) (+)‐Twistane 3. 
The chirality axis bisects [a, b] and [c, d]. b) A D2‐symmetric doubly bridged biphenyl 4. The 
chirality axis is the biphenyl Ar‐Ar bond. In both cases the positions of a and b are arbitrary, 
however the CIP rules govern those of c and d. Biphenyl (b) is also a molecular propeller, the 
conformation of which is M

O

O

O

O

O

O

O

O
OO

O O

(R,R,R,R,R,R)-5 (R = H or nBu)
R

R

R

RR

R

Figure  1.8 The 3D triangular Janus cyclophane 5 is made by connecting three homochiral 
binaphthol‐derived subunits by three carbon bridges. The configuration of all six chirality axes is R
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of conformational origin from the binaphthyl components, and three of configurational 
origin from the spiroorthocarbonate connections, which are interdependent. This molecule 
features two back‐to‐back aromatic concavities, which were shown by X‐ray crystallogra-
phy to be able to complex two C

60
 guests via multivalent π‐π interactions.

The other model that was devised by Cahn, Ingold, and Prelog is the “helicity model,” 
which proved subsequently to be extremely relevant in describing the chirality of a great 
variety of molecules and polymers, in spite of the fact that – at the time it was  proposed – 
examples of helical nanoscale objects were rare [8]. From the mathematical viewpoint, a 
helix results from the combination of a rotation and a translation, and can be cylindrical (C

2
 

symmetry) or conical (C
1
 symmetry). Once a helical structure is clearly identified, for exam-

ple as a secondary structure, the sense of chirality is given by the helical path. If a clockwise 
rotation produces a translation away from the observer (following the sequence A′, B′, C′ in 
Figure 1.9a), the sense of chirality is P or Δ; if the same effect is produced by a counter-
clockwise rotation, the sense of chirality is M or Λ. Note that P and M descriptors generally 
apply to conformations and to the so‐called secondary structures, and that the Δ and Λ 
descriptors are used for the configurations of transition metal complexes.

Natural macromolecular compounds such as DNA, polypeptides, and amylose, as well as 
synthetic examples such as polyacetylenes and polyisocyanates, can take up helical shapes 
[11]. This is also the case with molecular compounds like foldamers [12], helicenes [13], 
and helicates [14] (Figure 1.10). Larger structures encompass at least a full helix turn. By 
contrast, the smaller members of these families of molecules do not incorporate a 360° turn 

Δ or P

D

B

A

C

Aʹ

Bʹ

B

A

Cʹ

C

D

R

D

B

A

C

S

Λ or M

Aʹ

Bʹ

B

A

Cʹ

C

D
(a) (b)

Figure 1.9 Two different ways to define and orient the 3D space and the analogies between 
them. (a) Definition and orientation of the 3D space within the helicity model: generation of a 
helix and description of helical chirality using the Λ, Δ or M, P descriptors. (b) Chirality model: 
reduction of the stereogenic unit to a tetrahedron substituted with four different substituents 
(descriptors S and R). The vertical arrows are oriented towards the face from which the ABC 
plane must be seen. In (a) the D point has been sent to the infinite. Note that, when both models 
can be equally applied, there is no relationship between the helicity and chirality descriptors, 
except in the case of the biaryls, where M and P correspond respectively to R and S



10 Chirality in Supramolecular Assemblies: Causes and Consequences

and actually represent helical fragments: This is notably the case of the so‐called molecular 
propellers [15] (Figure 1.10c), or of molecules that feature a simple twist (Figure 1.7b). 
Helicity can also manifest itself at the supramolecular level, for example in the case of heli-
cal stacks of achiral molecules. It is important to note at this stage that the formation of 
hierarchically organized chiral supramolecular structures can make the connection between 
nanoscopic and microscopic or macroscopic chirality (e.g., chiral molecular gels or chiral 
mesophases). The highest symmetry molecular propellers belong to the D

n
 symmetry point 

groups. Among D
n
‐symmetric propellers, those belonging to the D

2
 symmetry point group 

are worth highlighting because they make the connection between the helicity model and 
the chirality model, as both models apply in that case (see Figure 1.7b).

As is the case for DNA, many helically chiral molecular compounds feature double or 
triple helices. This is particularly the situation for the helicates in which polychelate ligands 
take up helical conformations upon bridging at least two metal cations. This is illustrated 
in Figure 1.10d by the dinuclear Ru2+ complex of a quaterpyridine ligand (92+) [16].

After this short overview of the origins and description of chirality we shall detail several 
examples that illustrate the two basic principles of formation of chiral structures in the 3D 
space shown in Figure 1.2 – that is, desymmetrization by constitution and desymmetriza-
tion by twisting.

1.2.1.2 Desymmetrization by Constitution

Figure 1.11 shows the grid‐type tetranuclear metal‐ligand assembly [Os
2
Fe

2
(10)

4
]8+ made 

from a “fused” bis(terpyridine)‐like ligand (10) (in which two 2,2′‐bipyridine moieties are 
bridged by a central pyrimidinyl fragment), and two different metal ions (Os2+ and Fe2+), 

N

N

N
N

N
N

Ru

2+
N N

N
N

N

N
N

N
N

N
N

N

NNN

N
N

Δ-82+

M-6

P-7

(b)(a) (c)

N
Ru

CH3

CH3

N

N

N

H3C

H3C

N

N
Ru

N

N
N

N

N

N

CH3

4+

(d)

CH3

Δ-94+

Figure 1.10 Examples of helically chiral molecules and molecular propellers. (a) [6]Helicene 6. 
(b) Foldamer 7 based on alternating pyridine and pyrimidine subunits. (c) The [Ru(bipy)3]

2+ 
coordination complex (82+), where bipy is 2,2′‐bipyridyl, is a C3‐symmetric propeller. (d) 
Connecting two homochiral [Ru(bipy)3]

2+ subunits through the positions 4 and 4′, respectively, 
of the bipy ligands produces a fragment of the triple helical dinuclear complex 94+ in which 
each quaterpyridine ligand has the same helical conformation
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the pairs of identical metal centers being located on a diagonal [17]. This was done in a 
straightforward manner by introducing the metal centers in the order of increasing lability – 
reacting at first the di‐chelate with NH

4
OsCl

6
 in 1 : 1 ratio, thus generating a corner‐type 

chiral mononuclear complex, followed by the addition of Fe(BF
4
)

2
 (2 equivalents). 

Interestingly, the reaction proceeded stereoselectively to produce the chiral D
2
‐symmetric 

tetranuclear complex, as only corner‐type precursors of the same handedness react with 
each other, excluding the formation of achiral meso C

2v
 assemblies. It is noteworthy that the 

tetra‐homonuclear assembly represents a stereochemical curiosity, as it can be discon-
nected into two homochiral mononuclear di‐chelate complex subunits. This illustrates the 
stereochemical paradox called “la coupe du roi” (Figure 1.12) [18].

Another remarkable case of desymmetrization by molecular constitution is offered by 
the higher order fullerenes. Fullerenes were unprecedented examples of molecules featur-
ing a closed‐shell structure. C

60
 itself has icosahedral I

h
 symmetry and is therefore achiral, 

but several higher order fullerenes such as C
76

, have been isolated and characterized. C
76

, 
which derives from C

60
 by incorporation of 16 additional C atoms, has D

2
 symmetry, as 

shown by 13C NMR (19 lines of equal intensity), and its chirality arises from its oblong, 
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SnPr
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SnPr
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N N

SnPr

N

N

SnPr

N
N

N

SnPr
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SnPr

N

N
N

N

N
N

SnPr

SnPr

N Os
Os

Fe

Fe

(R)-[Os2Fe2(10)4]8+

Figure 1.11 The chirality of the grid‐type tetranuclear complex [Os2Fe2(10)4]
8+ of the “fused” 

bis(terpyridine)‐like ligand 10

+
2

Figure 1.12 The achiral D2h‐symmetric molecular grid is formed from two homochiral halves 
of mononuclear corner complexes with the bischelate ligands (black elongated rectangles) by 
addition of two metal cations that are identical to those involved in the starting homochiral 
complexes
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helically twisted structure (Figures  1.13b to 1.13d) [19]. The enantiomers of C
76

 were 
resolved through the HPLC separation of the two diastereomers obtained by regioselective 
functionalization of C

76
 with an optically active malonate, followed by an electrochemical 

retro‐Bingel reaction performed on each isolated diastereomer to release each optically 
pure C

76
. In principle, as all carbon atoms are pyramidalized, the configuration of the 

fullerene can be described by listing the absolute configuration (R or S) of each stereogenic 
center. The latter is obtained by developing the corresponding hierarchic directed graph 
which, however, is a cumbersome task.
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Figure 1.13 Schlegel diagrams (a and c) and perspective representations (b and d) of the 
corresponding enantiomers of C76. The double bonds have been omitted for clarity. Five‐
membered rings have been highlighted in bold (black for the front ones, light gray for the rear 
ones in (b) and (d). The Schlegel diagram is obtained by opening the C71 to C76 six‐membered 
ring and looking down the C1 to C6 analog (bold labels). The descriptor is fC if the C1 to C6 
sequence is clockwise and fA if it is the opposite. The intersection of the three C2 axes with the 
bonds have been materialized by the black dots: the vertical axis crosses C43–C44 and C33–
C34, one horizontal axis crosses C1–C6 and C71–C76, and the other crosses C38–C39 
and C29–C48
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Therefore a simplified procedure, which uses a single descriptor, has been developed 
which relies on the fact that the numbering schemes of fullerenes are helically chiral 
(Figures 1.13a to 1.13c), and can be used to differentiate between enantiomeric fullerenes. 
Whereas two isometric mirror‐symmetric numbering schemes can be applied to an achiral 
parent fullerene such as C

60
, a unique one is associable with a specific enantiomer of an 

inherently chiral carbon spheroid. Depending on whether the path traced from C(1) via 
C(2) to C(3) of this numbering is clockwise (C) or anticlockwise (A), the descriptors are 
defined as fC and fA. Figures 1.13a and 1.13c show the Schlegel diagrams of the enantiom-
ers of C

76
 viewed through the opening of the six‐membered C71–C72–C73–C74–C75–C76 

cycle in the direction of its C1–C2–C3–C4–C5–C6 analog. The sense of the latter sequence 
(clockwise or anticlockwise) gives the chirality descriptor fC or fA. As C

76
 is D

2
‐symmetric, 

it has three C
2
 symmetry axes that are orthogonal to each other.

Concave, bowl‐shaped molecules represent a very important family of receptors and 
precursors of receptors that may display chirality [20]. Examples are resorcinarenes, calix-
arenes, cyclotribenzylenes and cyclotriveratrylenes, tribenzotriquinacenes [21], sumanenes 
[22], subphthalocyanines [23] and receptors built from these compounds –  such as the 
cryptophanes made by dimerization of functionalized cyclotribenzylenes [24], or molecu-
lar capsules assembled by hydrogen bonding between urea‐functionalized calix[4]arenes 
[25]. As concave molecules are nonplanar, they can be made chiral just by rim orientation. 
The simplest geometrical model of a concave molecule is a tetrahedron with an “empty” 
ABC face opposed to the D vertex [26]. Calix[4]arenes carrying at least two different sub-
stituents in the para positions of the phenol rings, or having even a single meta substituent, 
such as 11 (Figure  1.14a) [27], cryptophanes carrying two different substituents at the 
meta positions of the phenylene rings, such as 12 (Figure 1.14b) [24] – just to mention a 
few – are examples of concave molecules that owe their chirality to rim orientation. These 
 compounds have been qualified as “inherently chiral,” because their chirality (which does 
not depend on the presence of chiral substituents) is a property of the overall structure [26]. 
However, this expression may be misleading as bowl inversion, when it is possible, reverses 
the sense of chirality: therefore concave molecules are better described under the heading 
of conformational chirality [28]. The recommended descriptors to characterize these 
 molecules are P and M [8]. Rim orientation of achiral concave molecules may also result 
from the concerted orientation of substituents, for example by a directed network of hydro-
gen bonding. The self‐assembled molecular capsule (13)

2
 of Figure 1.14c is obtained by 

Et
4
N+‐templated head‐to‐head dimerization of two urea‐substituted calix[4]arene (13) 

components [25].
Cyclodextrins are concave macrocyclic oligomers of D‐glucose, and are therefore 

 enantiomerically pure compounds. The recent development of efficient methods for the 
selective functionalization of their primary rim has led, in particular, to the synthesis of α‐
cyclodextrins carrying three different substituents [29]. Figure 1.15 shows an example in 
which the original primary alcohol functions have been replaced by ‐PPh

2
, ‐OBn (Bn is 

CH
2
Ph) and ‐Me groups that alternate twice, which imparts an orientation to the primary 

rim. Therefore, the modified cyclodextrin has two diastereomers 14a and 14b, because the 
chirality due to rim orientation is superposed on the chirality of the native cyclodextrin 
backbone. The resulting molecule can be considered a diphosphine ligand, and indeed it 
was used in the Tsuji–Trost allylation reaction. It was shown that opposite orientations of 
the primary rim led to opposite enantioselectivities, albeit rather low (30%), whereas the 
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Figure  1.14 Examples of concave chiral molecules. (a) One of the phenyl rings of 
thiacalix[4]arene 11 bears a bromine atom in the meta position, which destroys the C4v 
symmetry of the parent compound, and makes the corresponding system asymmetric. The 
propyl groups prevent ring inversion at ambient temperature. (b) Cryptophane‐A (12) in the 
chiral, anti‐configuration (P). (c) A head‐to‐head calix[4]arene dimer (13)2 via hydrogen 
bonding between arylurea substituents, that encapsulates EtN+ (removed for clarity; Ar = p‐
tolyl). The methyl acetate substituents maintain the macrocycles in the cone conformation


